The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
GWASinlps performs Bayesian non-local prior based iterative variable selection for data from genome-Wide association studies (GWAS), or other high-dimensional data with continuous, binary or survival outcomes (see References below).
install.packages("GWASinlps")
# install.packages("devtools")
::install_github("nilotpalsanyal/GWASinlps") devtools
GWASinlps()
is the main function which accepts
continuous or binary data (such as phenotype data) and a matrix with the
independent variable values (SNP genotypes). The function also needs as
input values for scaling parameter of the selected non-local prior and
the tuning paramters. These should be fixed based on exploratory study
and/or subject-specific heuristics. For example, in GWAS analysis, as
the GWAS effect sizes are generally very small (typical effect size of a
SNP is around 0.05% of the total phenotypic variance for quantitative
traits), the scaling parameter can be chosen such that the non-local
prior allows at least 1% chance of a standardized effect size being 0.05
or less in absolute value. Such estimates of the scaling parameter for
the MOM and iMOM priors are 0.022 and 0.008, respectively.
Here is a simple illistration of the use the GWASinlps()
function for both continous and binary phenotypes.
library(GWASinlps)
#> Loading required package: mombf
#> Loading required package: mvtnorm
#> Loading required package: ncvreg
#> Loading required package: mgcv
#> Loading required package: nlme
#> This is mgcv 1.8-40. For overview type 'help("mgcv-package")'.
#>
#> Welcome to GWASinlps! Select well.
#>
#> Website: https://nilotpalsanyal.github.io/GWASinlps/
#> Bug report: https://github.com/nilotpalsanyal/GWASinlps/issues
# Generate design matrix (genotype matrix)
= 200 #number of subjects
n = 10000 #number of variables/SNPs
p = 10 #number of true variables/causal SNPs
m set.seed(1)
= runif( p, .1, .2 ) #simulate minor allele frequency
f = matrix(nrow = n, ncol = p)
x for(j in 1:p)
= rbinom(n, 2, f[j]) #simulate genotypes
x[,j] colnames(x) = 1:p
# Generate true effect sizes
= sample(1:p, m)
causal_snps = rep(0, p)
beta = rnorm(m, mean = 0, sd = 2 )
beta[causal_snps]
# Generate continuous (phenotype) data
= x %*% beta + rnorm(n, 0, 1)
y
# GWASinlps analysis
<- GWASinlps(y=y, x=x, family="normal", prior="mom", tau=0.2,
inlps k0=1, m=50, rxx=0.2)
#> =================================
#> Number of selected variables: 9
#> Time taken: 0.04 min
#> =================================
# LASSO analysis
library(glmnet)
#> Loading required package: Matrix
#> Loaded glmnet 4.1-4
= cv.glmnet( x, y, alpha = 1 )
fit.cvlasso = fit.cvlasso $lambda.min # lambda that gives minimum cvm
l.min .1se = fit.cvlasso $lambda.1se # largest lambda such that error is
l# within 1 se of the minimum
= which( as.vector( coef( fit.cvlasso, s = l.min ) )[-1] != 0 )
lasso_min = which( as.vector( coef( fit.cvlasso, s = l.1se ) )[-1] != 0 )
lasso_1se
# Compare results
library(kableExtra)
= matrix(nrow=3,ncol=3)
res 1,] = c(length(inlps$selected), length(intersect(inlps$selected, causal_snps)), length(setdiff(causal_snps, inlps$selected)) )
res[2,] = c(length(lasso_min), length(intersect(lasso_min, causal_snps)), length(setdiff(causal_snps, lasso_min)))
res[3,] = c(length(lasso_1se), length(intersect(lasso_1se, causal_snps)), length(setdiff(causal_snps, lasso_1se)))
res[colnames(res) = c("#Selected SNPs","#True positive","#False negative")
rownames(res) = c("GWASinlps", "LASSO min", "LASSO 1se")
::kable(res, format="html",
kableExtratable.attr= "style='width:60%;'",
caption=paste("<center>Variable selection from", p, " SNPs with", m, " causal SNPs for continuous phenotypes from", n, " subjects</center>"),
