# Package 'LEdecomp'

November 11, 2025

```
Title Decompose Life Expectancy by Age (and Cause)
Version 1.0.4
Date 2025-11-06
Description A set of all-cause and cause-specific life expectancy sensitivity and decomposition meth-
     ods, including Arriaga (1984) <doi:10.2307/2061029>, others documented by Ponna-
     palli (2005) <doi:10.4054/DemRes.2005.12.7>, lifetable, numerical, and other algorithmic ap-
     proaches such as Horiuchi et al (2008) <doi:10.1353/dem.0.0033>, or An-
     dreev et al (2002) <doi:10.4054/DemRes.2002.7.14>.
License GPL-3
LazyLoad yes
LazyData true
RoxygenNote 7.3.2
Imports numDeriv, Rdpack, DemoDecomp, data.table, ggplot2
Depends R (>= 4.3)
RdMacros Rdpack
BugReports https://github.com/timriffe/LEdecomp/issues
Encoding UTF-8
URL https://github.com/timriffe/LEdecomp
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Tim Riffe [aut, cre] (0000-0002-2673-4622),
     David Atance [aut] (0000-0001-5860-0584),
     Josep Lledo [aut] (0000-0002-7475-8549)
Maintainer Tim Riffe <tim.riffe@gmail.com>
Repository CRAN
Date/Publication 2025-11-11 10:10:02 UTC
```

Type Package

2 Contents

# **Contents**

Index

| abridge_mx                            | 3  |
|---------------------------------------|----|
| ald_to_Lx                             | 3  |
| arriaga                               | 4  |
| arriaga_sym                           | 6  |
| available_methods                     |    |
| chandrasekaran_II                     | 8  |
| chandrasekaran_III                    | 9  |
| LEdecomp                              |    |
| IL_to_ex                              | 16 |
| lopez_ruzicka                         | 17 |
| lopez_ruzicka_sym                     | 18 |
| lx_to_dx                              | 20 |
| mx_to_ax                              | 20 |
| mx_to_e0                              | 21 |
| mx_to_ex                              | 22 |
| mx_to_qx                              | 22 |
| plot.LEdecomp                         | 23 |
| qx_to_lx                              | 25 |
| rcumsum                               | 26 |
| sen_arriaga                           | 26 |
| sen_arriaga_instantaneous             | 28 |
| sen_arriaga_instantaneous2            | 29 |
| sen_arriaga_sym                       | 31 |
| sen_arriaga_sym_instantaneous         | 32 |
| sen_arriaga_sym_instantaneous2        |    |
| sen_chandrasekaran_II                 | 35 |
| sen_chandrasekaran_III                | 36 |
| sen_chandrasekaran_III_instantaneous  | 38 |
| sen_chandrasekaran_III_instantaneous2 | 39 |
| sen_chandrasekaran_II_instantaneous   | 40 |
| sen_chandrasekaran_II_instantaneous2  | 42 |
| sen_e0_mx_lt                          | 43 |
| sen_lopez_ruzicka                     | 44 |
| sen_lopez_ruzicka_instantaneous       | 46 |
| sen_lopez_ruzicka_instantaneous2      |    |
| sen_lopez_ruzicka_sym                 |    |
| sen_lopez_ruzicka_sym_instantaneous   | 50 |
| sen_lopez_ruzicka_sym_instantaneous2  | 52 |
| sen_min                               | 53 |
| sen_num                               | 55 |
| sen_resid                             | 56 |
| US_data                               | 57 |
| US_data_CoD                           | 58 |
|                                       |    |

**60** 

abridge\_mx 3

| abridge_mx | Abridge a single-year mx schedule to 0,1,5, using lifetable quantities |
|------------|------------------------------------------------------------------------|
|            |                                                                        |

