The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

LCAvarsel: Variable Selection for Latent Class Analysis

Variable selection for latent class analysis for model-based clustering of multivariate categorical data. The package implements a general framework for selecting the subset of variables with relevant clustering information and discard those that are redundant and/or not informative. The variable selection method is based on the approach of Fop et al. (2017) <doi:10.1214/17-AOAS1061> and Dean and Raftery (2010) <doi:10.1007/s10463-009-0258-9>. Different algorithms are available to perform the selection: stepwise, swap-stepwise and evolutionary stochastic search. Concomitant covariates used to predict the class membership probabilities can also be included in the latent class analysis model. The selection procedure can be run in parallel on multiple cores machines.

Version: 1.1
Depends: R (≥ 3.4), poLCA (≥ 1.4.1)
Imports: nnet, MASS, foreach, parallel, doParallel, GA, memoise
Suggests: knitr (≥ 1.12), rmarkdown (≥ 1.2)
Published: 2018-01-04
DOI: 10.32614/CRAN.package.LCAvarsel
Author: Michael Fop [aut, cre], Thomas Brendan Murphy [ctb]
Maintainer: Michael Fop <michael.fop at ucd.ie>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://michaelfop.github.io/
NeedsCompilation: no
Citation: LCAvarsel citation info
Materials: NEWS
In views: Cluster, Psychometrics
CRAN checks: LCAvarsel results

Documentation:

Reference manual: LCAvarsel.pdf

Downloads:

Package source: LCAvarsel_1.1.tar.gz
Windows binaries: r-devel: LCAvarsel_1.1.zip, r-release: LCAvarsel_1.1.zip, r-oldrel: LCAvarsel_1.1.zip
macOS binaries: r-release (arm64): LCAvarsel_1.1.tgz, r-oldrel (arm64): LCAvarsel_1.1.tgz, r-release (x86_64): LCAvarsel_1.1.tgz, r-oldrel (x86_64): LCAvarsel_1.1.tgz
Old sources: LCAvarsel archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=LCAvarsel to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.