The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Understating statistical models is difficult. Experimentation on models should be a part of the learning process. This package provides functions that generate ideal data for generalized linear models. Model parameters, link functions, sample size, and more are adjustable. With data controlled, models can be experimented on.
library(GlmSimulatoR)
set.seed(1)
simdata <- simulate_gaussian(N = 200, weights = c(1, 2, 3))
model <- lm(Y ~ X1 + X2 + X3, data = simdata)
summary(model)$coefficients
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.9138043 0.7011699 4.155633 4.843103e-05
#> X1 0.9833586 0.2868396 3.428253 7.403616e-04
#> X2 1.7882468 0.2701817 6.618683 3.386406e-10
#> X3 3.2822020 0.2640478 12.430334 1.550439e-26
The estimates are close to the weights argument. The mathematics behind the linear model worked well.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.