# Description

Abridge a single-year mx schedule to 0,1,5,... using lifetable quantities

# Usage

```
abridge_mx(mx, age, sex = "t", closeout = TRUE)
```

# **Arguments**

| mx       | numeric vector of single-year mortality rates (ages 0,1,2,) |
|----------|-------------------------------------------------------------|
| age      | numeric vector of the same length as mx, usually 0:(n-1)    |
| sex      | character, passed to mx_to_ax(), default "t"                |
| closeout | logical, passed to lifetable helpers, default TRUE          |

#### Value

numeric vector of abridged mx at ages c(0, 1, 5, 10, ...)

| ald_to_Lx | Calculate the lifetable exposure |  |
|-----------|----------------------------------|--|
|           |                                  |  |

# Description

Lx is defined as the integration of 1x in the interval [x,x+n), where n is the width of the interval. There are many approximations for this. Here we use HMD Method Protocol equation 78. You can think of Lx as lifetable exposure, or person-years lived in each age interval.

# Usage

```
ald_to_Lx(ax, lx, dx, nx)
```

# Arguments

| ax | numeric vector of ax, average time spent in the age interval by those that die in the interval |
|----|------------------------------------------------------------------------------------------------|
| 1x | numeric vector of lx, lifetable survivorship at exact ages.                                    |
| dx | numeric vector of dx, the lifetable deaths distribution.                                       |
| nx | age interval width, assumes 1 by default                                                       |

4 arriaga

### Value

numeric vector of Lx values

#### References

Wilmoth JR, Andreev K, Jdanov D, Glei DART, Boe C, Bubenheim M, Philipov D, Shkolnikov V, Vachon P, Winant C, M B (2021). "Methods protocol for the human mortality database. Version 6." *University of California, Berkeley, and Max Planck Institute for Demographic Research, Rostock. URL: http://mortality.org [version 26/01/2021].* 

arriaga

classic Arriaga decomposition

# Description

Following the notation given in Preston et al (2000), Arriaga's decomposition method can written as:

$${}_{n}\Delta_{x} = \frac{l_{x}^{1}}{l_{0}^{1}} \cdot \left(\frac{{}_{n}L_{x}^{2}}{l_{x}^{2}} - \frac{{}_{n}L_{x}^{1}}{l_{x}^{1}}\right) + \frac{T_{x+n}^{2}}{l_{0}^{1}} \cdot \left(\frac{l_{x}^{1}}{l_{x}^{2}} - \frac{l_{x+n}^{1}}{l_{x+n}^{2}}\right)$$

# Usage

```
arriaga(
    mx1,
    mx2,
    age = 0:(length(mx1) - 1),
    nx = rep(1, length(mx1)),
    sex1 = "t",
    sex2 = sex1,
    closeout = TRUE
)
```

# **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                                     |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                                       |
| nx       | integer vector of age intervals, default 1.                                                                                                      |
| sex1     | character either the sex for population 1: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ")                                                  |
| sex2     | character either the sex for population 2: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                                      |

arriaga 5

#### **Details**

A little-known property of this decomposition method is that it is directional, in the sense that we are comparing a movement of mx1 to mx2, and this is not exactly symmetrical with a comparison of mx2 with mx1. Note also, if decomposing in reverse from the usual, you may need a slight adjustment to the closeout value in order to match sums properly (see examples for a demonstration).

setting closeout to TRUE will result in value of 1/mx for the final age group, of ax and a value of 1 for the closeout of qx.

### Value

cc numeric vector with one element per age group, and which sums to the total difference in life expectancy between population 1 and 2.

#### References

Arriaga EE (1984). "Measuring and explaining the change in life expectancies." *Demography*, **21**, 83–96. Preston S, Heuveline P, Guillot M (2000). *Demography: measuring and modeling population processes*. Wiley-Blackwell.

```
a <- .001
b <- .07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
cc \leftarrow arriaga(mx1, mx2, age = x)
e01 <- mx_to_e0(mx1, age = x)
e02 <- mx_to_e0(mx2, age = x)
(delta <- e02 - e01)
sum(cc)
 plot(x, cc)
# asymmetrical with a decomposition in the opposite direction
cc2 \leftarrow -arriaga(mx1 = mx2, mx2 = mx1, age = x)
plot(x, cc)
lines(x,cc2)
# also we lose some precision?
sum(cc);sum(cc2)
# found it!
delta-sum(cc2); cc2[length(cc2)] / 2
# But this is no problem if closeout = FALSE
-arriaga(mx1 = mx2, mx2 = mx1, age = x,closeout=FALSE) |> sum()
arriaga(mx1 = mx1, mx2 = mx2, age = x,closeout=FALSE) |> sum()
```

