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Abstract

Quantifying the similarity of two or more datasets is a common task in many appli-
cations in statistics and machine learning, such as two- or k-sample testing and meta- or
transfer learning. The DataSimilarity package contains a variety of methods for quan-
tifying the similarity of datasets. The package includes 36 methods of which 14 are
implemented for the first time in R. The remaining are wrapper functions for methods
with already existing implementations that unify and simplify the various in- and output
formats of different methods and bundle the methods of many existing R packages in a
single package.

Keywords: dataset similarity, two-sample testing, multi-sample testing.

1. Methods

In the following, we describe the general setup in the two- or k-sample problem that most
of the implemented methods have in common. Moreover, we discuss the selection of the
implemented methods and present one example method for each application domain in more
detail.

1.1. The two- and k-sample problem

Most methods for quantifying the similarity of datasets are proposed in the literature as test
statistics for two- or k-sample testing. For this, a dataset is seen as a sample from a set
of random variables that follow some true underlying distribution. Often, the similarity or
distance of these underlying distributions is estimated.

In the following, we assume that at least two different datasets Xp1q and Xp2q are given

consisting of n1 and n2 samples X
p1q
1

, . . . , X
p1q
n1 „ F1 and X

p2q
1

, . . . , X
p2q
n2 „ F2, respectively.

We assume X
p1q
i , X

p2q
j : X Ñ R

p @i P t1, . . . , n1u, j P t1, . . . , n2u and call the p components of
each sample features or variables. The two-sample problem is defined as the testing problem

H0 : F1 “ F2 vs. H1 : F1 ‰ F2. (1)

This testing problem is sometimes also called testing for homogeneity of the two distributions.
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In some cases, it is assumed that there are ni observations of a target variable Y in each
dataset. However, most methods only require the feature variables and cannot deal with a
target variable in a meaningful way.

Analogously to the two-sample problem, the k-sample or multi-sample problem is defined for
k ě 2, k P N, datasets Xp1q, . . . , Xpkq with sample sizes ni, i “ 1, . . . , k, as

H0 : F1 “ F2 “ ¨ ¨ ¨ “ Fk vs. H1 : Di ‰ j P t1, . . . , ku : Fi ‰ Fj ,

where Fi denotes the distribution of each sample in the ith dataset.

Each of the considered methods can be seen as a measure of similarity or distance between
the Fi, i “ 1, . . . , k. Not all of these methods include a hypothesis test.

We use the hat symbol to denote estimators. We denote the pooled sample as tZ1, . . . , ZN u “
tX

p1q
1

, . . . , X
p1q
n1 , . . . X

pkq
1

, . . . , X
pkq
nk u, where N “ řk

i“1
ni is the total sample size. Additionally,

we assume that all Zi are distributed independently.

1.2. Selection of methods

Previously, in a comprehensive literature review (Stolte, Kappenberg, Rahnenführer, and
Bommert 2024), 118 methods were described and divided into the ten classes

1. Comparison of cumulative distribution functions, density functions, or characteristic
functions,

2. Methods based on multivariate ranks,

3. Discrepancy measures for distributions,

4. Graph-based methods,

5. Methods based on inter-point distances,

6. Kernel-based methods,

7. Methods based on binary classification,

8. Distance and similarity measures for datasets,

9. Comparison based on summary statistics, and

10. Testing approaches.

Moreover, the methods were compared with respect to 22 criteria judging their applicabil-
ity, interpretability, and theoretical properties. The DataSimilarity package comprises of 36
methods that fulfill at least one of the following properties:

1. The method is implemented in R.

2. The method is one of the top methods ordered by the highest number of fulfilled criteria,
and fulfills at least 11 criteria of the 20 criteria excluding the consistency criteria.

3. The method is the best in its subclass in the theoretical comparison and no other method
from this subclass was chosen based on the first two criteria.
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To avoid preferring methods that define a test over methods that do not and therefore can by
definition not fulfill the consistency criteria, consistency is not counted for determining the
top methods. We chose 11 as the cutoff for the number of fulfilled criteria as this is the range
where the implemented methods typically lie and it ensures that at least more than half of
the criteria are fulfilled.

1.3. Definition of example methods

In the following, we differentiate six cases with regard to the applicability of the selected
methods. These are summarized in Table 1. We always indicate which method is applicable
in which case. In the following, we explain one example method for each case. These methods
are used later in examples for applying the DataSimilarity package. Brief descriptions of the
remaining methods can be found in Section 5.

Scenario no. No.datasets Scale level Target variable

1 k “ 2 Numeric No
2 k ě 2 Numeric No
3 k “ 2 Numeric Yes

4 k “ 2 Categorical No
5 k ě 2 Categorical No
6 k “ 2 Categorical Yes

Table 1: Overview of considered cases for applicability of the dataset similarity methods. If
present, the target variable included in each dataset has to be a categorical variable.

1. Methods applicable to exactly two numeric datasets without target variables

One example method for this case is the Rosenbaum (2005) cross-match test. It is a graph-
based method. Most graph-based methods work by constructing a similarity graph on the
pooled sample and counting the edges that connect points from different samples. Here,
the optimal non-bipartite matching is used, i.e., a graph where pairs of two observations
in the pooled sample are connected such that the sum over the edge lengths (= Euclidean
distances of connected observations) is minimized. The optimal non-bipartite matching for
two example data situations is shown in Figure 1. In case of an odd number of observations,
a ghost observation is introduced that has the highest distance to all other observations. The
observation that is matched with that ghost observation is discarded from the further analysis.

The test statistic of the cross-match test is given by the standardized cross-match count

CMC ´ EH0
pCMCqa

VARH0
pCMCq

,

where CMC denotes the cross-match count and EH0
and VARH0

its expectation and variance,
respectively, under H0 : F1 “ F2. The cross-match count is the number of edges connecting
points stemming from different datasets. The exact distribution of the test statistic under H0

is known. For small samples, it can be used for computing an exact p value. For large samples,
the asymptotic standard normal distribution of the test statistic can be used. The idea of the
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(a) Datasets drawn from the same distribution.
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(b) Datasets drawn from different distributions.

Figure 1: Optimal non-bipartite matching for example datasets. Dataset 1 is indicated by
white points and Dataset 2 by black points. Edges connecting points from different datasets
are indicated by red and dashed lines Edges connecting points from the same sample are
indicated by grey and solid lines.

test is that for similar datasets, the number of edges connecting points from different samples
is expected to be higher than in datasets that differ. This is illustrated in Figure 1a compared
to Figure 1b. In case of data drawn from different datasets, less edges connect points from
different datasets indicated by the lower number of red edges in Figure 1b.

2. Methods applicable to two or more numeric datasets without target variables.

The method of Mukherjee, Agarwal, Zhang, and Bhattacharya (2022) is an extension of
the Rosenbaum (2005) cross-match test for multiple samples. The cross-match counts A “
pa12, a13, . . . , aik, a23, . . . , a2k, . . . , ak´1,kqJ for all pairs of datasets are calculated using the op-
timal non-bipartite matching on the pooled sample. The test statistic then is the Mahalanobis
distance of the observed cross-counts under the null hypothesis H0 : F1 “ F2 “ ¨ ¨ ¨ “ Fk

MMCM “ pA ´ EH0
pAqqJ

COV
´1

H0
pAqpA ´ EH0

pAqq.
The expectation and covariance matrix of the cross-count vector A under H0 can be calculated
analytically and depend only on the sample sizes ni, i “ 1, . . . , k. Small values of the multi-
sample Mahalanobis cross-match (MMCM) statistic indicate similarity. However, as there is
no known upperbound, it is hard to interpret the MMCM value. The MMCM statistic follows
a χ2

pk2q distribution asymptotically under the null which can be used for testing.

3. Methods applicable to exactly two numeric datasets with target variables

Ntoutsi, Kalousis, and Theodoridis (2008) propose measuring dataset similarity based on
probability density estimates derived from decision trees. For this, it is assumed that in
addition to both covariate datasets Xp1q and Xp2q, categorical target variables Y p1q and Y p2q

are given. On each dataset Xpjq, a classification tree is constructed with Y pjq as the target
variable, j “ 1, 2. The splits defined by the decision trees induce a partition of the feature
space X such that each leaf node corresponds to one segment in the partition. Figure 2
demonstrates the procedure for two example datasets. First, trees are fit to each dataset
(Figure 2a and 2b). Then, the sample space is divided into segments based on the splits
performed in each tree (Figure 2c and 2d). These partitions are intersected (Figure 2e) and
based on the joint partition, the probability densities PDpX q and PDpY pjq, X q are estimated
for D P tXp1q, Xp2q, Zu.
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Let nr denote the number of segments in the joint partition and nc the number of classes
in Xp1q and Xp2q. P̂DpX q P R

nr uses the proportion of observations in D that fall into each
segment of the joint partition. This means that for each of the nr segments of the partition,
the number of observations from dataset D that fall into that segment is counted and divided
by the total number of observations in D. For the estimation of the joint density PDpY, X q,
the proportion of observations that fall into each segment of the joint partition and belong to
each class is determined, P̂DpY, X q P R

nrˆnc . Here, for each of the nr segments of the partition
and for each of the nc classes, the number of observations in D where the corresponding target
variable has the respective class value and that fall into the respective segment is counted
and divided by the total number of observations in D. The conditional density PDpY |X q is
estimated by calculating the proportion of observations belonging to each class separately for
each segment, P̂DpY |X q P R

nrˆnc . Here, for each of the nr segments of the partition and
for each of the nc classes, the number of observations in D where the corresponding target
variable has the respective class value and that fall into the respective segment is counted
and divided by the total number of observations in D that fall into the respective segment.

Then, Ntoutsi et al. (2008) consider the similarity index

spp, qq “
ÿ

i

?
pi ¨ qi

for vectors p and q, where pnr ˆ ncq-matrices are interpreted as pnr ¨ ncq-dimensional vec-
tors. For the conditional distribution, the similarity vector SpY |X q P R

nr is computed with
SpY |X qi “ spP̂Xp1qpY |X qi‚, P̂Xp2qpY |X qi‚q and index i‚ denoting the i-th row. Based on this,
three similarity measures for datasets are proposed:

1. NTO1 = spP̂Xp1qpX q, P̂Xp2qpX qq

2. NTO2 = spP̂Xp1qpY, X q, P̂Xp2qpY, X qq

3. NTO3 = SpY |X qJP̂ZpX q.

All three measures have values in the interval r0, 1s, where high values correspond to high
similarity.

4. Methods applicable to exactly two categorical datasets without target variables

Hediger, Michel, and Näf (2022) provide a two-sample test based on random forests that
is applicable for both numeric and categorical data. For this, a pooled dataset is created
where each observation is labeled according to its original dataset membership, and a random
forest is trained to distinguish between the dataset labels. The idea is that if the datasets
are generated from the same distribution, the classification error of the random forest should
be close to the chance level, otherwise, the classifier should be able to distinguish between
the two distributions and hence the classification error should be lower than the chance level.
One advantage of using random forests as the classifier is that it requires almost no tuning.
An asymptotic test is proposed. For this, the pooled dataset has to be split into a training
set on which the random forest is trained and a test set on which its classification error is
evaluated. In the implementation, both datasets are split in half to create a training and a
test dataset. Alternatively, an out-of-bag (OOB) based permutation test can be performed
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(d) Partition of sample space derived from fitted
tree for Dataset 2.
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(e) Intersected partition (greatest common refine-
ment, GCR) from fitted trees for Datasets 1 and 2.
Each dataset includes two covariates and and a bi-
nary target variable.

