The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

EXAMPLE#1 Simple Simulation & ordering inference

In the first step, we generate a simple dataset. where C1 and C2 are dominated by C3, C3 is dominated by C4, and is C4 dominated by C5. There is no dominant-distribution relation between C1 and C2.

# Simulation section
nInv<-100
initMean=10
stepMean=20
std=8
simData1<-c()
simData1$Values<-rnorm(nInv,mean=initMean,sd=std)
simData1$Group<-rep(c("C1"),times=nInv)
simData1$Values<-c(simData1$Values,rnorm(nInv,mean=initMean,sd=std) )
simData1$Group<-c(simData1$Group,rep(c("C2"),times=nInv))
simData1$Values<-c(simData1$Values,rnorm(nInv,mean=initMean+2*stepMean,sd=std) )
simData1$Group<-c(simData1$Group,rep(c("C3"),times=nInv) )
simData1$Values<-c(simData1$Values,rnorm(nInv,mean=initMean+3*stepMean,sd=std) )
simData1$Group<-c(simData1$Group, rep(c("C4"),times=nInv) )
simData1$Values<-c(simData1$Values,rnorm(nInv,mean=initMean+4*stepMean,sd=std) )
simData1$Group<-c(simData1$Group, rep(c("C5"),times=nInv) )

The framework is used to analyze the data below.

# Simple ordering inference section
library(EDOIF)
## Loading required package: boot
# parameter setting
bootT=1000 # Number of times of sampling with replacement
alpha=0.05 # significance  significance level

#======= input
Values=simData1$Values
Group=simData1$Group
#=============
A1<-EDOIF(Values,Group,bootT = bootT, alpha=alpha )

We print the result of our framework below.

print(A1) # print results in text
## EDOIF (Empirical Distribution Ordering Inference Framework)
## =======================================================
## Alpha = 0.050000, Number of bootstrap resamples = 1000, CI type = perc
## Using Mann-Whitney test to report whether A <U+227A> B
## A dominant-distribution network density:0.900000
## Distribution: C1
## Mean:9.074610 95CI:[ 7.416565,10.913566]
## Distribution: C2
## Mean:9.571799 95CI:[ 8.115621,10.991122]
## Distribution: C3
## Mean:48.641842 95CI:[ 46.935907,50.410831]
## Distribution: C4
## Mean:70.433208 95CI:[ 69.031927,72.161735]
## Distribution: C5
## Mean:90.130574 95CI:[ 88.492751,91.875444]
## =======================================================
## Mean difference of C2 (n=100) minus C1 (n=100): C1 <U+2280> C2
##  :p-val 0.4154
## Mean Diff:0.497189 95CI:[ -1.632478,2.792858]
## 
## Mean difference of C3 (n=100) minus C1 (n=100): C1 <U+227A> C3
##  :p-val 0.0000
## Mean Diff:39.567232 95CI:[ 37.120519,42.246510]
## 
## Mean difference of C4 (n=100) minus C1 (n=100): C1 <U+227A> C4
##  :p-val 0.0000
## Mean Diff:61.358598 95CI:[ 58.905366,63.793044]
## 
## Mean difference of C5 (n=100) minus C1 (n=100): C1 <U+227A> C5
##  :p-val 0.0000
## Mean Diff:81.055964 95CI:[ 78.631608,83.752169]
## 
## Mean difference of C3 (n=100) minus C2 (n=100): C2 <U+227A> C3
##  :p-val 0.0000
## Mean Diff:39.070044 95CI:[ 36.670593,41.334377]
## 
## Mean difference of C4 (n=100) minus C2 (n=100): C2 <U+227A> C4
##  :p-val 0.0000
## Mean Diff:60.861409 95CI:[ 58.803587,62.864864]
## 
## Mean difference of C5 (n=100) minus C2 (n=100): C2 <U+227A> C5
##  :p-val 0.0000
## Mean Diff:80.558775 95CI:[ 78.389285,82.837822]
## 
## Mean difference of C4 (n=100) minus C3 (n=100): C3 <U+227A> C4
##  :p-val 0.0000
## Mean Diff:21.791366 95CI:[ 19.330900,24.172359]
## 
## Mean difference of C5 (n=100) minus C3 (n=100): C3 <U+227A> C5
##  :p-val 0.0000
## Mean Diff:41.488731 95CI:[ 39.163272,43.771835]
## 
## Mean difference of C5 (n=100) minus C4 (n=100): C4 <U+227A> C5
##  :p-val 0.0000
## Mean Diff:19.697366 95CI:[ 17.363485,22.178291]

The first plot is the plot of mean-difference confidence intervals

plot(A1,options =1)

plot of chunk Fig1

The second plot is the plot of mean confidence intervals

plot(A1,options =2)

plot of chunk Fig2 The third plot is a dominant-distribution network.

