The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The SIRS epidemiological metapopulation model as defined by Pineda-Krch (2008).
Define parameters
library(GillespieSSA2)
<- "SIRS metapopulation model"
sim_name <- 500 # Patch size
patchPopSize <- 20 # Number of patches
U <- 50 # Final time
final_time
<- c(
params beta = 0.001, # Transmission rate
gamma = 0.1, # Recovery rate
rho = 0.005, # Loss of immunity rate
epsilon = 0.01, # Proportion inter-patch transmissions
N = patchPopSize # Patch population size (constant)
)
Create the named initial state vector for the U-patch system. The structure of initial_state
is as follows (assuming a patchsize of 500 individuals),
initial_state <- c(
S1 = 499, I1 = 1,
S2 = 500, I2 = 0,
S3 = 500, I3 = 0,
...
S20 = 500, I20 = 0
)
<- c(patchPopSize - 1, 1, rep(c(patchPopSize, 0), U - 1))
initial_state names(initial_state) <- unlist(lapply(seq_len(U), function(i) paste0(c("S", "I"), i)))
Define the state change matrix for a single patch
<- unlist(lapply(
reactions seq_len(U),
function(patch) {
<- patch
i <- if (patch == 1) U else patch - 1
j
<- paste0("S", i)
Si <- paste0("I", i)
Ii <- paste0("I", j)
Ij list(
reaction(
propensity = paste0("(1 - epsilon) * beta * ", Si, " * ", Ii),
effect = setNames(c(-1, +1), c(Si, Ii)),
name = paste0("intra_patch_infection_", i)
),reaction(
propensity = paste0("epsilon * beta * ", Si, " * ", Ij),
effect = setNames(c(-1, +1), c(Si, Ii)),
name = paste0("inter_patch_infection_", i)
), reaction(
propensity = paste0("gamma * ", Ii),
effect = setNames(-1, Ii),
name = paste0("recovery_from_infection_", i)
),reaction(
propensity = paste0("rho * (N - ", Si, " - ", Ii, ")"),
effect = setNames(+1, Si),
name = paste0("loss_of_immunity_", i)
)
)
}recursive = FALSE) ),
Run simulations with the Exact method
set.seed(1)
<- ssa(
out initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_exact(),
sim_name = sim_name
) plot_ssa(out)
Run simulations with the Explict tau-leap method
set.seed(1)
<- ssa(
out initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_etl(),
sim_name = sim_name
) plot_ssa(out)
Run simulations with the Binomial tau-leap method
set.seed(1)
<- ssa(
out initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_btl(),
sim_name = sim_name
) plot_ssa(out)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.