Figure 2: Partitioning of sample space by fitting trees to two example datasets.

that does not require data splitting. OOB statistics can be used to increase the sample
efficiency compared to the test based on a holdout sample. Both the OOB based test and
the asymptotic version of the test are implemented. The test statistic is either the mean
of the per-class OOB or test classification errors or the overall OOB or test classification
error, respectively. In the asymptotic case, a binomial test is performed in case of the overall
classification error or a Z test is performed in case of the mean per-class classification error.
Otherwise, a permutation test is performed. The variable importance measures of the random
forest can provide additional insights into sources of distributional differences.
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5. Methods applicable to two or more categorical datasets without target variables

The general idea of Lopez-Paz and Oquab (2017) is to use a classifier to determine which of
two or more datasets a sample belongs to. The classifier two-sample test (C2ST) uses the
classification accuracy of this classifier as its test statistic.
The C2ST consists of five steps:

1. Construct the dataset consisting of the samples from all datasets labeled with their
membership to each of the datasets.

2. Assign the observations of the dataset constructed in 1. randomly to a training and test
set.

3. Train a classifier that predicts for an observation to which dataset Xpjq, j “ 1, . . . , k it
belongs.

4. Calculate the C2ST statistic, which is the accuracy on the test set. The accuracy should
be close to the chance level for F1 “ ¨ ¨ ¨ “ Fk, and it should be greater than the chance
level for Di ‰ j P t1, . . . , ku : Fi ‰ Fj since in the latter case the classifier should identify
distributional differences between the samples.

5. Calculate a p value using a binomial test for comparing the accuracy to the chance level.

Maximizing the power of a C2ST is a trade-off between using a large training set to optimize
the classifier and a large test set to better evaluate the performance of the classifier.
The test statistic is interpretable as the percentage of samples that are correctly classified on
the unseen test data. The above-mentioned test of Hediger et al. (2022) can be seen as a special
case of the general framework proposed by Lopez-Paz and Oquab (2017). One difference in
the implementation of the tests is that for the C2ST, categorical data is dummy coded while
for the test of Hediger et al. (2022) the categorical variables are passed to ranger::ranger()

directly. Moreover, the use of OOB predictions and feature importance is specific to the
random forest based test and cannot be used for all of the available classifiers for the C2ST.
Further, the C2ST uses the accuracy as test statistic while the test of Hediger et al. (2022)
uses the classification error, i.e., 1 ´ accuracy.

6. Methods applicable to exactly two categorical datasets with target variables

Alvarez-Melis and Fusi (2020) define a distance based on optimal transport between datasets
that include a target (class) variable Y . The optimal transport dataset distance (OTDD) is
defined as

dOTpXp1q, Xp2qq “ min
πPΠpF1,F2q

ż

ZˆZ

dZpz, z1qq dπpz, z1q

where Xp1q, Xp2q denote the two datasets,

ΠpF1, F2q :“ tπ1,2 P PpZ ˆ Zq|π1 “ F2, π2 “ F2u

is the set of joint distributions over the product space Z ˆ Z over the sample space of the
pooled sample with marginal distributions F2 and F2, and

dZpz, z1q :“ pdX px, x1qq ` W
q1

q1 pαy, αy1qq1{q.
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defines a distance of two points zJ “ pxJ, yq, and z1J “ px1J, y1q in the pooled sample. dX

defines a distance on the covariate space, e.g., the Euclidean distance, and Wq1pαy, αy1q is the
q1-Wasserstein distance of the distribution of the subset of covariate data with corresponding
response value y and the distribution of the subset of covariate data with corresponding
response value y1. The powers q and q1 have to be chosen in advance to calculate the OTDD.
The optimal transport problem can intuitively be motivated by imagining each probability
densities as a pile of dirt. Then, the cost function corresponds to the cost for transporting
the dirt from one point to another which is proportional to the distance of the two points.
The optimal transport then corresponds to the lowest cost required for moving one pile of
dirt fully to the shape and location of the other. Therefore, distributions can be regarded
as more similar if the optimal transport between them is lower. For an intuitive explanation
and visualization of the OTDD, also refer to Alvarez-Melis and Fusi (2020).

2. General comments on implementation

Where possible, existing implementations are used. If methods already have a name in the ar-
ticle where they were proposed or in the secondary literature, the corresponding functions are
named after that, e.g., Wasserstein() for the Wasserstein distance, MMD() for the maximum
mean discrepancy (MMD), or CMDistance() for the constrained minimum (CM) distance.
Otherwise, the function names are composed of the first letters of the surnames of all au-
thors of the article where the respective method was originally proposed, e.g., FR() for the
Friedman-Rafsky test proposed by Friedman and Rafsky (1979), or the full surname in case
of a single author, e.g., Bahr() for the test proposed by Bahr (1996). The in- and output
of the methods from different existing packages and of the newly implemented methods are
unified. To achieve this, for some existing methods it was sufficient to implement a wrapper
calling the original function.

In other cases, we re-implemented the method from scratch if the R package was archived and
additional issues with the original implementation occured. This was the case for the DiPro-
Perm test (Wei, Lee, Wichers, and Marron 2016) for which the original implementation in
the diproperm package (Allmon, Marron, and Hudgens 2021) yields non-reproducible results.
Moreover, the implementations of the multi-sample cross-match test of Petrie (2016) and the
previously mentioned multi-sample Mahalanobis cross-match test (MMCM) of Mukherjee
et al. (2022) in the multicross package (Agarwal, Bhattacharya, and Zhang 2020) could not
be used due to the output format that made it impossible to access the test statistic and
p value. More details on the new implementations compared to the aforementioned versions
can be found in Section 5.

Each method gets two (or more) datasets as its first input parameters. After that, arguments
specific to the method follow. E.g., many methods perform a permutation test for which the
number of permutations (n.perm) has to be specified. The output is of class ‘htest’ and
includes

• statistic: The test statistic

• parameter (optional): A parameter specifying the null distribution (e.g., degrees of
freedom for a χ2 distribution).

• p.value: The p value (if an asymptotic or permutation / Bootstrap test is performed).
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• estimate: The sample estimate(s) (if available, e.g., the edge count for edge-count tests,
NULL for many methods).

• alternative: The alternative hypothesis. For two datasets, this is F1 ‰ F2, for k

datasets it is Di ‰ j P t1, . . . , ku : Fi ‰ Fj .

• data.name: Names of the supplied datasets.

• Further elements specific to the method (optional), e.g., the variable importances for
the test of Hediger et al. (2022).

We use the ‘htest’ class as it is widely adopted for storing results of hypothesis tests in R

and most of the implemented methods are two- or k-sample tests. Objects of class ‘htest’
will be automatically printed in an appealing format using the print.htest() function from
the stats package. For methods for which no test is performed, the p.value is set to NULL.
This allows pretty printing of the results and a unified output format for the corresponding
functions. For many of the newly implemented permutation tests, we use the boot() function
from the boot package that is included in R.

In typical applications, users should choose a test a priori and not based on test results.
Therefore, the new functions perform exactly one test and return only the results correspond-
ing to that single test. Some of the former implementations used to perform multiple tests
based on the same metrics or always returned the asymptotic p value in addition to a per-
mutation p value. This could lead to unscientific practices like choosing the test based on
the desired result. As an exception, for implementations that output multiple related tests,
we offer wrapper functions that also perform these multiple tests. Often, conducting them at
once is computationally faster than performing each test individually when large parts of the
calculation are the same. This option might be useful in certain situations where multiple
tests need to be applied to the same data, e.g. when performing method comparison studies.
We do not advise applying multiple tests for the same hypothesis on the same datasets when
conducting inference for a specific real-life application.

Some of the existing implementations already include setting a random seed and some do
not. Therefore, for unity, the new methods all include a random seed argument and set the
random seed to the supplied value for reproducibility.

3. Illustrations

In the following, the example methods for the six cases from Section 1.3 are applied to some
real-world datasets. These are typically subsets of a dataset defined in such a way that from
the application background, it is clear that the subsets should or should not differ. The
datasets were selected from the datasets included in the R packages that the DataSimilarity

package depends on, so no additional packages are needed. To apply all the methods, we
simply need to load the DataSimilarity package.

R> library("DataSimilarity")

3.1. Exactly two numeric datasets without target variables

The dataset dhfr (Sutherland and Weaver 2004) from the caret package (Kuhn and Max 2008)
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is a binary classification dataset (regarding Dihydrofolate Reductase inhibition) consisting of
325 compounds of which 203 are labeled as ‘active’ and 122 as ‘inactive’. The variables are 228
molecular descriptors. As the active and inactive compounds should differ in their descriptors
we divide the dataset according to the first variable that indicates the activity status.

R> data(dhfr, package = "caret")

R> act <- dhfr[dhfr$Y == "active", -1]

R> inact <- dhfr[dhfr$Y == "inactive", -1]

We apply the Rosenbaum cross-match test to check whether the active and inactive com-
pounds differ. As the combined sample size is smaller than 340 we can apply the exact
test:

R> Rosenbaum(act, inact, exact = TRUE)

Exact cross-match test

data: act and inact

z = -9.4098, p-value < 2.2e-16

alternative hypothesis: The distributions of act and inact are unequal.

sample estimates:

edge.count

20

The cross-match count is equal to 20. At most there could be 122 cross-matches if each
observation from the ‘inactive’ dataset was connected to an observation in the ‘active’ dataset.
Therefore, the cross-match count of 20 can be considered a rather small value. This is
also reflected by the z score of -9.41. Consequently, we see that the hypothesis of equal
distributions can be rejected with a p value smaller than 2.2 ¨ 10´16.

We obtain a warning that informs that a ghost value was introduced when calculating the
optimal non-bipartite matching, due to the odd pooled sample size. This means that an
artificial point was added to the sample that has the highest distance to all other points in
the sample such that the optimal non-bipartite matching which needs an even sample size
could be calculated. The ghost value and the point with which it was matched are then
discarded from the subsequent calculations.

3.2. More than two numeric datasets without target variables

The well-known iris dataset (Fisher 1936) included in the datasets package that comes with
base R (R Core Team 2024) includes measurements of sepal and petals of 50 flowers each of
three iris species. We compare the datasets for the three species Iris setosa, versicolor, and
virginica.

R> data("iris")

R> setosa <- iris[iris$Species == "setosa", -5]

R> versicolor <- iris[iris$Species == "versicolor", -5]

R> virginica <- iris[iris$Species == "virginica", -5]
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For camparing the three datasets, we use the Mukherjee et al. (2022) Mahalanobis multisample
crossmatch (MMCM) test for the three datasets.

R> MMCM(setosa, versicolor, virginica)

Approximative MMCM test

data: setosa, versicolor, virginica

chisq = 129.78, df = 3, p-value < 2.2e-16

alternative hypothesis: At least one pair of distributions are unequal.

