The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
A DSI implementation for the MOLGENIS Armadillo DataSHIELD Service.
You can use DSMolgenisArmadillo to analyse data shared in MOLGENIS Armadillo servers using DataSHIELD. DataSHIELD allows execution of a subset of analysis methods available in R. Methods such as:
ds.mean()
ds.glm()
ds.lmerSLMA()
For more detailed documentation check: https://cran.datashield.org/.
You can install the released version of DSMolgenisArmadillo from CRAN with:
install.packages("DSI")
install.packages("DSMolgenisArmadillo")
Make sure you install the DataSHIELD client
(dsBaseClient
) to perform the actual analysis. This needs
to be a client which is version 6.0.0 or higher.
# install the DataSHIELD client
install.packages("dsBaseClient", repos = c("http://cran.datashield.org", "https://cloud.r-project.org/"), dependencies = TRUE)
To use the DataSHIELD Armadillo client and perform analysis in DataSHIELD there a few basic steps you need to take.
# Load the necessary packages.
library(dsBaseClient)
library(DSMolgenisArmadillo)
# specify server url
<- "https://armadillo.dev.molgenis.org"
armadillo_url
# get token from central authentication server
<- armadillo.get_token(armadillo_url) token
You need to specify the project, the folder and the table name(s) you want to access.
# build the login dataframe
<- DSI::newDSLoginBuilder()
builder $append(server = "armadillo",
builderurl = armadillo_url,
token = token,
table = "gecko/2_1-core-1_0/nonrep",
driver = "ArmadilloDriver")
# create loginframe
<- builder$build() logindata
Assigning the data means that you will assign the data to a symbol in the analysis environment.
# login into server
<- datashield.login(logins = logindata, symbol = "core_nonrep", variables = c("coh_country"), assign = TRUE) conns
DataSHIELD has a range of methods you can use to perform analysis. Check: the dsBaseClient documentation to see which methods are available.
# calculate the mean
ds.mean("core_nonrep$coh_country", datasources = conns)
# create a histogram
ds.histogram(x = "core_nonrep$coh_country", datasources = conns)
Check the package documentation for details.
The newest version (2.x) of DSMolgenisArmadillo will be only compatible with Armadillo version 3. If you still use Armadillo 2, you should use the 1.4.1 version of DSMolgenisArmadillo You can install this specific version the following commands:
<- "https://cran.r-project.org/src/contrib/Archive/DSMolgenisArmadillo/DSMolgenisArmadillo_1.4.1.tar.gz"
packageurl install.packages(packageurl, repos=NULL, type="source")
If you already installed another version of the package, you might want to run this first:
remove.packages("MolgenisArmadillo")
On windows additional R packages like rtools
might be
required in order to install the tar.gz
package from the
url.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.