The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The ExtendedLaplace
package provides tools for working
with the Extended Laplace (EL) distribution, a generalization of the
classical Laplace distribution. This distribution is characterized by
four parameters: location \(\mu\),
scale \(\sigma > 0\), and a uniform
noise range \(\delta > 0\).
The EL distribution arises as the sum \(Y = X + U\) where \(X \sim \text{Laplace}(\mu, \sigma)\) and \(U \sim \text{Uniform}(-\delta, \delta)\).
To install the development version of this package from GitHub:
The package provides the following main functions:
dEL(y, mu, sigma, delta)
: Probability density
functionpEL(y, mu, sigma, delta)
: Cumulative distribution
functionqEL(u, mu, sigma, delta)
: Quantile function (inverse
CDF)rEL(n, mu, sigma, delta)
: Random number generationqqplotEL(samples, mu, sigma, delta)
: Quantile-Quantile
Plotlibrary(ExtendedLaplace)
curve(dEL(x, mu = 0, sigma = 1, delta = 1), from = -5, to = 5, ylab = "Density", xlab = 'y')
The Extended Laplace distribution has the following form:
\[ \begin{aligned} g(y) = \frac{1}{4\delta} \begin{cases} e^{\frac{y- \mu + \delta}{\sigma}} - e^{\frac{y- \mu - \delta}{\sigma}}, & y < \mu - \delta \\ 2 - e^{-\frac{y - \mu + \delta}{\sigma}} - e^{\frac{y - \mu - \delta}{\sigma}}, & \mu - \delta \leq y < \mu + \delta \\ e^{-\frac{y - \mu - \delta}{\sigma}} - e^{-\frac{y - \mu + \delta}{\sigma}}, & y \geq \mu + \delta \end{cases} \end{aligned} \]
\[ \begin{aligned} G(y) = \frac{1}{4\delta} \begin{cases} \sigma e^{\frac{y- \mu + \delta}{\sigma}} - \sigma e^{\frac{y- \mu - \delta}{\sigma}} , & y < \mu - \delta \\ 2(y - \mu + \delta) + \sigma e^{-\frac{y - \mu + \delta}{\sigma}} - \sigma e^{\frac{y - \mu - \delta}{\sigma}} , & \mu-\delta \leq y < \mu+\delta\\ 4\delta + \sigma e^{-\frac{y- \mu + \delta}{\sigma}} - \sigma e^{-\frac{y- \mu - \delta}{\sigma}} , & y \geq \mu + \delta \, . \end{cases} \end{aligned} \]
For \(\sigma>0\) and \(0<u<1\), we have \(Q(u)=\mu+\sigma z\), where
\[ \begin{aligned} z = \begin{cases} \log [4\tau u] - \log [e^\tau - e^{-\tau}] & \mbox{for } 0<u\leq (1-e^{-2\tau})/(4\tau) \\ z^\ast & \mbox{for } (1-e^{-2\tau})/(4\tau) \leq u \leq 1 - (1-e^{-2\tau})/(4\tau)\\ - \log [4\tau (1-u)] + \log [e^{\tau} - e^{-\tau}] & \mbox{for } 1 - (1-e^{-2\tau})/(4\tau) \leq u <1, \end{cases} \end{aligned} \]
where \(\tau=\delta/\sigma\) and \(z^\ast\) is a unique solution of the equation: \[ \begin{aligned} u = \frac{1}{4\tau} [ 2(z+\tau) - e^{-\tau}(e^z - e^{-z})], \quad -\tau\leq z \leq \tau. \end{aligned} \]
sessionInfo()
# R version 4.4.3 (2025-02-28)
# Platform: x86_64-apple-darwin20
# Running under: macOS Sequoia 15.5
#
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
#
# locale:
# [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# time zone: America/Los_Angeles
# tzcode source: internal
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] ExtendedLaplace_0.1.6
#
# loaded via a namespace (and not attached):
# [1] digest_0.6.37 R6_2.6.1 fastmap_1.2.0 xfun_0.51
# [5] splines_4.4.3 cachem_1.1.0 knitr_1.50 htmltools_0.5.8.1
# [9] rmarkdown_2.29 stats4_4.4.3 lifecycle_1.0.4 cli_3.6.4
# [13] sass_0.4.9 jquerylib_0.1.4 VGAM_1.1-13 compiler_4.4.3
# [17] rstudioapi_0.17.1 tools_4.4.3 evaluate_1.0.3 bslib_0.9.0
# [21] yaml_2.3.10 rlang_1.1.5 jsonlite_1.9.1
Saah, D. K., & Kozubowski, T. J. (2025).
A new class of extended Laplace distributions with applications to
modeling contaminated Laplace data.
Journal of Computational and Applied Mathematics.
https://doi.org/10.1016/j.cam.2025.116588
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.