The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This code provides a method to fit the hidden compact representation model as well as to discover the causal direction on discrete data.
Please cite “Ruichu Cai, Jie Qiao, Kun Zhang, Zhenjie Zhang, Zhifeng Hao. Causal Discovery from Discrete Data using Hidden Compact Representation. NIPS 2018.” ## Installation
install.packages("HCR")
This package contains the data synthetic process for HCR model. Here are some examples to make a quick start:
# HCR data
library(data.table)
set.seed(1)
data=simuXY(sample_size=2000)
r1<-HCR(data$X,data$Y,score_type = "aic")
r2<-HCR(data$Y,data$X,score_type = "aic")
if(r1$score>r2$score){
print("X cause Y.")
}else{
print("Y cause X.")
}
unique(r1$data[,c("X","Yp")]) # The fitted hidden representation
unique(data.frame(data$X,data$Yp)) # The true hidden representation
# A fast implementation of HCR
r1<-HCR.fast(data$X,data$Y)
r2<-HCR.fast(data$Y,data$X)
if(r1$score>r2$score){
print("X cause Y.")
}else{
print("Y cause X.")
}
unique(r1$data[,c("X","Yp")]) # The fitted hidden representation
unique(data.frame(data$X,data$Yp)) # The true hidden representation
# ANM data
# Note that the complete generate of the ANM data can be found in http://webdav.tuebingen.mpg.de/causality/
set.seed(0)
X=sample(1:5,2000,replace = T)
N=sample(-1:1,2000,replace = T)
Y=X+N
r1=HCR(X,Y,score_type = "bic",is_anm = T)
r2=HCR(Y,X,score_type = "bic",is_anm = T)
if(r1$score>r2$score){
print("X cause Y.")
}else{
print("Y cause X.")
}
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.