escape=FALSE) %>%
::kable_styling() kableExtra
#Selected SNPs | #True positive | #False negative | |
---|---|---|---|
GWASinlps | 9 | 8 | 2 |
LASSO min | 190 | 8 | 2 |
LASSO 1se | 44 | 8 | 2 |
library(GWASinlps)
library(fastglm)
#> Loading required package: bigmemory
# Generate design matrix (genotype matrix)
= 500 #number of subjects
n = 2000 #number of variables/SNPs
p = 10 #number of true variables/SNPs
m set.seed(1)
= runif( p, .1, .2 ) #simulate minor allele frequency
f = matrix(nrow = n, ncol = p)
x for(j in 1:p)
= rbinom(n, 2, f[j]) #simulate genotypes
x[,j] colnames(x) = 1:p
# Generate true effect sizes
= sample(1:p, m)
causal_snps = rep(0, p)
beta = rnorm(m, mean = 0, sd = 2 )
beta[causal_snps]
# Generate binary (phenotype) data
= exp(x %*% beta)/(1 + exp(x %*% beta))
prob = sapply(1:n, function(i)rbinom(1,1,prob[i]) )
y
# GWASinlps analysis
mode(x) = "double" #needed for fastglm() function below
= apply( x, 2, function(z) coef( fastglm(y=y,
mmle_xy x=cbind(1,matrix(z)), family = binomial(link = "logit")) )[2] )
#pre-compute MMLEs of betas as it takes time
<- GWASinlps(y=y, x=x, family="binomial", method="rigorous",
inlps_rigorous mmle_xy=mmle_xy, prior="mom", tau=0.2, k0=1, m=50, rxx=0.2)
#> =================================
#> Number of selected variables: 4
#> Time taken: 0.33 min
#> =================================
<- GWASinlps(y=y, x=x, family="binomial", method="quick",
inlps_quick mmle_xy=mmle_xy, prior="mom", tau=0.2, k0=1, m=50, rxx=0.2)
#> =================================
#> Number of selected variables: 8
#> Time taken: 0 min
#> =================================
# Lasso analysis
library(glmnet)
= cv.glmnet( x, y, family = "binomial", alpha = 1 )
fit.cvlasso = fit.cvlasso $lambda.min # lambda that gives minimum cvm
l.min .1se = fit.cvlasso $lambda.1se # largest lambda such that error is
l# within 1 se of the minimum
= which( as.vector( coef( fit.cvlasso, s = l.min ) )[-1] != 0 )
lasso_min = which( as.vector( coef( fit.cvlasso, s = l.1se ) )[-1] != 0 )
lasso_1se
# Compare results
library(kableExtra)
= matrix(nrow=4,ncol=3)
res 1,] = c(length(inlps_rigorous$selected), length(intersect(inlps_rigorous$selected, causal_snps)), length(setdiff(causal_snps, inlps_rigorous$selected)) )
res[2,] = c(length(inlps_quick$selected), length(intersect(inlps_quick$selected, causal_snps)), length(setdiff(causal_snps, inlps_quick$selected)) )
res[3,] = c(length(lasso_min), length(intersect(lasso_min, causal_snps)), length(setdiff(causal_snps, lasso_min)))
res[4,] = c(length(lasso_1se), length(intersect(lasso_1se, causal_snps)), length(setdiff(causal_snps, lasso_1se)))
res[colnames(res) = c("#Selected SNPs","#True positive","#False negative")
rownames(res) = c("GWASinlps rigorous", "GWASinlps quick", "LASSO min", "LASSO 1se")
::kable(res, format="html",
kableExtratable.attr= "style='width:60%;'",
caption=paste("<center>Variable selection from", p, " SNPs with", m, " causal SNPs for binary phenotypes from", n, " subjects</center>"),
escape=FALSE) %>%
::kable_styling() kableExtra
#Selected SNPs | #True positive | #False negative | |
---|---|---|---|
GWASinlps rigorous | 4 | 4 | 6 |
GWASinlps quick | 8 | 4 | 6 |
LASSO min | 20 | 5 | 5 |
LASSO 1se | 6 | 4 | 6 |
Nilotpal Sanyal, Min-Tzu Lo, Karolina Kauppi, Srdjan Djurovic, Ole A. Andreassen, Valen E. Johnson, and Chi-Hua Chen. “GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies.” Bioinformatics 35, no. 1 (2019): 1-11. https://doi.org/10.1093/bioinformatics/bty472
Nilotpal Sanyal. “Iterative variable selection for high-dimensional data with binary outcomes.” arXiv preprint arXiv:2211.03190 (2022). https://arxiv.org/abs/2304.11902
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.