The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The SIRS epidemiological metapopulation model is defined in Pineda-Krch (2008).
Load package
library(GillespieSSA)
Define parameters
<- 500 # Patch size
patchPopSize <- 20 # Number of patches
U <- "SIRS metapopulation model" # Simulation name
simName <- 50 # Final time
tf
<- c(
parms beta = 0.001, # Transmission rate
gamma = 0.1, # Recovery rate
rho = 0.005, # Loss of immunity rate
epsilon = 0.01, # Proportion inter-patch transmissions
N = patchPopSize # Patch population size (constant)
)
Create the named initial state vector for the U-patch system. The structure of x0
is as follows (assuming a patchsize of 500 individuals),
x0 <- c(
S1 = 499, I1 = 1,
S2 = 500, I2 = 0,
S3 = 500, I3 = 0,
...
S20 = 500, I20 = 0
)
<- c(patchPopSize - 1, 1, rep(c(patchPopSize, 0), U - 1))
x0 names(x0) <- unlist(lapply(seq_len(U), function(i) paste0(c("S", "I"), i)))
Define the state change matrix for a single patch
<- matrix(c(-1, -1, 0, +1, # S
nu +1, +1, -1, 0), # I
nrow=2,byrow=TRUE)
Define propensity functions
<- unlist(lapply(
a seq_len(U),
function(patch) {
<- patch
i <- if (patch == 1) U else patch - 1
j
c(
paste0("(1-epsilon)*beta*S", i, "*I", i), # Intra-patch infection
paste0("epsilon*beta*S", i, "*I", j), # Inter-patch infection
paste0("gamma*I", i), # Recovery from infection
paste0("rho*(N-S", i, "-I", i, ")") # Loss of immunity
)
} ))
Run simulations with the Direct method
set.seed(1)
<- ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.d(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, by = 5, show.title = TRUE, show.legend = FALSE)
Run simulations with the Explict tau-leap method
set.seed(1)
<- ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.etl(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, by = 5, show.title = TRUE, show.legend = FALSE)
Run simulations with the Binomial tau-leap method
set.seed(1)
<- ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.btl(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, by = 5, show.title = TRUE, show.legend = FALSE)
Run simulations with the Optimized tau-leap method
set.seed(1)
<- ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.otl(hor = rep(2, length(x0))),
simName = simName,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, by = 5, show.title = TRUE, show.legend = FALSE)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.