6 arriaga\_sym

| arriaga_sym | Estimate sensitivity of life expectancy using a symmetrical Arriaga approach. |
|-------------|-------------------------------------------------------------------------------|
|             |                                                                               |

# **Description**

This approach conducts a classic Arriaga decomposition in both directions, averaging the (sign-adjusted) result, i.e.  $a_{avg} = (arriaga(mx1, mx2, ...) - arriaga(mx2, mx1, ...)) / 2. #@note$  The final age group's contribution from the reversed decomposition is halved before averaging. This empirical adjustment ensures symmetry and numeric stability, though the theoretical basis requires further exploration.

# Usage

```
arriaga_sym(
   mx1,
   mx2,
   age = 0:(length(mx1) - 1),
   nx = rep(1, length(mx1)),
   sex1 = "t",
   sex2 = sex1,
   closeout = TRUE
)
```

# **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                         |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                           |
| nx       | integer vector of age intervals, default 1.                                                                                          |
| sex1     | character either the sex for population 1: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ")                                      |
| sex2     | character either the sex for population 2: Male ("m"), Female ("f"), or Total ("t") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                          |

### Value

numeric vector of contributions summing to the gap in life expectancy implied by mx1 and mx2.

# See Also

```
arriaga
```

available\_methods 7

### **Examples**

```
a <- .001
b <- .07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
d <- arriaga_sym(mx1, mx2, age = x)

e01 <- mx_to_e0(mx1,age=x)
e02 <- mx_to_e0(mx2,age=x)
(Delta <- e02 - e01)
sum(d)

d12 <- arriaga(mx1, mx2, age = x)
d21 <- arriaga(mx2, mx1, age = x) # direction opposite

plot(x, d, type= 'l')
  lines(x, d12, col = "red")
  lines(x, -d21, col = "blue")</pre>
```

available\_methods

List available decomposition methods

# Description

Returns a table of all implemented methods, their function name, and category.

### Usage

```
available_methods(category = NULL)
```

# **Arguments**

```
category character. one of "direct", "direct_sen", "opt_ok", or "general"
```

### Value

A data frame of available decomposition methods.

```
available_methods()
```

8 chandrasekaran\_II

chandrasekaran\_II

II approach of Chandrasekaran decomposition approach

### **Description**

Following the notation given in Ponnapalli (2005), and the decomposition method can written as:

$${}_{n}\Delta_{x} = \frac{(e_{x}^{2} - e_{x}^{1})(l_{x}^{2} + l_{x}^{1})}{2} - \frac{(e_{x+n}^{2} - e_{x+n}^{1})(l_{x+n}^{2} + l_{x+n}^{1})}{2} - \frac{{}_{n}L_{x}^{1}}{l_{x}^{1}} + \frac{T_{x+n}^{2}}{l_{0}^{1}} \left(\frac{l_{x}^{1}}{l_{x}^{2}} - \frac{l_{x+n}^{1}}{l_{x+n}^{2}}\right)$$

where  ${}_{n}\Delta_{x}$  is the contribution of rate differences in age x to the difference in life expectancy implied by mx1 and mx2. This formula can be averaged between 'effect interaction deferred' and 'effect interaction forwarded' from the Ponnapalli (2005).