The MMCM statistic value on its own is hard to interpret. However, the test rejects the null
hypothesis of equal distributions with p ă 2.2 ¨ 10´16. Therefore, we can conclude that the
observed MMCM value presents an extreme value when assuming the null. Thus the datasets
are dissimilar.

3.3. Exactly two numeric datasets with target variables

The segmentationData dataset (Hill, LaPan, Li, and Haney 2007) in the caret package (Kuhn
and Max 2008) includes cell body segmentation data. The dataset contains 119 imaging
measurements of 2019 cells to predict the segmentation that is divided into the two classes
PS for ‘poorly segmented’ and WS for ‘well segmented’. Moreover, there is a division into 1009
observations used for training and 1010 observations used as a test set. We compare this
training and test set. Ideally, the distributions of the training and test set should be equal.

R> data(segmentationData, package = "caret")

R> test <- segmentationData[segmentationData$Case == "Test", -(1:2)]

R> train <- segmentationData[segmentationData$Case == "Train", -(1:2)]

To check the similarity of the training and test set we apply the method of Ntoutsi et al.
(2008). For demonstration, we use all three proposed similarity measures NTO1, NTO2, and
NTO3. In all cases, we do not tune the decision trees that are used to define the partitions.
The target1 and target2 argument have to be specified as the column names of the target
variable in the first and second supplied dataset, respectively. Here, the target variable is
named "Class" in both cases.

R> NKT(train, test, target1 = "Class", target2 = "Class", tune = FALSE)

Data similarity accorcing to Ntoutsi et al. (2008), method 1

data: train and test

s = 0.96931

alternative hypothesis: The distributions of train and test are unequal.

R> NKT(train, test, target1 = "Class", target2 = "Class", tune = FALSE,

+ method = 2)
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Data similarity accorcing to Ntoutsi et al. (2008), method 2

data: train and test

s = 0.92444

alternative hypothesis: The distributions of train and test are unequal.

R> NKT(train, test, target1 = "Class", target2 = "Class", tune = FALSE,

+ method = 3)

Data similarity accorcing to Ntoutsi et al. (2008), method 3

data: train and test

s = 0.96648

alternative hypothesis: The distributions of train and test are unequal.

We observe high similarity between the training and test datasets with all three methods,
reflected by the similarity values s that are all close to the maximal value 1. For the method
of Ntoutsi et al. (2008), no test is proposed and therefore, no p value is calculated.

3.4. Exactly two categorical datasets without target variables

The banque dataset from the ade4 package (Dray and Dufour 2007) consists of bank survey
data of 810 customers. All variables are categorical and contain socio-economic information
of the customers. We divide the data into bank card owners and non-bank card owners and
compare these two groups. In total, 243 out of the 810 customers own a bank card.

R> data(banque , package = "ade4")

R> card <- banque[banque$cableue == "oui", -7]

R> no.card <- banque[banque$cableue == "non", -7]

We use the random forest test of Hediger et al. (2022) to compare these two groups. For
easier interpretation we look at the overall out-of-bag (OOB) prediction error instead of the
per class OOB prediction error.

R> HMN(card, no.card, n.perm = 1000, statistic = "OverallOOB")

Permutation OverallOOB random forest based two-sample test

data: card and no.card

p.hat = 0.1605, p-value = 0.000999

alternative hypothesis: The distributions of card and no.card are unequal.

The overall OOB prediction error is 0.161 which is considerably smaller than the naive pre-
diction error of 243{810 “ 0.3. Therefore, the random forest is able to distinguish between
the datasets, so we can conclude that the datasets differ. This is also reflected by the p value
of 9.990e-04.
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3.5. More than two categorical datasets without target variables

We consider the banque dataset from the ade4 package (Dray and Dufour 2007) again. This
time we split it by the nine socio-professional categories given by ‘csp’.

R> data(banque, package = "ade4")

R> agric <- banque[banque$csp == "agric", -1]

R> artis <- banque[banque$csp == "artis", -1]

R> cadsu <- banque[banque$csp == "cadsu", -1]

R> inter <- banque[banque$csp == "inter", -1]

R> emplo <- banque[banque$csp == "emplo", -1]

R> ouvri <- banque[banque$csp == "ouvri", -1]

R> retra <- banque[banque$csp == "retra", -1]

R> inact <- banque[banque$csp == "inact", -1]

R> etudi <- banque[banque$csp == "etudi", -1]

We apply the classifier two-sample test (C2ST). First, we use the default K-NN classifier.
Categorical variables are dummy-coded.

R> C2ST(agric, artis, cadsu, inter, emplo, ouvri, retra, inact, etudi)

Approximative Classifier Two-Sample Test using knn

data: agric, artis, cadsu, inter, emplo, ouvri, retra, inact, etudi

p.hat = 0.26389, size = 567.00000, prob = 0.22593, p-value =

8.041e-05

alternative hypothesis: At least one pair of distributions are unequal.

The accuracy of the K-NN classifier is 0.264. It is larger than the naive accuracy for always
predicting the largest class, which is given by prob = 0.226 in the output. The classifier
seems to be able to distinguish between the datasets and we can therefore regard them as
dissimilar. Moreover, the null hypothesis of equal distributions can be rejected with a p value
of 8.041e-05.

For demonstration, we additionally perform the C2ST with a multilayer perceptron classifier.

R> C2ST(agric, artis, cadsu, inter, emplo, ouvri, retra, inact, etudi,

+ method = "mlp")

Approximative Classifier Two-Sample Test using mlp

data: agric, artis, cadsu, inter, emplo, ouvri, retra, inact, etudi

p.hat = 0.26389, size = 567.00000, prob = 0.22593, p-value =

8.041e-05

alternative hypothesis: At least one pair of distributions are unequal.

The results are very similar to using K-NN.



14 DataSimilarity Package

3.6. Exactly two categorical datasets with target variables

We consider the banque dataset from the ade4 package (Dray and Dufour 2007) again. In this
case, we interpret the savings bank amount (eparliv) variable as the target variable, which is
again supplied via the target1 and target2 argument. It is divided into the three categories
‘ą 20000’, ‘ą 0 and ă 20000’, and ‘nulle’. We divide the data into the socio-professional
categories as before. We use the optimal transport dataset distance (OTDD) to compare the
resulting datasets for craftsmen, shopkeepers, company directors (‘artis’) to that of higher
intellectual professions (‘cadsu’) and to that of manual workers (‘ouvri’). As all variables are
categorical, we use the Hamming distance instead of the default Euclidean distance.

R> OTDD(artis, cadsu, target1 = "eparliv", target2 = "eparliv",

+ feature.cost = hammingDist)

Optimal Transport Dataset Distance

data: artis and cadsu

OTDD = 44.166

alternative hypothesis: Distributions of artis and cadsu are unequal

We obtain a dataset distance of 44.166 between craftsmen/shopkeepers/company directors
and executives/higher intellectual professions. For the OTDD, low values correspond to high
similarity and the minimum value is 0. The observed value is clearly larger than zero, so the
datasets are not exactly similar. How dissimilar they are is however hard to interpret from
the observed OTDD value on its own. For the OTDD, no test is proposed and therefore, no
p value is calculated.

R> OTDD(artis, ouvri, target1 = "eparliv", target2 = "eparliv",

+ feature.cost = hammingDist)

Optimal Transport Dataset Distance

data: artis and ouvri

OTDD = 49.427

alternative hypothesis: Distributions of artis and ouvri are unequal

We obtain a dataset distance of 49.427 between craftsmen/shopkeepers/company directors
and manual workers. Again, this value on its own is hard to interpret. However, we can
compare the values and conclude that the data of craftsmen/shopkeepers/company directors
is more similar to that of executives/higher intellectual professions than to that of manual
workers.

4. Implementation overview

Table 2 gives an overview of all wrapper functions included in the package. For each method,
the original implementation, the new function name, and the applicability to data with a
target variable, numerical data, categorical data, and multiple samples are given. Note that
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the applicability statements refer to the specific implementation of the method. Some of the
methods are in theory applicable to a broader range of data types than implemented. More-
over, note that most implementations are only applicable to either numerical or categorical
data except for the classifier-based methods HMN() and C2ST(), which can handle both data
types simultaneously as long as the selected classifier can do so. The MMD() implementation
can also handle both data types but a matching kernel function has to be implemented. Note
that the graph-based tests cannot deal with both numerical and categorical data due to ties
even if a distance function that can handle both is supplied. More details on the methods
and their implementation can be found in Section 5.

Table 3 gives an overview of the newly implemented methods and their applicability. A few
of these methods were already implemented in another programming language, as described
in the implementation details in Section 5.
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Method Original function New function y Num Cat k>2

KMD
(Huang and Sen 2023)

KMD::KMD(),
KMD::KMD_test()

(Huang 2022)

KMD() m ¢ m
˚

¢

Friedman and Rafsky
(1979)

gTests::g.tests()

(Chen and Zhang 2017)
FR() m ¢ ¢ m

Cross-match test
(Rosenbaum 2005)

crossmatch::crossmatch()

(Heller, Small, and Rosen-
baum 2024)

Rosenbaum() m ¢ m m

Cramér test (Baring-
haus and Franz 2004)

cramer::cramer.test()

(Franz 2024)
Cramer() m ¢ m m

Energy statistic
(Székely and Rizzo 2017)

energy::eqdist.test()

(Rizzo and Szekely 2024)
Energy() m ¢ m ¢

Hediger et al. (2022) hypoRF::hypoRF() (Hediger,
Michel, and Naef 2024)

HMN() m ¢ ¢ m

Baringhaus and Franz
(2010)

cramer::cramer.test()

(Franz 2024)
BF() m ¢ m m

Bahr (1996) cramer::cramer.test()

(Franz 2024)
Bahr() m ¢ m m

Wasserstein distance Ecume::wasserstein_permut()

(Roux de Bezieux 2024)
Wasserstein() m ¢ m m

Chen and Friedman
(2017)

gTests::g.tests()

(Chen and Zhang 2017)
CF() m ¢ ¢ m

Chen, Chen, and Su
(2018)

gTests::g.tests()

(Chen and Zhang 2017)
CCS() m ¢ ¢ m

Ball divergence (Pan,
Tian, Wang, and Zhang
2018)

Ball::bd.test() (Zhu, Pan,
Zheng, and Wang 2021)

BallDivergence() m ¢ m ¢

Song and Chen (2022) gTestsMulti::gtestsmulti()

(Song and Chen 2023b)
SC() m ¢ m ¢

DISCO (Rizzo and
Székely 2010)

energy::eqdist.test()

(Rizzo and Szekely 2024)
DISCOB(),
DISCOF()

m ¢ m ¢

Zhang and Chen (2019) gTests::g.tests()

(Chen and Zhang 2017)
ZC() m ¢ ¢ m

RI test (Paul, De, and
Ghosh 2022b)

HDLSSkST::RItest()

(Paul, De, and Ghosh 2022a)
RItest() m ¢ m ¢

FS test (Paul et al.
2022b)

HDLSSkST::FStest()

(Paul et al. 2022a)
FStest() m ¢ m ¢

Maximum Mean Dis-
crepancy (MMD) (Gret-
ton, Borgwardt, Rasch,
Schölkopf, and Smola
2006)

kernlab::kmmd() (Karat-
zoglou, Smola, Hornik, and
Zeileis 2004)

MMD() m ¢ m
˚

m

Song and Chen (2023a) kerTests::kertests()

(Song and Chen 2023c)
GPK() m ¢ m

˚
m

Mukhopadhyay and
Wang (2020b)

LPKsample::GLP()

(Mukhopadhyay and Wang
2020a)

MW() m ¢ m
˚

¢

Chen, Dou, and Qiao
(2013)

gTests::g.tests_cat()

(Chen and Zhang 2017)
FR_cat(),
CF_cat(),
CCS_cat(),
ZC_cat()

m ¢ ¢ m
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Classifier Two-Sample
Test (Lopez-Paz and
Oquab 2017)

Ecume::classifier_test()

(Roux de Bezieux 2024)
C2ST() m ¢ ¢ ¢

Table 2: Implemented wrapper functions. y: Can the method deal with a target variable in
the dataset? Num: Is the method as implemented applicable to numeric data? Cat: Is the
method as implemented applicable to categorical data? k ą 2: Is the method as implemented
applicable to more than two datasets at a time? m˚: Method is, in theory, applicable, but
implementation is not. ¢˚: Implementation is applicable although this case is not described
in the literature.

