The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

FPCdpca: The FPCdpca Criterion on Distributed Principal Component Analysis

We consider optimal subset selection in the setting that one needs to use only one data subset to represent the whole data set with minimum information loss, and devise a novel intersection-based criterion on selecting optimal subset, called as the FPC criterion, to handle with the optimal sub-estimator in distributed principal component analysis; That is, the FPCdpca. The philosophy of the package is described in Guo G. (2020) <doi:10.1007/s00180-020-00974-4>.

Version: 0.1.0
Imports: matrixcalc, Rdimtools, rsvd, stats
Suggests: testthat (≥ 3.0.0)
Published: 2024-05-27
DOI: 10.32614/CRAN.package.FPCdpca
Author: Guangbao Guo [aut, cre, cph], Jiarui Li [ctb]
Maintainer: Guangbao Guo <ggb11111111 at 163.com>
License: Apache License (== 2.0)
NeedsCompilation: no
CRAN checks: FPCdpca results

Documentation:

Reference manual: FPCdpca.pdf

Downloads:

Package source: FPCdpca_0.1.0.tar.gz
Windows binaries: r-devel: FPCdpca_0.1.0.zip, r-release: FPCdpca_0.1.0.zip, r-oldrel: FPCdpca_0.1.0.zip
macOS binaries: r-release (arm64): FPCdpca_0.1.0.tgz, r-oldrel (arm64): FPCdpca_0.1.0.tgz, r-release (x86_64): FPCdpca_0.1.0.tgz, r-oldrel (x86_64): FPCdpca_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=FPCdpca to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.