# Usage

```
chandrasekaran_II(
    mx1,
    mx2,
    age = (1:length(mx1)) - 1,
    nx = rep(1, length(mx1)),
    sex1 = "t",
    sex2 = sex1,
    closeout = TRUE
)
```

#### **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                                     |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                                       |
| nx       | integer vector of age intervals, default 1.                                                                                                      |
| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                              |
| sex2     | character either the sex for population 2: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                                      |

### **Details**

setting closeout to TRUE will result in value of 1/mx for the final age group, of ax and a value of 1 for the closeout of qx. This function gives numerically identical results to arriaga\_sym(), lopez\_ruzicka\_sym(), and chandrasekaran\_III().

chandrasekaran\_III 9

#### Value

cc numeric vector with one element per age group, and which sums to the total difference in life expectancy between population 1 and 2.

#### References

Arriaga EE (1984). "Measuring and explaining the change in life expectancies." *Demography*, **21**, 83–96. Preston S, Heuveline P, Guillot M (2000). *Demography: measuring and modeling population processes*. Wiley-Blackwell. Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172.

### **Examples**

```
a <- .001
b <- .07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
cc <- chandrasekaran_II(mx1, mx2, age = x)
e01 <- mx_to_e0(mx1, age = x)
e02 <- mx_to_e0(mx2, age = x)
(delta <- e02 - e01)
sum(cc)</pre>
```

chandrasekaran\_III

Chandrasekaran III decomposition

# **Description**

Implements the Chandrasekaran III decomposition as described in Ponnapalli (2005), which combines multiple directional effects into a symmetric average. The method constructs a decomposition of the difference in life expectancy into four parts: the main effect, the operative effect, their average (exclusive effect), and a non-linear interaction term. These are calculated based on life table values. Let  $e_x^i$  denote remaining life expectancy at age x for population i, and  $l_x^i$  the number of survivors to age x. Then:

• Main effect:

$$\frac{l_x^1}{l_x^2} \left[ l_x^2 (e_x^2 - e_x^1) - l_{x+n}^2 (e_{x+n}^2 - e_{x+n}^1) \right]$$

• Operative effect:

$$\frac{l_x^2}{l_x^1} \left[ l_x^1 (e_x^2 - e_x^1) - l_{x+n}^1 (e_{x+n}^2 - e_{x+n}^1) \right]$$

10 chandrasekaran\_III

• Exclusive effect:

$$\frac{\text{Main effect} + \text{Operative effect}}{2}$$

• Interaction effect:

$$(e_{x+n}^2 - e_{x+n}^1) \cdot \frac{1}{2} \left[ \frac{l_x^1 \cdot l_{x+n}^2}{l_x^2} + \frac{l_x^2 \cdot l_{x+n}^1}{l_x^1} - (l_{x+n}^1 + l_{x+n}^2) \right]$$

The final contribution by age group is the sum of exclusive and interaction effects.

### Usage

```
chandrasekaran_III(
  mx1,
  mx2,
  age = (1:length(mx1)) - 1,
  nx = rep(1, length(mx1)),
  sex1 = "t",
  sex2 = sex1,
  closeout = TRUE
)
```

### **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                         |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                           |
| nx       | integer vector of age intervals, default 1.                                                                                          |
| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                  |
| sex2     | character either the sex for population 2: Male ("m"), Female ("f"), or Total ("t") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                          |

# **Details**

This decomposition gives numerically identical results to arriaga\_sym(), lopez\_ruzicka\_sym(), and chandrasekaran\_II(), despite conceptual differences in their derivation. Included here for methodological completeness.

### Value

Numeric vector of contributions by age group that sum to the total difference in life expectancy between the two mortality schedules.

### References

Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172.

#### See Also

```
chandrasekaran_II, arriaga_sym, lopez_ruzicka_sym
```

# **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
cc <- chandrasekaran_III(mx1, mx2, age = x)
e01 <- mx_to_e0(mx1, age = x)
e02 <- mx_to_e0(mx2, age = x)
(delta <- e02 - e01)
sum(cc)
plot(x, cc, type = "1")</pre>
```

LEdecomp

Function for applying different Life-Expectancy decomposition and sensitivity methods

### **Description**

A variety of exact or asymptotically exact life expectancy decomposition methods are implemented. Also, several life-expectancy decomposition sensitivity methods are implemented to answer how each age will change with an increase/decrease in life expectancy. See the package README and references for details.

### Usage