Method New function y Num Cat k>2

Mukherjee et al. (2022) MMCM() m ¢ ¢˚ ¢

Petrie (2016) Petrie() m ¢ ¢˚ ¢

Biswas, Mukhopadhyay, and Ghosh
(2014)

BMG() m ¢ m ¢

Deb and Sen (2021) DS() m ¢ m m

Ntoutsi et al. (2008) NKT() ¢ ¢ m m

Ganti, Gehrke, Ramakrishnan, and
Loh (1999)

GGRL() ¢ ¢ m˚ m

Alvarez-Melis and Fusi (2020) OTDD() ¢ ¢ ¢ m

Jeffreys divergence Jeffreys() m ¢ m m

Biswas and Ghosh (2014) BG2() m ¢ m m

Engineer metric engineerMetric() m ¢ m m

Schilling (1986) and Henze (1988) SH() m ¢ m m

Barakat, Quade, and Salama (1996) BQS() m ¢ m m

Yu, Martin, Rothman, Zheng, and
Lan (2007)

YMRZL() m ¢ ¢ m

Li, Hu, and Zhang (2022) LHZ() m ¢ m m

Constrained Minimum Distance
(Tatti 2007)

CMDistance() m m ¢ m

Biau and Gyorfi (2005) BG() m ¢ m ¢

DiProPerm test (Wei et al. 2016) DiProPerm() m ¢ m m

Table 3: Newly implemented functions. y: Can the method deal with a target variable in
the dataset? Num: Is the method as implemented applicable to numeric data? Cat: Is the
method as implemented applicable to categorical data? k ą 2: Is the method as implemented
applicable to more than two datasets at a time? m˚: Method is, in theory, applicable, but
implementation is not. ¢˚: Implementation is applicable although this case is not described
in the literature.
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5. Implementation details

5.1. KMD (Huang and Sen 2023)

The kernel measure of multi-sample dissimilarity (KMD) introduced by Huang and Sen (2023) is a kernel-
based test using the association between the variables and the sample membership to quantify the dissimilarity
of multiple samples. Denote the dataset membership of each point in the pooled sample tZ1, . . . , ZNu by
t∆1, . . . ,∆Nu. tp∆i, ZiquNi“1 can be seen as an i.i.d. sample from p∆̃, Z̃q with distribution µ defined by Pp∆̃ “
iq “ πi, i “ 1, . . . ,M and Z̃|∆̃ “ i „ Fi. Let pZ̃1, ∆̃1q, pZ̃2, ∆̃2q be i.i.d. samples from µ and pZ̃, ∆̃q, pZ̃, ∆̃1q „ µ

with ∆̃, ∆̃1 conditionally independent given Z̃. Denote by K a kernel function over t1, . . . , ku, e.g., the discrete
kernel Kpx, yq :“ 1px “ yq. Then the KMD is defined as

ηpP1, . . . , Pkq :“
E

”
Kp∆̃, ∆̃1q

ı
´ E

”
Kp∆̃1, ∆̃2q

ı

E

”
Kp∆̃, ∆̃q

ı
´ E

”
Kp∆̃1, ∆̃2q

ı .

It can be estimated using a similarity graph G, e.g., the K-nearest neighbor graph or the minimum spanning
tree (MST), on the pooled sample. Denote by pZi, Zjq P EpGq that there is an edge in G connecting Zi and
Zj . Moreover, let oi be the out-degree of Zi in G. Then an estimator for η is defined as

η̂ :“
1
N

řN

i“1
1
oi

ř
j:pZi,Zj qPEpGq Kp∆i,∆jq ´ 1

NpN´1q

ř
i‰j Kp∆i,∆jq

1
N

řN

i“1
Kp∆i,∆iq ´ 1

NpN´1q

ř
i‰j Kp∆i,∆jq

.

An asymptotic and a permutation k-sample test are proposed based on the KMD.
The implementation of the new function KMD() combines the calculation of KMD and the corresponding p value
using the functions KMD() and KMD_test(), respectively, from the KMD package (Huang 2022). Moreover, the
inputs of the new function are simply the individual datasets instead of the pooled data matrix and sample
IDs. By default, the asymptotic test is performed (n.perm = 0) using the K-nearest neighbor graph with
K “ rN{10s, where N denotes the total sample size of the pooled sample, and a discrete kernel. The options
for the graph are restricted to knn and mst by the implementations from the KMD package. A user-specified
kernel can be used only when a kernel matrix is supplied instead of the keyword “discrete” for the kernel

argument of the new function.

5.2. Edge-count tests (Friedman and Rafsky 1979; Chen and Zhang 2013;
Chen et al. 2018; Chu and Chen 2019)

The tests by Friedman and Rafsky (1979), Chen and Friedman (2017), Chen et al. (2018), and Chu and Chen
(2019) are graph-based two-sample tests that use the edge counts in a similarity graph like the (K-)MST on
the pooled sample. They make use of the number of edges that connect points within the first sample, R1,
the number of edges that connect points within the second sample, R2, and the number of edges that connect
points from different samples R12. The original edge-count test by Friedman and Rafsky (1979) takes the
standardized between-sample edge-count

TFR “ R12 ´ EH0
pR12qa

VARH0
pR12q

as its test statistic. The expectation and variance under the null can be calculated analytically. Chen and
Friedman (2017) noted that this has low power against scale alternatives and proposed the generalized edge-
count test using

TCF “ pR1 ´ EH0
pR1q, R2 ´ EH0

pR2qq COV
´1
H0

ˆˆ
R1

R2

˙˙ ˆ
R1 ´ EH0

pR1q
R2 ´ EH0

pR2q

˙
.

Chen et al. (2018) found some problems with the original edge-count test for unequal sample sizes of the two
datasets based on which they proposed the weighted edge-count test using the weighted edge-counts

Rw “ n1

N
R1 ` n2

N
R2,
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where n1 denotes the sample size of the first dataset and n2 the sample size of the second dataset, and
N “ n1 ` n2 the total sample size in the pooled sample. The weighted edge-count test statistic is then defined
as the standardized weighted edge count

TCCS “ Rw ´ EH0
pRwqa

VARH0
pRwq

.

Lastly, the max-type edge count (Chu and Chen 2019) test additionally uses the difference of the edge counts
in the samples, i.e.,

Rd “ R1 ´R2.

Its test statistic is defined as

TZC “ max

˜
κ
Rw ´ EH0

pRwqa
VARH0

pRwq
,

ˇ̌
ˇ̌
ˇ
Rd ´ EH0

pRdqa
VARH0

pRdq

ˇ̌
ˇ̌
ˇ

¸
,

where κ is a constant that has to be chosen prior to performing the test. κ P t1.31, 1.14, 1u is recommended
based on a small power simulation for normal data with shift or scale alternatives.
Wrapper functions around g.tests() from the gTests package (Chen and Zhang 2017) are implemented. These
do not need a pre-calculated graph as input but allow to specify a distance function (dist.fun) and a function
for calculating a similarity graph (graph.fun) and then calculate the similarity graph internally. The new input
also includes both datasets. We find this more intuitive and less error-prone than supplying an edge matrix
and two vectors of indices specifying the dataset membership as for the original g.tests() function. The new
implementation forces the user to choose one of the tests first and then perform it instead of performing all
tests at once. Moreover, the users have to decide whether they want to perform the permutation test or the
approximative test.

For the Friedman-Rafsky test, there is an additional implementation in the GSAR package but there the test
statistic is standardized by the empirical mean and standard deviation rather than the theoretical mean and
standard deviation of the test statistic under the null hypothesis as proposed in the original article. Therefore
we use the gTests implementation here.

5.3. Edge-count tests for categorical data (Chen and Zhang 2013; Zhang
and Chen 2019)

These methods are adaptations of the previously mentioned edge-count tests for categorical data. With
categorical data, the problem of ties in the distance matrix arises. Ties lead to non-unique solutions for the
similarity graph construction and therefore also to non-unique values of the proposed test statistics. This
can be solved by either taking the union of all optimal graphs and calculating the respective statistic on this
union graph or by averaging the test statistic values over all optimal graphs. The new implementation of the
categorical graph-based tests is again a wrapper function that includes the calculation of the edge matrix. For
this, the function getGraph() from the gTests package is used. Therefore, the choice of the similarity graph is
restricted to the K-nearest neighbors and the K-MST. Still, a distance function can be supplied. By default,
this is the sum of unequal classes. The calculation of the frequency table of all observations and the similarity
graph on this are performed internally, thus again only the datasets have to be supplied by the user. Moreover,
the method for aggregating the graphs has to be supplied. Possible options are averaging (“a”) and union
(“u”) over graphs.

5.4. Cross-match test (Rosenbaum 2005)

The Rosenbaum cross-match test uses a similar approach as the Friedman-Rafsky test but based on the op-
timal non-bipartite matching instead of the MST as a similarity graph (see Section 1.3). The new function
Rosenbaum() is a wrapper around the crossmatchtest() function from the crossmatch package (Heller et al.
2024). Again, a distance function can be supplied. By default, this is stats::dist(), i.e., the Euclidean
distance. The new function then calculates the distance matrix internally. Again, we find this more straight-
forward from a user perspective than supplying a distance matrix on the pooled sample and a vector specifying
the dataset membership of each observation. The output of the function includes the raw edge count, its stan-
dard error, and expectation under the null like for the crossmatch implementation. In contrast, only either
the exact or the approximative p value is returned. By default (exact = TRUE), the exact p value is returned.
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This is appropriate for samples that are not too large. Note that with a pooled sample size of 340 or more, it
is numerically impossible to derive the exact distribution due to the factorials involved in the calculation and
crossmatchtest() will return a missing value for the exact p value.