out<-plot(A1,options =3)

plot of chunk Fig3

EXAMPLE#2 Non-normal-Distribution Simulation & ordering inference

We generate more complicated dataset of mixture distributions. C1, C2, C3, and C4 are dominated by C5. There is no dominant-distribution relation among C1, C2, C3, and C4.

library(EDOIF)
# parameter setting
bootT=1000
alpha=0.05
nInv<-1200

start_time <- Sys.time()
#======= input
simData3<-SimNonNormalDist(nInv=nInv,noisePer=0.01)
Values=simData3$Values
Group=simData3$Group
#=============
A3<-EDOIF(Values,Group, bootT=bootT, alpha=alpha, methodType ="perc")
A3
## EDOIF (Empirical Distribution Ordering Inference Framework)
## =======================================================
## Alpha = 0.050000, Number of bootstrap resamples = 1000, CI type = perc
## Using Mann-Whitney test to report whether A <U+227A> B
## A dominant-distribution network density:0.500000
## Distribution: C3
## Mean:81.449593 95CI:[ 78.867804,84.063172]
## Distribution: C2
## Mean:81.809903 95CI:[ 80.339347,83.227538]
## Distribution: C4
## Mean:82.385487 95CI:[ 80.101899,84.951571]
## Distribution: C1
## Mean:82.953944 95CI:[ 80.338677,85.769927]
## Distribution: C5
## Mean:139.957369 95CI:[ 136.685226,142.578980]
## =======================================================
## Mean difference of C2 (n=1200) minus C3 (n=1200): C3 <U+2280> C2
##  :p-val 0.6222
## Mean Diff:0.360310 95CI:[ -2.635325,3.304207]
## 
## Mean difference of C4 (n=1200) minus C3 (n=1200): C3 <U+2280> C4
##  :p-val 0.3823
## Mean Diff:0.935894 95CI:[ -2.781728,4.160345]
## 
## Mean difference of C1 (n=1200) minus C3 (n=1200): C3 <U+2280> C1
##  :p-val 0.0624
## Mean Diff:1.504351 95CI:[ -2.213064,5.157605]
## 
## Mean difference of C5 (n=1200) minus C3 (n=1200): C3 <U+227A> C5
##  :p-val 0.0000
## Mean Diff:58.507776 95CI:[ 54.391212,62.239108]
## 
## Mean difference of C4 (n=1200) minus C2 (n=1200): C2 <U+2280> C4
##  :p-val 0.2846
## Mean Diff:0.575584 95CI:[ -2.120584,3.430463]
## 
## Mean difference of C1 (n=1200) minus C2 (n=1200): C2 <U+227A> C1
##  :p-val 0.0292
## Mean Diff:1.144040 95CI:[ -1.813826,4.160002]
## 
## Mean difference of C5 (n=1200) minus C2 (n=1200): C2 <U+227A> C5
##  :p-val 0.0000
## Mean Diff:58.147466 95CI:[ 54.657763,61.312185]
## 
## Mean difference of C1 (n=1200) minus C4 (n=1200): C4 <U+2280> C1
##  :p-val 0.1128
## Mean Diff:0.568457 95CI:[ -3.024515,4.198713]
## 
## Mean difference of C5 (n=1200) minus C4 (n=1200): C4 <U+227A> C5
##  :p-val 0.0000
## Mean Diff:57.571882 95CI:[ 53.520551,61.123886]
## 
## Mean difference of C5 (n=1200) minus C1 (n=1200): C1 <U+227A> C5
##  :p-val 0.0000
## Mean Diff:57.003426 95CI:[ 53.037586,60.890256]
plot(A3)

plot of chunk Fig4plot of chunk Fig4plot of chunk Fig4

end_time <- Sys.time()
end_time - start_time
## Time difference of 17.16731 secs

Uniform noise

Generating \(A\) dominates \(B\) with different degrees of uniform noise

library(ggplot2)

nInv<-1000
simData3<-SimNonNormalDist(nInv=nInv,noisePer=0.01)
#plot(density(simData3$V3))

dat <- data.frame(dens = c(simData3$V3, simData3$V5)
                   , lines = rep(c("B", "A"), each = nInv))
#Plot.
p1<-ggplot(dat, aes(x = dens, fill = lines)) + geom_density(alpha = 0.5) +xlim(-400, 400)+ ylim(0, 0.07) + ylab("Density [0,1]") +xlab("Values") + theme( axis.text.x = element_text(face="bold",  
                                      size=12) )
theme_update(text = element_text(face="bold", size=12)  )
p1$labels$fill<-"Categories"
plot(p1)
## Warning: Removed 7 rows containing non-finite values (stat_density).

plot of chunk Fig5

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.