```
LEdecomp(
  mx1,
  mx2,
  age = NULL,
  nx = NULL,
  n_causes = NULL,
  cause_names = NULL,
  sex1 = "t",
  sex2 = sex1,
  method = c("lifetable", "arriaga", "arriaga_sym", "sen_arriaga", "sen_arriaga_sym",
```

```
"sen_arriaga_inst", "sen_arriaga_inst2", "sen_arriaga_sym_inst",
    "sen_arriaga_sym_inst2", "chandrasekaran_ii", "sen_chandrasekaran_ii",
   "sen_chandrasekaran_ii_inst", "sen_chandrasekaran_ii_inst2", "chandrasekaran_iii",
    "sen_chandrasekaran_iii", "sen_chandrasekaran_iii_inst",
    "sen_chandrasekaran_iii_inst2", "lopez_ruzicka", "lopez_ruzicka_sym",
    "sen_lopez_ruzicka", "sen_lopez_ruzicka_sym", "sen_lopez_ruzicka_inst",
    "sen_lopez_ruzicka_inst2",
     "horiuchi", "stepwise", "numerical"),
  closeout = TRUE,
 opt = TRUE,
  tol = 1e-10,
 Num_Intervals = 20,
  symmetrical = TRUE,
 direction = "both",
 perturb = 1e-06,
)
```

### **Arguments**

| mx1           | numeric. Age-structured mortality rates for population 1 (vector, matrix, or data.frame). See Details section for more info.                             |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| mx2           | numeric. Age-structured mortality rates for population 2 (same shape as mx1).                                                                            |
| age           | integer. Lower bound of each age group. If NULL, it will be inferred from data (see Details).                                                            |
| nx            | integer vector of age intervals (defaults to 1 when missing).                                                                                            |
| n_causes      | integer or NULL. If provided with stacked vectors, forces the number of causes (columns).                                                                |
| cause_names   | optional character vector of length n_causes giving labels for causes. Alternatively detected from colnames(mx1) in case given as a matrix or data.frame |
| sex1          | character. "m", "f", or "t", affects a0 treatment.                                                                                                       |
| sex2          | character. "m", "f", or "t", affects a0 treatment.                                                                                                       |
| method        | character. One of the methods in method_registry\$method.                                                                                                |
| closeout      | logical. Close out at top age (TRUE) or assume closed final age group (FALSE).                                                                           |
| opt           | logical. For lifetable, numerical, and instantaneous sensitivity-based methods, optimize rate averaging to eliminate the decomposition residual?         |
| tol           | numeric. Tolerance for rate-averaging optimization.                                                                                                      |
| Num_Intervals | integer. For methods that discretize an integral (e.g., Horiuchi).                                                                                       |
| symmetrical   | logical. For stepwise replacement only: average 1 to 2 and 2 to 1?                                                                                       |
| direction     | character. For stepwise replacement: "up", "down", or "both".                                                                                            |
| perturb       | numeric. Small perturbation for numerical derivatives.                                                                                                   |
| • • •         | optional arguments passed to numDeriv::grad() or other internals                                                                                         |
|               | #' @details Input dimensions are flexible to accommodate different coding styles                                                                         |
|               |                                                                                                                                                          |

and data layouts:

Accepted forms of mx1 and mx2:

Vector: A single all-cause mortality schedule, one value per age. In this case age must be the same length, or can be omitted and will default to 0: (length(mx1)-1), unless we detect you might be using abridged age groups.

- Matrix: Rows represent ages, columns represent causes of death. Row names, if any, and if numeric, are interpreted as ages and override the supplied age argument or our inferences. Column names are retained in the output for clarity.
- **Data frame (wide):** Same layout as a matrix, with an optional column named age.
- Stacked vector: A long, concatenated vector representing causes stacked on top of each other (i.e., all ages for cause 1, then all ages for cause 2, and so on). If you don't specify age, we try to detect age and the number of causes. But please specify age- it could be stacked also, or not! For example, when used inside a tidy pipeline you might write mutate(LEdecomp(mx1, mx2, age)) where age is repeated for each cause, i.e. the code might look the same as if you were dealing with all-cause data. But in that case be careful data are ordered consistently.

### Age detection and inference:

- If age is supplied explicitly, it is used as given.
- If missing, LEdecomp() attempts to infer it from (in order): row names, names of the input vector, a column named "age" in a data frame, or heuristics for single-year (0:100) or abridged (0,1,5,10,...) schedules.
- If age is repeated (e.g., c(0:100, 0:100, 0:100)), the function assumes a stacked structure and collapses age to its unique sorted values. The number of repetitions becomes n\_causes.

### **Return shape:**

The output mirrors the input form:

- If the inputs were vectors, outputs are vectors.
- If inputs were matrices or data frames (wide), outputs are matrices.
- If inputs were stacked vectors, outputs are stacked vectors in the same order.

#### Value

An object of class "LEdecomp":

- mx1, mx2, age, sex1, sex2, method, closeout, opt, tol, Num\_Intervals, symmetrical, direction, perturb
- sens: vector/matrix of sensitivities (same dimensions as inputs)
- LE1, LE2: life expectancy for mx1 and mx2
- LEdecomp: vector/matrix of contributions (same shape as inputs)

### References

Arriaga EE (1984). "Measuring and explaining the change in life expectancies." *Demography*, **21**, 83–96. Chandrasekaran C (1986). "Assessing the effect of mortality change in an age group

on the expectation of life at birth." *Janasamkhya*, **4**(1), 1–9. Preston S, Heuveline P, Guillot M (2000). *Demography: measuring and modeling population processes*. Wiley-Blackwell. Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172. Horiuchi S, Wilmoth JR, Pletcher SD (2008). "A decomposition method based on a model of continuous change." *Demography*, **45**(4), 785–801. Andreev EM, Shkolnikov VM, Begun AZ (2002). "Algorithm for decomposition of differences between aggregate demographic measures and its application to life expectancies, healthy life expectancies, parity-progression ratios and total fertility rates." *Demographic research*, **7**, 499–522.

#### See Also