5.5. Energy statistic and generalizations by Baringhaus and Franz (2010)

The energy statistic is a popular two- and k-sample statistic based on interpoint distances. The k-sample
statistic is defined as

TEnergy “
ÿ

1ďiăjďk

ninj

ni ` nj

˜
2

ninj

niÿ

u“1

njÿ

v“1

}Xpiq
u ´X

pjq
v }

´ 1

n2
i

niÿ

u“1

niÿ

v“1

}Xpiq
u ´X

piq
v }2 ´ 1

n2
j

njÿ

u“1

njÿ

v“1

}Xpjq
u ´X

pjq
v }2

¸
.

For a comprehensive review of the literature on the energy statistic and its applications please refer to Székely
and Rizzo (2017). A permutation test can be performed based on the energy statistic. In the two-sample case,
the energy statistic is equal to two times the Cramér test statistic of Baringhaus and Franz (2004) and therefore
the tests are equivalent. However, a Bootstrap instead of a permutation test is proposed for the Cramér test.
Baringhaus and Franz (2010) propose a test statistic that generalizes the Cramér test statistic by using a
continuous function ϕ such that ϕp}x ´ y}2q is a negative definite kernel instead of the Euclidean distances.
Different examples for ϕ are given, including as special cases the Cramér test, the test by Bahr (1996), and
the test by Szabo, Boucher, Carroll, Klebanov, Tsodikov, and Yakovlev (2002). Overall, ϕpzq “ logp1 ` zq is
recommended for general alternatives based on a simulation study and the Cramér test is recommended for
location alternatives. The tests of Baringhaus and Franz (2010) are implemented in the cramer package (Franz
2024). The new implementation is a simple wrapper to unify in- and output naming and types. The energy
statistic is implemented in the energy package (Rizzo and Szekely 2024). For the corresponding wrapper, the
input type was changed more since the original implementation had the pooled sample and the sample sizes
as the input. The energy implementation outsourced the calculation of the energy statistic to C which gives it
a notable advantage with regard to computing time over the cramer implementation.

5.6. Random forest-based test (Hediger et al. 2022)

The random forest based method of Hediger et al. (2022) is briefly described above in Section 1.3. The
function here is a wrapper around the hypoRF() function from the hypoRF package (Hediger et al. 2024) that
only renames arguments for consistency with the other methods. Note that the implemented per class OOB
statistics differ for the permutation test and the approximate test: for the permutation test, the sum of the
per class OOB errors is returned, for the asymptotic version, the standardized sum is returned.

5.7. Wasserstein distance

The q-Wasserstein distance (Vaserstein 1969) of two distributions F1 and F2 on X is defined as

WpF1, F2q :“
ˆ

min
πPΠpF1,F2q

ż

X ˆX

dX px, yqq dπpx, yq
˙1{q

,

where dX is the metric that X is provided with, and

ΠpF1, F2q :“ tπ1,2 P PpX ˆ X q|π1 “ F1, π2 “ F2u

is the set of joint distributions over the product space X ˆ X with marginal distributions F1 and F2.
In the Ecume package (Roux de Bezieux 2024), a permutation test based on the Wasserstein distance is
implemented.

5.8. Ball divergence (Pan et al. 2018)

The Ball divergence measures the difference between two probability measures. It is defined as the square of
the measure difference over a given closed ball collection. It can be estimated as

yBD “ A` C,
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where

A “ 1

n2
1

n1ÿ

i,j“1

´
A

p1q
ij ´A

p2q
ij

¯2

,

C “ 1

n2
2

n2ÿ

l,m“1

´
C

p1q
lm ´ C

p2q
lm

¯2

,

and

A
p1q
ij “ 1

n1

n1ÿ

u“1

1pXp1q
u P B̄pXp1q

i , dpXp1q
i , X

p1q
j qqq,

A
p2q
ij “ 1

n2

n2ÿ

v“1

1pXp2q
v P B̄pXp1q

i , dpXp1q
i , X

p1q
j qqq,

C
p1q
lm “ 1

n1

n1ÿ

u“1

1pXp1q
u P B̄pXp2q

l , dpXp2q
l , X

p2q
m qqq,

C
p2q
lm “ 1

n2

n2ÿ

v“1

1pXp2q
v P B̄pXp2q

l , dpXp2q
l , X

p2q
m qqq,

with B̄pXplq
i , dpXplq

i , X
plq
j qq denoting the closed Ball around X

plq
i with radius equal to the distance d of the

points X
plq
i and X

plq
j , l P t1, 2u. Therefore, the first part of the Ball divergence, A, consists of squared distances

of proportions of data points from the first sample lying within closed balls around data points from the first
sample and of data points from the second sample lying within closed balls around data points from the first
sample. The second part, C, consists of squared distances of proportions of data points from the first sample
lying within closed balls around data points from the second sample and of data points from the second sample
lying within closed balls around data points from the second sample. For both parts, the mean over all such
Balls with radii equal to the distances of the center point of the ball to all other points from the same sample
is taken. For multiple samples, the pairwise test statistics can be summarized by summing up the pairwise
divergences, or by taking the maximum of sums of the Ball divergences from each sample to all other samples,
or by summing the largest k ´ 1 pairwise Ball divergences.
The implementation here is a wrapper around the bd.test() function from the Ball package (Zhu et al. 2021).
In contrast to the original implementation, the new wrapper returns an object of class ‘htest’ in the multi-
sample case although in that case no test is conducted. Moreover, only the summarized statistic according to
the specified kbd.type which determines how the pairwise Ball divergences are summarized is returned.

5.9. Multisample graph-based tests (Song and Chen 2022)

Song and Chen (2022) propose three new tests for the k-sample problem that use the between-sample edges
and the within-sample edges of a similarity graph on the pooled sample. Let RW denote the vector containing
the numbers of within-sample edges for each of the k samples and RB denote the vector containing the numbers
of between-sample edges for all kpk ´ 1q pairs of different samples. Then the first test statistic is given by

S “ S
W ` S

B

S
W “

´
R
W ´ EH0

pRW q
¯J

COV
´1
H0

´
R
W

¯ ´
R
W ´ EH0

pRW q
¯

S
B “

´
R
B ´ EH0

pRBq
¯J

COV
´1
H0

´
R
B

¯ ´
R
B ´ EH0

pRBq
¯
.

The second test statistic is based on the vector RA of all linearly independent numbers of edges between and
within samples, i.e., all numbers of edges between all pairs of samples including the pairs of a sample with
itself except for the pair of sample pk ´ 1q and sample k. The test statistic is then defined as

S
A “

´
R
A ´ EH0

pRAq
¯J

COV
´1
H0

´
R
A

¯ ´
R
A ´ EH0

pRAq
¯
.

All expectations and covariances under the null can be calculated analytically again. While COVH0

`
RW

˘
is

shown to be always invertible, no such proof exists for COVH0

`
RB

˘
and COVH0

`
RA

˘
. Therefore, Song and
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Chen (2022) suggest checking the invertability numerically before applying the test and using a generalized
inverse if necessary. This is already done within their implementation. Based on SA, an asymptotic test can
easily be performed. The asymptotic distribution of S is more complicated and hard to compute in practice,
therefore a fast test is suggested instead. It combines the tests using SW and SB and takes the Bonferroni-
adjusted p value of both these tests. Alternatively, a permutation test can be performed for either SA or S.
The implementation here for the test of Song and Chen (2022) is a wrapper around the gtestsmulti() function
form gTestsMulti (Song and Chen 2023b). The input is simplified as for the wrapper around g.tests(). The
user has to choose whether the original (S) or the fast (SA) version of the test should be performed. If the
number of permutations for the permutation test (n.perm) is set to 0, the approximate test is performed,
otherwise the permutation p value is reported.

5.10. DISCO

Rizzo and Székely (2010) show that the energy test can be seen as the treatment sum of squares in an ANOVA
interpretation of the k-sample problem. As the measure of dispersion for univariate or multivariate responses
based on all pairwise distances between-sample elements for ANOVA

dαpXp1q
, X

p2qq “ n1n2

n1 ` n2

r2gαpXp1q
, X

p2qq ´ gαpXp1q
, X

p1qq ´ gαpXp2q
, X

p2qqs

is proposed with

gαpXp1q
, X

p2qq “ 1

n1n2

n1ÿ

u“1

n2ÿ

v“1

}Xp1q
u ´X

p2q
v }α2 .

With this, Rizzo and Székely (2010) derive their so-called distance components (DISCO) decomposition for
α P p0, 2s. It partitions the total dispersion in the samples

Tα “ N

2
gαpZ,Zq,

into components
Tα “ Sα `Wα

analogous to the variance components in ANOVA. Here, Z denotes the pooled sample and the between-sample
measure of dispersion Sα and the within-sample measure of dispersion Wα, respectively, are defined as

Sα “
ÿ

1ďiăjďk

ni ` nj

2N
dαpXpiq

, X
pjqq,

Wα “
kÿ

i“1

ni

2
gαpXpiq

, X
piqq.

The between-sample measure of dispersion Sα can be used directly to compare k-sample permutation test
(DISCOB()). Alternatively, the statistic

Fα “ Sα{pk ´ 1q
Wα{pN ´ kq

can be used in a k-sample permutation test (DISCOF()). For each index α P p0, 2q this determines a nonpara-
metric test for the multi-sample problem that is statistically consistent against general alternatives. For α “ 2,
it equals the usual ANOVA F -test. The choice of the index α is difficult. In general, the computational costs
for calculating Gini means gα, in terms of which the test statistic can be formulated, is OpN2q. For α “ 1, it
can be linearized and computation time reduces to OpN logNq. The simplest and most natural choice for α is
one. For heavy-tailed distributions, a small α is recommended.
The test is implemented by permutation Bootstrap in the R package energy (Rizzo and Szekely 2024). The
new implementations of the between-sample and of the DISCO F -test are wrappers that mainly unify the in-
and outputs which differed between the two tests in the original implementation. Moreover, the input format
is again changed from the pooled sample and the dataset labels to the individual datasets.

