The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
In this vignette, we present an example of using standard Gaussian processes approach in GPCERF to estimate the exposure response function (ERF) of a continuous exposure based on simulated data. We use a synthetic data generation function from the R package CausalGPS.
We first generate a synthetic dataset with six covariates, one
continuous exposure and one outcome. We consider two types of
conditional distributions (normal and student’s t) of the exposure given
covariates. For more details of the synthetic data generation, see this
document.
We then use a function tru_R
to derive the actual ERF of
this population at w=seq(0,20,0.1)
.
set.seed(134)
# Generate dataset with a normally distributed exposure given covariates
data_sim_normal <- generate_synthetic_data(sample_size = 400,
outcome_sd = 10,
gps_spec = 1)
# Generate dataset with a t-distributed with 2df exposure given covariates
data_sim_t <- generate_synthetic_data(sample_size = 400,
outcome_sd = 10,
gps_spec = 2)
tru_R <- function(w, sim_data) {
design_mt <- model.matrix(~cf1 + cf2 + cf3 + cf4 + cf5 + cf6 - 1,
data = sim_data)
mean(apply(design_mt, 1, function(x) {
-10 - sum(c(2, 2, 3, -1, 2, 2) * x) -
w * (0.1 - 0.1 * x[1] + 0.1 * x[4] + 0.1 * x[5] + 0.1 * x[3] ^ 2) +
0.13 ^ 2 * w ^ 3
}))
}
plot_fun <- function(object, ...) {
# extract data
tmp_data <- data.frame(w_vals = object$posterior$w,
mean_vals = object$posterior$mean,
sd_vals = object$posterior$sd)
g1 <- ggplot2::ggplot(tmp_data) +
ggplot2::geom_ribbon(ggplot2::aes(.data$w_vals,
y = .data$mean_vals,
ymin = .data$mean_vals - 1.96 * .data$sd_vals,
ymax = .data$mean_vals + 1.96 * .data$sd_vals),
fill = "blue", alpha = 0.25) +
ggplot2::geom_line(ggplot2::aes(.data$w_vals, .data$mean_vals),
color = "blue", size = 1) +
ggplot2::theme_bw() +
ggplot2::ggtitle("Estimated CERF (gp) with credible band (1.96sd)") +
ggplot2::xlab("Exposure level") +
ggplot2::ylab("Population average counterfactual outcome")
return(g1)
}
erf_tru_normal <- sapply(seq(0, 20, 0.1), function(w) tru_R(w, data_sim_normal))
erf_tru_t <- sapply(seq(0, 20, 0.1), function(w) tru_R(w, data_sim_t))
GPCERF will first convert the covariate values into a single composite score (GPS) and then use it to fit the Gaussian processes. We use the GPS estimation function in CausalGPS (see here) to get the GPS model that maps covariates into GPS.
gps_m_normal <- estimate_gps(cov_mt = data_sim_normal[, -(1:2)],
w_all = data_sim_normal$treat,
sl_lib = c("SL.xgboost"),
dnorm_log = FALSE)
gps_m_t <- estimate_gps(cov_mt = data_sim_t[, -(1:2)],
w_all = data_sim_t$treat,
sl_lib = c("SL.xgboost"),
dnorm_log = FALSE)
We then use estimate_cerf_gp
to estimate the ERF of the
exposure w
. We estimate the ERF at
w = seq(0,20,0.1)
. The estimated ERF as well as its
pointwise 95% credible band is visualized with a call to
plot
. We also plot the actual ERF on top of the estimated
ERF.
w_all <- seq(0, 20, 0.1)
gp_res_normal <- estimate_cerf_gp(data_sim_normal,
w_all,
gps_m_normal,
params = list(alpha = c(0.1),
beta = 0.2,
g_sigma = 1,
tune_app = "all"),
outcome_col = "Y",
treatment_col = "treat",
covariates_col = paste0("cf", seq(1,6)),
nthread = 1)
plot_fun(gp_res_normal) +
geom_line(data = data.frame(w = w_all, y = erf_tru_normal),
aes(x = w, y = y, color = "True"), size = 1.5)
We can see that the estimated curve follows the true ERF closely and the 95% credible band completely covers the true ERF.
gp_res_t <- estimate_cerf_gp(data_sim_t,
w_all,
gps_m_t,
params = list(alpha = c(0.1),
beta = 0.2,
g_sigma = 1,
tune_app = "all"),
outcome_col = "Y",
treatment_col = "treat",
covariates_col = paste0("cf", seq(1,6)),
nthread = 1)
plot_fun(gp_res_t) +
geom_line(data = data.frame(w = w_all, y = erf_tru_t),
aes(x = w, y = y, color = "True"), size = 1.5)
The results look very similar to the case where the exposure is normally distributed. The only difference might be that when the exposure is t-distributed, the estimated curve tends to be less smooth.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.