```
sen_e0_mx_lt(), arriaga(), arriaga_sym(), sen_arriaga(), sen_arriaga_sym()
```

```
## Simple reproducible setup
set.seed(123)
a <- 0.001
b <- 0.07
## 1) Vector (single cause), single-year ages
age <- 0:50
mx1 <- a * exp(age * b)
mx2 < - (a / 2) * exp(age * b)
res_vec <- LEdecomp(</pre>
  mx1 = mx1, mx2 = mx2,
  age = age, nx = rep(1, length(age)),
  sex1 = "t", method = "sen_arriaga", opt = TRUE
round(sum(res_vec$LEdecomp), 4)
## 2) Matrix (multiple causes): rows = age, cols = causes
      Build 3 causes with random positive weights per age
k <- 3
w1 \leftarrow matrix(runif(length(age) * k, 0.9, 1.1), nrow = length(age)); w1 \leftarrow w1 / rowSums(w1)
w2 \leftarrow matrix(runif(length(age) * k, 0.9, 1.1), nrow = length(age)); w2 \leftarrow w2 / rowSums(w2)
mx1_mat <- (mx1) * w1
mx2_mat <- (mx2) * w2
colnames(mx1_mat) <- colnames(mx2_mat) <- paste0("c", 1:k)</pre>
rownames(mx1_mat) <- rownames(mx2_mat) <- as.character(age)</pre>
res_mat <- LEdecomp(</pre>
  mx1 = mx1_mat, mx2 = mx2_mat,
  age = age, nx = rep(1, length(age)),
  sex1 = "t", method = "sen_arriaga", opt = TRUE
## Check: row-summed cause contributions equal all-cause result
res_all <- LEdecomp(</pre>
  mx1 = mx1, mx2 = mx2,
  age = age, nx = rep(1, length(age)),
```