5.11. (Modified / multiscale / aggregated) RI and FS test

Paul et al. (2022b) propose distribution-free k-sample tests intended for the high dimension low sample size
(HDLSS) setting. The tests are based on clustering the pooled sample and comparing the resulting clustering
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to the true dataset membership via a contingency table. If the datasets come from the same distribution, the
cluster and dataset membership are independent while if the datasets come from different distributions, the
clustering depends on the true dataset membership. As a clustering algorithm, Paul et al. (2022b) suggest
using K-means based on the generalized version of the Mean Absolute Difference of Distances (MADD)

ρh,φpzi, zjq “ 1

N ´ 2

ÿ

mPt1,...,Nuzti,ju

|φh,ψpzi, zmq ´ φh,ψpzj , zmq| ,

as proposed by Sarkar and Ghosh (2020) for the HDLSS setting. Here, zi, i “ 1, . . . , N , denote realizations
from the pooled sample and

φh,ψpzi, zjq “ h

˜
1

p

pÿ

l“1

ψ|zil ´ zjl|
¸
,

where h : R` Ñ R
` and ψ : R` Ñ R

` are continuous and strictly increasing functions. ψptq “ t2, ψptq “
1 ´ expp´tq, ψptq “ 1 ´ expp´t2q, ψptq “ logp1 ` tq, and ψptq “ t are considered in combination with
hptq “

?
t and hptq “ t. The number of clusters has to be chosen in advance. A natural choice is to set the

number of clusters to k. For the RI test, the Rand index of the clustering is used as a test statistic. It is
zero when the clustering is perfect, i.e., when the cluster membership is a permutation of the true dataset
membership. The test rejects for low values since the Rand index should take higher values when all clusters
have similar distributions of class labels. The critical value can be calculated using a generalized hypergeometric
distribution. Due to the discreteness of the Rand index, Paul et al. (2022b) propose to use a randomized test.
For the FS test, the generalized Fisher’s test statistic for testing for independence in an k ˆ ℓ contingency
tables is used. Again, a randomized test using the generalized hypergeometric distribution to find the critical
values is proposed.
Paul et al. (2022b) additionally propose modified versions of the tests (MRI, MFS test). For these, the number
of clusters is estimated from the data using the Dunn index since setting the number of clusters to k might fail
in case of multimodal distributions where a larger number of clusters might be required where then multiple
clusters can correspond to one dataset.
Moreover, multiscale versions of the tests are presented (MSRI, MSFS test) for the case where the number of
clusters is unclear. The respective tests are then performed for different numbers of clusters and the results
are aggregated using a Bonferroni adjustment for the individual tests. Still, an upper limit for the number
of clusters to be considered must be chosen. The implementation also includes aggregated tests (AFS / ARI
test) that perform all pairwise FS / MFS or RI / MRI tests, respectively, on the samples and aggregate the
results by taking the minimum test statistic value and applying a multiple testing procedure.
The tests are implemented in the R package HDLSSkST (Paul et al. 2022a). The main difference of the new
wrapper functions and the original implementation is that the modified and multiscale versions of the RI and
FS test can be performed with the same function as the original tests. The test can be chosen via the newly
introduced version argument of the FStest() and RItest() function. One advantage of this is that the in-
and output formats are unified between the versions of the test. In the original implementation of the test the
elements of the output list differ both content-wise and also in their names between the tests. Moreover, the
input of the tests differs slightly between the original functions for the different tests. The input is also unified
to match the input of the other functions in the DataSimilarity package and therefore consists simply of the
datasets instead of a pooled data matrix, a vector with the dataset affiliation of each observation and a vector
of the sample sizes. We think this is easier to understand and less error-prone from a user perspective.

5.12. MMD

The maximum mean discrepancy (MMD) uses a kernel mean embedding to define a metric for probability
distributions. Kernel mean embeddings extend feature maps ϕ to the space of probability distributions by
representing each distribution F as a mean function

ϕpF qp¨q “ µF p¨q :“
ż

X

Kpx, ¨q dF pxq “ EF pKpX, ¨qq,

where K : X ˆX Ñ R is a symmetric and positive definite kernel function. A reproducing kernel Hilbert space
(RKHS) H of functions on the domain X with kernel K is a Hilbert space of functions f : X Ñ R with dot
product x¨, ¨y that satisfies the reproducing property

xfp¨q,Kpx, ¨qy “ fpxq ñ xKpx, ¨q,Kpx1
, ¨qy “ Kpx, x1q,
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such that the linear map from a function to its value at x can be seen as an inner product. Then the kernel mean
embedding as given above is a transformation of the distribution F to an element in the reproducing kernel
Hilbert space (RKHS) H corresponding to the kernel K (Muandet, Fukumizu, Sriperumbudur, and Schölkopf
2017). For characteristic kernels, the kernel mean representation captures all information about the distribution
F , which implies }µF1

´ µF2
}H “ 0 ô F1 “ F2 (Fukumizu, Bach, and Jordan 2004; Sriperumbudur, Gretton,

Fukumizu, Lanckriet, and Schölkopf 2008; Sriperumbudur, Gretton, Fukumizu, Schölkopf, and Lanckriet 2010).
Therefore, the MMD measures the difference between two distributions as

MMDpH, F1, F2q “ }µF1
´ µF2

}H.

Here, the implementation kmmd() from the kernlab package (Karatzoglou et al. 2004) is used. The alternative
implementation from the Ecume does not include an automatic choice of the kernel parameter. The new
implementation adds a permutation test to the kernlab implementation.

5.13. GPK (Song and Chen 2023a)

Song and Chen (2023a) propose another kernel-based test for which they decompose the squared MMD esti-
mator as

{MMD
2 “ α` β ´ 2γ,

where

α “ 1

n1pn1 ´ 1q

n1ÿ

i“1

n1ÿ

j“1
j‰i

KpXi, Xjq,

β “ 1

n2pn2 ´ 1q

n2ÿ

i“1

n2ÿ

j“1
j‰i

KpYi, Yjq,

γ “ 1

n1n2

n1ÿ

i“1

n2ÿ

j“1

KpXi, Yjq.

As a new statistic they propose to use

GPK “ pα´ EH0
pαq, β ´ EH0

pβqqCOV
´1
H0

ˆˆ
α

β

˙˙ ˆ
α´ EH0

pαq
β ´ EH0

pβq

˙
.

The GPK can be decomposed into GPK “ Z2
W ` Z2

D, where ZW and ZD are the standardized versions (with
expectation and variance under H0) of

W “ n1

N
α` n2

N
β

D “ n1pn1 ´ 1qα´ n2pn2 ´ 1qβ.

Based on this observation they further generalize W to

Wr “ r
n1

N
α` n2

N
β

and ZW to ZW,r. Fast tests based on ZW,r are proposed as the asymptotic distribution of ZW “ ZW,1 is
complicated but that of ZW,r, r ‰ 1, is a standard normal under mild assumptions. One fast test fGPK uses
the Bonferroni adjusted test result of the tests based on ZD, ZW,1.2 “: ZW1 and ZW,0.8 “: ZW2, the other
fast test fGPKM uses the Bonferroni adjusted test result of the tests based on ZW,1.2 and ZW,0.8. For GPK
(as well as for fGPK and fGPKM ) a permutation test can be performed.
The new implementation GPK() based on the kertests() function from the kerTests package (Song and Chen
2023c) performs by default the fast test version instead of a permutation test, and the bandwidth parameter
σ of the RBF kernel that is used as K is chosen via the median heuristic using the function med_sigma()

of the kerTests package. The median heuristic sets the bandwidth of the kernel to the median value of all
pairwise distances in the pooled sample (Sriperumbudur, Fukumizu, Gretton, Lanckriet, and Schölkopf 2009).
When the fast test is performed, all three test statistics, ZW1, ZW2, and ZD are returned together with
the asymptotic p value if n.perm = 0 or the permutation p value if n.perm > 0, respectively. For the GPK
statistic, only the permutation test is available as its null distribution cannot be accessed. Therefore, if the
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number of permutations is set to zero, the fast test is performed always. This holds even if fast is set to FALSE

(with a warning).

5.14. LP test Mukhopadhyay and Wang (2020b)

For the test of Mukhopadhyay and Wang (2020b), a nonparametrically designed set of orthogonal functions
(LP polynomials) is obtained by orthonormalizing a set of functions constructed as orthonormal polynomials
of mid-distribution transforms. These are used for the construction of a polynomial kernel of degree 2 that
encodes the similarity between two data points in the LP-transformed domain. The values of the kernel Gram
matrix are then used as weights on a graph with the pooled sample as vertices. The idea is to cluster points
for the graph into k groups that have higher connectivity and compare how closely related this clustering is
to the true memberships of the k distributions. Then the problem reduces to testing independence which can
be accomplished by determining whether all of the LP comeans are zero.
The test is implemented in the LPKsample package (Mukhopadhyay and Wang 2020a). The new implementa-
tion offers the additional option to sum over all components instead of summing over the significant components
only which might be of interest when using the statistic as a data similarity measure without testing. By de-
fault, this is disabled (sum.all = FALSE). When only summing over the significant components, the returned
test statistic is always equal to zero when no component is significant.

5.15. C2ST (Lopez-Paz and Oquab 2017)

The classifier two-sample test is already described in Section 1.3. For the C2ST, the classifier can be specified
by the user and defaults to K-nearest neighbors. Possible options are all models accepted by caret::train().
For a list of classification models, call e.g.

R> names(caret::getModelInfo())[sapply(caret::getModelInfo(), function(x) {

+ "Classification" %in% x$type

+ })]

5.16. Multisample cross-match tests of Mukherjee et al. (2022) and Petrie
(2016)

The tests of Mukherjee et al. (2022) and Petrie (2016) generalize the Rosenbaum cross-match test to multiple
samples by calculating the cross-counts for all pairs of samples based on the optimal non-bipartite matching on
the pooled sample and taking the Mahalanobis distance or simply the sum of the cross-counts, respectively, as
the test statistics. New functions MMCM() and Petrie() were implemented. There exist implementations of of
these methods in the R package multicross (Agarwal et al. 2020), but the package is archived on CRAN and the
implementation makes it impossible to access the test statistic and p value as numeric values. Therefore, here
the functions were re-implemented from scratch. To ensure that the new functions are not derivations of the
multicross versions, they were implemented by an author who had not looked at the multicross implementations
before. The functions implement the formulas from Section 2 of Mukherjee et al. (2022). The new output is
again of class ‘htest’ and contains the test statistic value and the p value as a numeric value. The nbpMatching

package (Beck, Lu, and Greevy 2024) is used for calculating the optimal non-bipartite matching. Note that
in case of ties in the distance matrix, the optimal non-bipartite matching might not be defined uniquely. In
the current implementation, the observations in the pooled sample are ordered as supplied by the user. When
searching for a match, the nbpMatching implementation of the optimal non-bipartite matching algorithm starts
at the end of the pooled sample. Therefore, with many ties (e.g. for categorical data), observations from the
first dataset are often matched with ones from the last dataset and so on. This might affect the validity of the
test negatively since even under the null, more cross counts than expected are observed. A random ordering of
the pooled sample might help solving this issue but would result in the observed test statistic value depending
on this random ordering and is therefore not implemented.

5.17. Test using the shortest Hamiltonian path (Biswas et al. 2014)

Biswas et al. (2014) suggest a graph-based test similar to those of Friedman and Rafsky (1979) and Rosenbaum
(2005) but using the shortest Hamiltonian path as the similarity graph. Since calculating the Hamiltonian
path is an NP hard problem, the implementation of BMG() is based on Kruskal’s algorithm which is a heuristic



26 DataSimilarity Package

approach to find the shortest Hamilton Path within the pooled dataset as suggested in Biswas et al. (2014).
Here, it is implemented as follows:

1. Create an edge list of the fully connected graph on the pooled sample, sorted by increasing Euclidian
distance of the corresponding vertices.

2. For each edge, check if (i) an addition of this edge leads to a cyclic graph (using IsAcyclic() from
the rlemon package (Agarwal, Tewari, and Errickson 2023)) and (ii) an addition of this edge leads to a
degree larger than two in any (used) vertex. If both criteria are not met, keep the corresponding edge.

3. Return the reduced edge list, containing only edges needed to construct the Hamilton path.

For pooled sample sizes N ă 1030, an exact test can be performed. For N ě 1030 calculation of the exact runs
statistic cannot be performed due to terms involved in the calculation becoming too large for representing them
as floating point numbers in R. In the exact case, the p values using the null distribution of the univariate
runs statistic (Biswas et al. 2014) are calculated. If an asymptotic test is performed, the asymptotic null
distribution is used instead.

