The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This case is about adding to our previous example (Semi-distributed hydrological model) glaciers. Again, is a synthetic case where you will have to:
library(HBV.IANIGLA)
data("glacio_hydro_hbv")
str(glacio_hydro_hbv)
#> List of 5
#> $ baisn:'data.frame': 15 obs. of 7 variables:
#> ..$ elev_band : chr [1:15] "eb_1" "eb_2" "eb_3" "eb_4" ...
#> ..$ soil_area(km2) : num [1:15] 10 15 17 20 25 18 17 16 14 12 ...
#> ..$ ice_area(km2) : num [1:15] 0 0 0 0 0 0 0 0 0 0 ...
#> ..$ total_area(km2): num [1:15] 10 15 17 20 25 18 17 16 14 12 ...
#> ..$ rel_soil : num [1:15] 0.0526 0.0789 0.0894 0.1052 0.1314 ...
#> ..$ rel_ice : num [1:15] 0 0 0 0 0 0 0 0 0 0 ...
#> ..$ h(masl) : num [1:15] 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 ...
#> $ tair : num [1:5310, 1:15] 24.4 26.9 27 24.5 22.1 ...
#> $ prec : num [1:5310, 1:15] 0 0 0 0 0 0 0 0 0 0 ...
#> $ pet : num [1:5310, 1:15] 0 0.999 0.997 0.993 0.988 ...
#> $ qout : num [1:5310, 1:3] 0.0021 0.0091 0.0218 0.0438 0.0617 0.0711 0.0774 0.0809 0.0858 0.0936 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : NULL
#> .. ..$ : chr [1:3] "total" "soil" "glacier"
#> - attr(*, "comment")= chr "Semi-distributed glacio-hydrological HBV model input data"
To get more details about the dataset just type
?glacio_hydro_hbv
Note that in this case we have to add the parameters and the initial conditions arguments for the glacier surface mass balance function (SnowGlacier()) and for the glacier runoff routing (Glacier_Disch()).
?glacio_hydro_hbv
) and try to build your own
HBV glacio-hydrological model.## brief arguments description
# basin: data frame with the same structure of the data("glacio_hydro_hbv) (colnames included).
# tair: numeric matrix with air temperature inputs.
# precip: numeric matrix with precipitation inputs.
# pet: numeric matrix with potential eavapotranspiration inputs.
# param_snow: numeric vector with snow module parameters.
# param_ice: numeric vector with glacier parameters.
# param_soil: numeric vector with soil moisture parameters.
# param_route: numeric vector with the routing parameters.
# param_route_ice: numeric vector with the glacier routing parameters.
# param_tf: numeric vector with the transfer function parameter.
# init_snow: numeric value with initial snow water equivalent. Default value being 20 mm.
# init_ice: numeric value with initial snow water equivalent of the glaciers. Default value
# being 20 mm.
# init_soil: numeric value with initial soil moisture content. Default value being 0 mm.
# init_route: numeric vector with bucket water initial values. Default values are 0 mm.
# init_route_ice: numeric value with glacier bucket initial value. Default values are 0 mm.
## output
# simulated streamflow series.
<- function(basin,
glacio_hydrological_hbv
tair,
precip,
pet,
param_snow,
param_ice,
param_soil,
param_route,
param_route_ice,
param_tf,init_snow = 20,
init_ice = 20,
init_soil = 0,
init_route = c(0, 0, 0),
init_route_ice = 0
){<- nrow(basin)
n_it
# create output lists
<- list()
snow_module <- list()
ice_module <- list()
soil_module <- list()
route_module <- list()
route_ice_mod <- list()
tf_module
# snow and soil module in every elevation band
for(i in 1:n_it){
<-
snow_module[[ i ]] SnowGlacier_HBV(model = 1, inputData = cbind(tair[ , i], precip[ , i]),
initCond = c(init_snow, 2), param = param_snow)
<-
ice_module[[ i ]] SnowGlacier_HBV(model = 1, inputData = cbind(tair[ , i], precip[ , i]),
initCond = c(init_ice, 1, basin[i, 'rel_ice']), param = param_ice)
<-
soil_module[[ i ]] Soil_HBV(model = 1, inputData = cbind(snow_module[[i]][ , 5] , pet[ , i]),
initCond = c(init_soil, basin[i, 'rel_soil']), param = param_soil )
# end for
}
# get total soil discharge
<- lapply(X = 1:n_it, FUN = function(x){
soil_disch <- soil_module[[x]][ , 1]
out
})<- Reduce(f = `+`, x = soil_disch)
soil_disch
# get swe and total ice melt for all glacier area
<- lapply(X = 1:n_it, FUN = function(x){
ice_disch <- ice_module[[x]][ , 9]
out
})<- Reduce(f = `+`, x = ice_disch)
ice_disch
<- lapply(X = 1:n_it, FUN = function(x){
ice_swe <- ice_module[[x]][ , 3] * (basin[x, 'rel_ice'] / sum(basin[ , 'rel_ice']) )
out
})<- Reduce(f = `+`, x = ice_swe)
ice_swe
# route module
<- Routing_HBV(model = 1, lake = F, inputData = as.matrix(soil_disch),
route_module initCond = init_route, param = param_route )
<- Glacier_Disch(model = 1, inputData = cbind(ice_swe, ice_disch),
route_ice initCond = init_route_ice, param = param_route_ice )
# transfer function
<- round(
tf_soil UH(model = 1, Qg = route_module[ , 1], param = param_tf), 4 )
<- round(
tf_ice UH(model = 1, Qg = route_ice[ , 1], param = param_tf), 4 )
<- tf_soil + tf_ice
tf_out
return( cbind(total = tf_out, soil = tf_soil, glacier = tf_ice) )
# end fun }
Now, maybe is time to revisit the Semi-distributed hydrological model vignette (Calibrating the parameters section).
Your turn
I will give the correct parameters to all modules except for glacier related routines,
param_snow = c(1.1, 0, 0, 2.5)
param_soil = c(150, 0.90, 1.5)
param_route = c(0.09, 0.07, 0.05, 5, 2)
param_tf = c(3.00)
Hint: in the param_ice()
argument, I
will use the snow parameters except for the melt temperature and for the
ice-melt factor.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.