```
sex1 = "t", method = "sen_arriaga", opt = TRUE
all.equal(rowSums(res_mat$LEdecomp), res_all$LEdecomp, tolerance = 1e-7)
## 3) Data frame (wide): same as matrix but with an 'age' column
df1 <- data.frame(age = age, mx1_mat, check.names = FALSE)</pre>
df2 <- data.frame(age = age, mx2_mat, check.names = FALSE)</pre>
res_df <- LEdecomp(</pre>
 mx1 = df1, mx2 = df2,
  age = NULL, nx = rep(1, length(age)),
  sex1 = "t", method = "sen_arriaga", opt = TRUE
all.equal(res_df$LEdecomp, res_mat$LEdecomp, tolerance = 1e-8)
## 4) Stacked vector (long/concatenated): all ages for cause 1, then cause 2, etc.
    If 'age' is repeated per cause, LEdecomp infers n_causes and collapses age.
mx1_stack <- as.vector(mx1_mat) # column-major flattening</pre>
mx2_stack <- as.vector(mx2_mat)</pre>
age_rep <- rep(age, k)</pre>
                                  # typical tidy pipeline: age repeated per cause
res_stack <- LEdecomp(</pre>
 mx1 = mx1_stack, mx2 = mx2_stack,
  age = age_rep, nx = NULL,
  sex1 = "t", method = "sen_arriaga", opt = TRUE
## Output is a stacked vector matching the matrix baseline when flattened
all.equal(res_stack$LEdecomp, c(res_mat$LEdecomp), tolerance = 1e-8)
## 5) Abridged ages (0,1,5,10,...,110): inference when labels are missing
age_ab \leftarrow c(0L, 1L, seq.int(5L, 110L, by = 5L))
nx_ab <- c(diff(age_ab), tail(diff(age_ab), 1L))</pre>
mx1_ab \leftarrow a * exp(age_ab * b)
mx2_ab <- (a / 2) * exp(age_ab * b)
## Explicit abridged example
res_ab_explicit <- LEdecomp(</pre>
  mx1 = mx1_ab, mx2 = mx2_ab,
 age = age_ab, nx = nx_ab,
  sex1 = "t", method = "sen_arriaga", opt = TRUE
## Unlabeled abridged vector of the same length: age and nx inferred
res_ab_infer <- LEdecomp(</pre>
 mx1 = mx1_ab, mx2 = mx2_ab,
  age = NULL, nx = NULL,
  sex1 = "t", method = "sen_arriaga", opt = TRUE
all.equal(res_ab_infer$age, as.numeric(age_ab))
all.equal(res_ab_infer$LEdecomp, res_ab_explicit$LEdecomp, tolerance = 1e-8)
## 6) Rownames override age when they look like ages
     Here we give the wrong 'age' but set rownames to "0","1",...,"50".
wrong_age <- age + 10
```

```
mx1_rn <- mx1_mat; mx2_rn <- mx2_mat
rownames(mx1_rn) <- rownames(mx2_rn) <- as.character(age)
res_rn <- suppressWarnings(LEdecomp(
    mx1 = mx1_rn, mx2 = mx2_rn,
    age = wrong_age, nx = rep(1, length(age)),
    sex1 = "t", method = "sen_arriaga", opt = TRUE
))
all.equal(res_rn$age, as.numeric(age))
## 7) List available methods
available_methods()</pre>
```

1L\_to\_ex

calculate remaining life expectancy ex for each age

### **Description**

Here we combine HMD Method Protocol equations 79 and 80. We calculate all the remaining years left to live at each age, then condition this on survival to each age.

### Usage