5.18. Rank Energy statistic (Deb and Sen 2021)

The test of Deb and Sen (2021) is a rank version of the Energy statistic. The multivariate ranks are assigned
using optimal transport. The implementation is based on R code for paper (https://github.com/NabarunD/

MultiDistFree). It wraps up tidied-up versions of the computestatistic() and gensamdist() given there.
The implementation uses the randtoolbox package (Christophe and Petr 2024) for random number generation,
the clue package (Hornik 2005, 2024) to solve the assignment problem for ranking, and the energy package
(Rizzo and Szekely 2024) for implementation of the Energy statistic.

5.19. Decision tree-based dataset similarity: Ganti et al. (1999) and Ntoutsi
et al. (2008)

The methods of Ganti et al. (1999) and Ntoutsi et al. (2008) work by determining the partition induced by
a decision tree fit to each dataset and then intersecting these partitions and calculating certain probability
estimates on the resulting intersection. A description of the method of Ntoutsi et al. (2008) is given in
Section 1.3. Ganti et al. (1999) calculate a decision tree model for each of the two datasets and calculate
the greatest common refinement (GCR) induced by these trees. That is the intersection of the partitions of
the sample space induced by each tree. A visualization of the computation of the GCR is given in Figure 2.
Ganti et al. (1999) then compare the distribution of both datasets over this GCR. Let nr denote the number
of segments of the GCR, pi the proportion of observations of Xp1q that map to the i-th segment, and qi the
respective proportion of observations of Xp2q mapping to the i-th segment. Then Ganti et al. (1999) compare
the vector p and q by a difference function f : Rnr Ñ R

nr and aggregate the results from that by an aggregate
function g : Rnr Ñ R to obtain a measure of distance between the two datasets

GAN “ gpfpp, qqq.

Large values then indicate differences between the datasets. They propose the absolute difference function

fapp, qqi “ |pi ´ qi|,

and the scaled difference function

fspp, qqi “
#

|pi´qi|
ppi`qiq{2

, if ppi ` qiq ą 0, i “ 1, . . . , nr.

0, otherwise
.

For the aggregate function, they propose the sum or maximum of the values from the difference function. For
using the sum as the aggregate function together with either fa or fs, it can be shown that the GCR is optimal
in the sense that it gives the lowest value over all common refinements. For using the maximum, this property
is not fulfilled. Ganti et al. (1999) propose using a Bootstrap test procedure for assessing whether or not the
two datasets are generated by the same data-generating process.
We use rpart package (Therneau and Atkinson 2025) for tree estimation. In the frame of a tree object fit with
rpart(), the nodes are numbered starting with 1 at the root, following the rule that the left child node gets
the ID of the parent times 2 and the right child node gets the ID of the parent times 2 plus 1. This allows us

https://github.com/NabarunD/MultiDistFree
https://github.com/NabarunD/MultiDistFree
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to easily trace back the decision rules from a leaf node to the root using integer division by 2. Moreover, the
split rules can be easily accessed using the labels() function on the tree object. We iterate over leaves and
collect all split rules on each way from the leaf to the root. Suppose no upper or lower limit is specified by
any split rule for a certain variable on this way. In that case, we set this limit to the minimum or maximum,
respectively, of this variable over both datasets. This ensures that each observation in any of the two datasets
falls into some part of the intersected partition later on. The resulting set of ranges for all variables for each
leaf node gives us the partition induced by the tree. The resulting partitions are intersected as described in
Ganti et al. (1999) and Ntoutsi et al. (2008). For Ntoutsi et al. (2008), all three methods presented in the
original article (see also Section 1.3) are implemented. No test is performed. For Ganti et al. (1999), the
difference and aggregation functions can be supplied by the users. The suggested choices fa and fs, i.e., taking
the absolute differences between the joint probabilities calculated on the GCR or normalizing this difference
with the sum of both probabilities, are readily implemented. The default different function is set to fa and
the default aggregation function is set to the sum. A permutation test can be performed.
Neither Ntoutsi et al. (2008) nor Ganti et al. (1999) discuss the hyperparameter choice for the decision trees.
Here, we offer the options to use the default parameter settings of rpart() or to tune the hyperparameters.
For tuning the hyperparameters, we use the best.rpart() function of the e1071 package (Meyer, Dimitriadou,
Hornik, Weingessel, and Leisch 2024). The parameters minsplit, minbucket, and cp of the tree can be tuned.
The ranges that are used here for tuning are chosen based on (Bischl, Binder, Lang, Pielok, Richter, Coors,
Thomas, Ullmann, Becker, Boulesteix, Deng, and Lindauer 2021). Tuning is enabled by default but can be
disabled by setting tune to FALSE. Cross-validation is used for tuning. The number of evaluations (n.eval) is
set to 100 as a default and the number of folds (k) is set to 5. Both values can be customized by the user. The
remaining calculation works the same for a tuned or untuned tree model.
By default, the number of permutations is set to 0 corresponding to not performing any test. An imple-
mentation for categorical data for the method of Ganti et al. (1999) is also supplied. This comes with the
following difficulties. If a category is only observed in one dataset and not in the other or even if just not all
combinations of categories are observed it might happen that at a certain split, not all levels of the respective
variable are observed in the remaining data at that split. Then it is unclear, which child node the missing level
gets assigned to. In the rpart::rpart() implementation that we use here, the label does not get assigned
at all. If now in the other dataset, the combination with this label is present, the respective data points do
not fit anywhere in the intersected partition. Therefore the calculated probabilities in the joint distribution
do not sum up to one anymore. In these cases, a warning is printed. It might still give a useful measure of
dataset distance, but the interpretation and theoretical results might not hold anymore. Also note that for
deep trees the intersection in practice often reduces to all combinations of categories of the variables. Therefore
the measure reduces to the differences in frequency of all category combinations in these cases but is far more
complicated and time-consuming to calculate.

5.20. OTDD (Alvarez-Melis and Fusi 2020)

A description of the optimal transport dataset distance can be found in Section 1.3. There is a Python

implementation of the method (https://github.com/microsoft/otdd) that was used as a rough orientation
here. Compared to that the JDOT option is deprecated. The new implementation uses the Wasserstein
distance implementation from approxOT package (Dunipace 2024) and the matrix square root from expm

package (Maechler, Dutang, and Goulet 2024). Note that the solution of the optimal transport between
two distributions is given by their q-Wasserstein distance to the power of q. There are different options
for the method to calculate the optimal transport based dataset distance. First case: chosen method is
"augmentation". In this case, the variable means and the covariance matrix of each dataset reduced to
each target observation value in that dataset are calculated. The mean vector and the vectorized covariance
matrix (column-wise) corresponding to the target value are appended to each observation in each dataset.
Then, the q-Wasserstein distance to the power of q of these augmented datasets is calculated. Note that this
calculation assumes commuting covariance matrices of all label distributions (rarely fulfilled in practice) and
that the feature space metric coincides with the ground cost of the optimal transport problem on the labels
(Alvarez-Melis and Fusi 2020). Second case: chosen method is "precomputed.labeldist". In this case, both
the distance matrix for the label distributions and the distance matrix for the features are calculated and
the corresponding distances are added with weights lambda.x and lambda.y, respectively, to calculate a cost
matrix of all observations. In case of sinkhorn = FALSE, i.e. for the exact calculation, only the costs from each
observation from the first dataset to each observation from the second dataset are needed. In the case of using
debiased Sinkhorn approximation, additionally, the costs within each dataset are needed. For calculating the

https://github.com/microsoft/otdd
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distance matrices of the label distributions, there are again different options:

1. inner.ot.method = "exact". The Wasserstein distance for each label pair between the datasets reduced
to the observations where the target value equals the corresponding label is calculated. There are
options for using the (debiased) Sinkhorn approximation and changing the parameters of the Wasserstein
distance and the ground cost metric.

2. inner.ot.method = "gaussian.approx". The label distributions are approximated by Gaussians, which
leads to a simple closed-form solution of the optimal transport problem that uses only the means and
covariances. The calculation includes calculating multiple matrix square roots of covariance matrices
which might get costly if the number of variables is high. Moreover, this calculation fails if the estimated
covariance matrix is not numerically psd. This might happen especially for N ă p settings.

3. inner.ot.method = "only.means". The former is further simplified by using only the means (i.e.
assuming equal covariance matrices in all label distributions).

4. inner.ot.method = "naive.upperbound". A distribution-agnostic upper bound for the optimal trans-
port between the label distributions is calculated that again only relies on the means and covariance
matrices of these distributions.

5.21. Jeffreys Divergence

Jeffreys divergence (Jeffreys 1997) is the symmetrized version

JpF1, F2q “ KLpF1, F2q ` KLpF2, F1q,
of the Kullback Leibler (KL) divergence (Kullback and Leibler 1951)

KLpF1, F2q :“
ż

log

ˆ
f1pxq
f2pxq

˙
f1pxq dx.

Within the Jeffreys() function, Jeffreys divergence is calculated as the sum of the two KL-divergences
(Kullback and Leibler 1951) where each dataset is used as the first once. The KL-divergences are calculated
using density ratio estimation as recommended in Sugiyama, Liu, du Plessis, Yamanaka, Yamada, Suzuki, and
Kanamori (2013). For this, the densratio() function from the densratio package (Makiyama 2019) is used.
By default, the method KLIEP is chosen as suggested by Sugiyama et al. (2013). The densratio package was
preferred here over the alternative package densityratio (Volker 2024) as it is available on CRAN.

5.22. Biswas and Ghosh (2014)

The statistic of Biswas and Ghosh (2014) uses inter-point distances and is defined as

T “ ||µ̂DF
´ µ̂DG

||22, where

µ̂DF
“

«
µ̂FF “ 2

n1pn1 ´ 1q

n1ÿ

i“1

n1ÿ

j“i`1

||Xp1q
i ´X

p1q
j ||, µ̂FG “ 1

n1n2

n1ÿ

i“1

n2ÿ

j“1

||Xp1q
i ´X

p2q
j ||

ff
,

µ̂DG
“

«
µ̂FG “ 1

n1n2

n1ÿ
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||Xp1q
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For testing, the scaled statistic

T
˚ “ Nλ̂p1 ´ λ̂q

2σ̂2
0

T with

λ̂ “ n1

N
,

σ̂
2
0 “ n1S1 ` n2S2

N
, where

S1 “ 1`
n1

3

˘
ÿ

1ďiăjălďn1

||Xp1q
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p1q
j || ¨ ||Xp1q

i ´X
p1q
l || ´ µ̂

2
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S2 “ 1`
n2

3

˘
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1ďiăjălďn2

||Xp2q
i ´X

p2q
j || ¨ ||Xp2q

i ´X
p2q
l || ´ µ̂
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is used as it is asymptotically χ2
1-distributed. The new function BG2014() implements the Biswas and Ghosh

(2014) test from scratch. stats:::dist() is used to calculate the Euclidean distance matrix on the pooled
sample. The statistic T and the scaled test statistic T˚ are implemented according to the formulas above. A
permutation test is implemented by permuting the distance matrix, recalculating the test statistic T for the
permuted distances, and calculating the p value as the proportion of permuted test statistics larger than the
observed test statistic An asymptotic test is implemented using the asymptotic result from Theorem 4.1 of
Biswas and Ghosh (2014), i.e. calculating the p value as stats::pchisq(T˚, lower.tail = FALSE).

