The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

EstemPMM News

Version 0.1.1 (2025-10-23)

Maintenance

Version 0.1.0 (2025-01-15)

Initial Release: PMM2 Foundation

New Features: - lm_pmm2() - Linear regression estimation using Polynomial Maximization Method (S=2) - ar_pmm2() - Autoregressive (AR) time series modeling with PMM2 - ma_pmm2() - Moving Average (MA) time series modeling with PMM2 - arma_pmm2() - ARMA time series modeling with PMM2 - arima_pmm2() - ARIMA time series modeling with PMM2 - pmm2_inference() - Bootstrap inference for linear models - ts_pmm2_inference() - Bootstrap inference for time series models - Statistical utilities: pmm_skewness(), pmm_kurtosis(), compute_moments() - Comparison functions: compare_with_ols(), compare_ts_methods(), compare_ar_methods(), compare_ma_methods(), compare_arma_methods(), compare_arima_methods()

S4 Classes: - PMM2fit - Results container for linear regression models - TS2fit - Base class for time series results - ARPMM2, MAPMM2, ARMAPMM2, ARIMAPMM2 - Specialized time series result classes

Methods: - summary() - Model summary statistics - coef() - Extract coefficients - fitted() - Fitted values - predict() - Predictions for new data - residuals() - Model residuals - plot() - Diagnostic plots

Documentation: - Comprehensive Roxygen2 documentation for all exported functions - README with theoretical background and basic usage examples - Demonstration script pmm2_demo_runner.R showing practical applications

Package Architecture

Module Organization: - R/pmm2_main.R - Primary PMM2 fitting functions - R/pmm2_classes.R - S4 class definitions - R/pmm2_utils.R - Utility functions for moment computation and optimization - R/pmm2_ts_design.R - Time series design matrix construction

Dependencies: - Core: methods, stats, graphics, utils - Optional: MASS (for advanced statistical functions, available in Suggests)

Quality Assurance: - Unit tests covering core PMM2 functionality - Edge case handling for numerical stability - Convergence diagnostics and warnings

Known Limitations

Roadmap for Future Versions

0.2.0 (PMM3 Ready Architecture): - PMM3 implementation (S=3 polynomial methods) - Refactored base classes supporting method extensibility - Vignette documentation with practical use cases - Enhanced bootstrap procedures for small samples - GitHub Actions CI/CD integration

0.3.0 (Advanced Methods): - Adaptive PMM order selection - Robust variance estimation - Model selection criteria (AIC/BIC for PMM) - Generalized Linear Models (GLM) with PMM

1.0.0 (Stable API): - API stabilization and backward compatibility guarantee - Extended performance benchmarks - Specialized applications (econometrics, biostatistics)

Citation

If you use EstemPMM in your research, please cite the relevant publications:

For Linear Regression (lm_pmm2): Zabolotnii S., Warsza Z.L., Tkachenko O. (2018) Polynomial Estimation of Linear Regression Parameters for the Asymmetric PDF of Errors. In: Szewczyk R., Zieliński C., Kaliczyńska M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_75

For Autoregressive Models (ar_pmm2): Zabolotnii S., Tkachenko O., Warsza Z.L. (2022) Application of the Polynomial Maximization Method for Estimation Parameters of Autoregressive Models with Asymmetric Innovations. In: Szewczyk R., Zieliński C., Kaliczyńska M. (eds) Automation 2022. AUTOMATION 2022. Advances in Intelligent Systems and Computing, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-03502-9_37

For Moving Average Models (ma_pmm2): Zabolotnii S., Tkachenko O., Warsza Z.L. (2023) Polynomial Maximization Method for Estimation Parameters of Asymmetric Non-gaussian Moving Average Models. In: Szewczyk R., et al. (eds) Automation 2023. AUTOMATION 2023. Lecture Notes in Networks and Systems, vol 630. Springer, Cham.

Technical Notes

Algorithm Stability: - Regularization parameter automatically adjusted for ill-conditioned systems - Step size limiting prevents divergence in optimization - Convergence history tracking for diagnostics

Numerical Considerations: - Moment estimation uses robust methods to handle outliers - Design matrices constructed with numerical stability in mind - NA/Inf values detected and handled appropriately

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.