5.23. Engineer metric

The Lq-Engineer metric is defined as

ENpX,Y ; qq “
«
pÿ

i“1

|E pXiq ´ E pYiq|q
ffminpq,1{qq

with q ą 0,

where Xi, Yi denote the ith component of the p-dimensional random vectors X „ F1 and Y „ F2. A new
function engineerMetric() is implemented. Since the Engineer metric is simply the Lq-distance of the expec-
tations of two random vectors, it is estimated as the Lq-distance of the column means of the datasets. For the
distance calculation, the base function norm() is used and different options for the Lq norm are available via
the type argument.

5.24. Schilling (1986) and Henze (1988) test

The Schilling-Henze test uses the mean within sample edge-count, i.e.,

SH :“ L :“ 1

KN
pR1 `R2q

in a K-nearest neighbor graph as the test statistic. It is implemented from scratch as follows.

1. Calculate K-nearest neighbor (NN) edge matrix on the pooled sample (distance function returning
a distance matrix and K are inputs of the function), i.e. create a matrix where the first column is
each observation number repeated K times, and the second column are the corresponding K nearest
neighbors of that observation. For the calculation of the K-NN graph, a function can be supplied by
the user. Pre-implemented options include a wrapper for the kNN() function from the dbscan package
(Hahsler, Piekenbrock, and Doran 2019) and the fast (approximative) K-NN algorithm implemented in
the get.knn() function from the FNN package (Beygelzimer, Kakadet, Langford, Arya, Mount, and Li
2024).

2. Count the number of rows where both observations come from the same sample L (i.e. either both have
observation number ď n1 or both have observation number ą n1)

3. Calculate the quantities EH0
pLq and VARH0

pLq from proposition 2.1 in Henze (1988)

4. Calculate the standardized test statistic L˚ “ pL´ EH0
pLqq{

a
VARH0

pLq
5. When performing a permutation test, permute the distance matrix on the pooled sample, recalculate

L, and calculate the proportion of permuted test statistic that is larger than the observed value of L

6. When performing an asymptotic test, use the asymptotic normal distribution of Z as proposed in
Remark 5.1 of Henze (1988).

7. The observed value of L˚ is returned in the result as the statistic, the observed L is returned as the
estimate.

The default for K is set to one. This is rather arbitrary based on computational speed as there is no good rule
for choosing K so far proposed in the literature (Aslan and Zech 2005).

5.25. Barakat et al. (1996) Generalization of the Schilling-Henze Test

Barakat et al. (1996) generalize the Schilling-Henze nearest neighbor test to circumvent choosing the number of
nearest neighbors. Their test statistic is the sum of edge counts for all values of K for the K-nearest neighbor
graph. The resulting test is equivalent to a sum of Wilcoxon rank sums. It requires samples in the Euclidean
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space R
p and it is assumed that there are no ties in ranking w.r.t. to nearness.

Within our implementation we do not explicitly calculate the K-nearest neighbor graph for all possible values
of K as this would be highly inefficient. Instead, the distance matrix on the pooled sample is calculated with a
user-specified distance function (Euclidean distance calculated via stats::dist() by default) and the column-
wise orderings of the distances excluding the diagonal elements are calculated. Then, the cumulative numbers
of the elements smaller than n1 are calculated for the first n1 columns of the orderings, corresponding to the
numbers of within-sample edges in the first sample in the K-nearest neighbor graph for K “ 1, . . . , N ´ 1.
Analogously, the cumulative numbers of the elements greater than n1 are calculated for the remaining n2

columns of the orderings, corresponding to the numbers of within-sample edges in the second sample in
the K-nearest neighbor graph for K “ 1, . . . , N ´ 1. Lastly, all these cumulative numbers are summed up
which corresponds to the Barakat et al. (1996) test statistic. A permutation test is implemented using the
boot::boot() function. For that, the distances are permuted directly and the calculation is repeated for the
permuted distance matrix which circumvents the costly recalculation of the distances for each permutation.

5.26. Tree-based test (Yu et al. 2007)

Yu et al. (2007) propose a permutation test that uses the classification error of a classification tree that
distinguishes between the two datasets. The implementation of the test is based on the C2ST() function
as the methods work very similar. Here, we set the classifier to "rpart", i.e. a CART. Instead of the
classification accuracy as for the C2ST, the classification error, i.e., 1´ Accuracy is returned. A permutation
test is implemented using the boot::boot() framework and the permutation p value is calculated as the
proportion of the number + 1 of permuted test statistics smaller than the observed value divided by the
number of permutations. Yu et al. (2007) do not propose any asymptotic test, but since their test fits into
the framework of Lopez-Paz and Oquab (2017), the binomial test proposed there and implemented in the
Ecume::classifier_test() function utilized by C2ST() is still valid and therefore kept in the implementation.

5.27. Characteristic distance (Li et al. 2022)

The characteristic distance is defined as

CDpX,Y q “ E
“
}E

`
exp

`
ixX2

, X ´X
1y

˘
|X ´X

1
˘

´ E
`
exp

`
ixY,X ´X

1y
˘

|X ´X
1
˘

}2
‰

` E
“
}E

`
exp

`
ixX,Y ´ Y

1y
˘

|Y ´ Y
1
˘

´ E
`
exp

`
ixY 2

, Y ´ Y
1y

˘
|Y ´ Y

1
˘

}2
‰
,

where X 1, X2 and Y 1, Y 2 denote independent copies of X „ F1 and Y „ F2, respectively. An empirical version
is obtained by replacing the conditional expectations with empirical means. The implementation calculates
the empirical characteristic distance between two datasets. For both summands, Euler’s formula is used for
every entry of the inner product defined in Li et al. (2022). Both mean values are calculated, and the squared
complex modulus of the difference of both means is calculated. Since the inner product leads to a symmetric
matrix, only an upper triangular matrix is calculated, and the final sum is multiplied by two. A permutation
test with n.perm permutations and random seed seed for reproducibility is performed.

5.28. Constrained Minimum Distance (Tatti 2007)

The constrained minimum (CM) distance uses a feature function S : X Ñ R
m that maps points from the

sample space X to a real vector. The frequency θ P R
m of S with respect to dataset Xpjq is the average of the

values of S

θj “ 1

N

niÿ

i“1

SpXpjq
i q, j “ 1, 2.

The CM distance is then defined as

DCMpXp1q
, X

p2q|Sq2 “ pθ1 ´ θ2qJ
COV

´1pSqpθ1 ´ θ2q

with

COVpSq “ 1

|X |
ÿ

ωPX

SpωqSpωqJ ´
˜

1

|X |
ÿ

ωPX

Spωq
¸ ˜

1

|X |
ÿ

ωPX

Spωq
¸J

.
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It has to be assumed that the feature space X is finite and can be enumerated. For binary data and S chosen
as the conjunction function, i.e., S is one if all components of an observation are one, and zero otherwise,
or as the parity function, i.e. S is one if an odd number of components of an observation are one, and zero
otherwise, the CM distance reduces to

DCMpXp1q
, X

p2q|Sq “ 2}θ1 ´ θ2}2.

This special case for binary data is implemented first. It includes the option to use either the means as features
(example 3 in Tatti (2007)) or the means and covariances (example 4 in Tatti (2007)). Note that there is an
error in the calculation of the covariance matrix in A.4 Proof of Lemma 8 in Tatti (2007). The correct covariance
matrix has the form COVrTF s “ 0.25I since VARrTAs “ ErT 2

As ´ ErTAs2 “ 0.5 ´ 0.52 “ 0.25 following from the
correct statement that ErT 2

As “ ErTAs “ 0.5. Therefore, formula (4) changes to dCM pD1, D2|SF q “ 2||θ1 ´θ2||2
and the formula in example 3 changes to dCM pD1, D2|S1q “ 2||θ1 ´ θ2||2. Our implementation is based on
these corrected formulas. If the original formula was used, the results on the same data calculated with the
formula for the binary special case and the results calculated with the general formula differ by a factor of?

2. For the general case for categorical data, the user has to specify a feature function S mapping a point in
the sample space to a real vector. Additionally, either the covariance matrix COVrSs if known or the sample
space has to be given. If both are given, the supplied covariance matrix is used and not recalculated. The
constrained minimum distance is calculated using Theorem 1 in Tatti (2007), i.e., the formulas given above.
Therefore the supplied or calculated COVrSs, respectively, has to be invertible.

5.29. Biau and Gyorfi (2005)

Biau and Gyorfi (2005) test for homogeneity of two (multivariate) datasets by calculating the L1-distance
between the two empirical distributions restricted to a finite partition. For this, a finite partition of the
subspace spanned by the two datasets has to be defined. By default, we define a rectangular partition under
the assumption of approximately equal cell probabilities. The number of elements of the partition mn are
chosen according to the convergence criteria in Biau and Gyorfi (2005) as n0.8, where the exponent can be

varied as an argument (exponent). For each dimension, m
1{p
n ` 1 equidistant cut-points are created along the

range of both datasets to define the partition. It must be ensured that there are at least three cut-points per
dimension (min, max, and one point splitting the data into two bins). The argument eps ensures that the
partition covers all data points by adding some small value to the data range. Alternative partition functions
can be provided via the partition argument. After calculating the partition, all data points are assigned to an
element of the partition along the defined cut-points. Last, the L1 distance between the empirical distribution
functions restricted to the elements of the partition is calculated.

5.30. DiProPerm test (Wei et al. 2016)

Wei et al. (2016) propose their direction-projection-permutation (DiProPerm) test for which a univariate two-
sample statistic is applied to the projection of the datasets onto the normal vector of a separating hyperplane.
For this, a linear classification method like a support vector machine (SVM) or distance weighted discrimination
(DWD) is used to calculate such a separating hyperplane. A permutation test is then performed for the
univariate statistic applied to the projection onto the normal vector. Possible options for the univariate
statistic would be the mean difference, the two-sample t-statistic, or the area under the curve (AUC). There is an
implementation in the diproperm package (Allmon et al. 2021) which is currently archived. Our implementation
is independent of that implementation. It has the following advantages.

• All suggested univariate two-sample statistics from the paper, i.e., mean difference, t test statistic and
AUC are implemented. Additional two-sample statistics can be used if a suitable function is supplied
via the stat.fun argument.

• Additional binary linear classifiers other than the DWD and SVM suggested in the original paper can
easily be used by supplying a suitable function via the dipro.fun argument.

• The results of the new function are reproducible by setting a random seed.

• The new implementation does not rely on global variables

• The p value is returned as numeric instead of character.

• The output is an object of class ‘htest’ for pretty displaying of the results.
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One restriction of the new function is that it no longer supports balanced permutation. That was necessary
to ensure the reproducibility which we considered a trade-off worth making since the use of balanced permu-
tation is controversial anyways, see Southworth, Kim, and Owen (2009), and reproducibility is essential for
permutation tests.
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