```
lL_to_ex(lx, Lx)
```

### **Arguments**

1x numeric vector of lifetable survivors at exact age x

Lx numeric vector of lifetable exposure Lx

# Value

numeric vector of remaining life expectancy ex

### References

Wilmoth JR, Andreev K, Jdanov D, Glei DART, Boe C, Bubenheim M, Philipov D, Shkolnikov V, Vachon P, Winant C, M B (2021). "Methods protocol for the human mortality database. Version 6." *University of California, Berkeley, and Max Planck Institute for Demographic Research, Rostock. URL: http://mortality.org [version 26/01/2021].* 

lopez\_ruzicka 17

lopez\_ruzicka

Lopez-Ruzicka decomposition

# Description

Implements the decomposition of life expectancy proposed by Lopez and Ruzicka, as described in Ponnapalli (2005). This method expresses the difference in life expectancy between two mortality schedules in terms of an exclusive effect and an interaction effect, using life table quantities.

Let  $e_x^i$  denote remaining life expectancy at age x for population i, and  $l_x^i$  the number of survivors to age x. Then:

• Exclusive effect:

$$\frac{l_{x}^{1}}{l_{x}^{2}}\left[l_{x}^{2}(e_{x}^{2}-e_{x}^{1})-l_{x+n}^{2}(e_{x+n}^{2}-e_{x+n}^{1})\right]$$

• Interaction effect:

$$(e_{x+n}^2 - e_{x+n}^1) \cdot \left[ \frac{l_x^1 \cdot l_{x+n}^2}{l_x^2} - l_{x+n}^1 \right]$$

The total contribution to life expectancy difference in age group x is the sum of the exclusive and interaction effects.

### Usage

```
lopez_ruzicka(
    mx1,
    mx2,
    age = (1:length(mx1)) - 1,
    nx = rep(1, length(mx1)),
    sex1 = "t",
    sex2 = sex1,
    closeout = TRUE
)
```

# Arguments

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                           |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                           |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                             |
| nx       | integer vector of age intervals, default 1.                                                                                            |
| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                    |
| sex2     | character either the sex for population 2: Male ("m"), Female ("f"), or Total ("t") assumed same as $sex1$ unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                            |

18 lopez\_ruzicka\_sym

# **Details**

This method produces **numerically identical results** to arriaga().

#### Value

Numeric vector of contributions by age group that sum to the total difference in life expectancy between the two mortality schedules.

### References

Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172.

#### See Also

```
arriaga, chandrasekaran_III, lopez_ruzicka_sym
```

### **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
cc <- lopez_ruzicka(mx1, mx2, age = x)
sum(cc)</pre>
```

lopez\_ruzicka\_sym

Symmetric Lopez-Ruzicka decomposition

### **Description**

Implements a symmetric version of the Lopez-Ruzicka decomposition by averaging the results from the forward and reverse directions. That is, lopez\_ruzicka\_sym(mx1, mx2) returns

```
\frac{1}{2}\left(\mathsf{lopez\_ruzicka}(mx1, mx2) - \mathsf{lopez\_ruzicka}(mx2, mx1)\right)
```

This symmetric adjustment ensures that the decomposition is directionally neutral.

### Usage

```
lopez_ruzicka_sym(
    mx1,
    mx2,
    age = (1:length(mx1)) - 1,
    nx = rep(1, length(mx1)),
    sex1 = "t",
```

lopez\_ruzicka\_sym 19

```
sex2 = sex1,
closeout = TRUE
)
```

### **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                         |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                           |
| nx       | integer vector of age intervals, default 1.                                                                                          |
| sex1     | character either the sex for population 1: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ")                                      |
| sex2     | character either the sex for population 2: Male ("m"), Female ("f"), or Total ("t") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                          |

### **Details**

This symmetric version gives **numerically identical results** to arriaga\_sym(), chandrasekaran\_II(), and chandrasekaran\_III().

### Value

Numeric vector of contributions by age group that sum to the total difference in life expectancy between the two mortality schedules.

#### References

Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172.

### See Also

lopez\_ruzicka, arriaga\_sym, chandrasekaran\_II, chandrasekaran\_III

```
a <- 0.001
b <- 0.07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
d <- lopez_ruzicka_sym(mx1, mx2, age = x)
# compare to arriaga_sym()
d2 <- arriaga_sym(mx1, mx2, age = x)
all.equal(d, d2)</pre>
```

20 mx\_to\_ax

lx\_to\_dx

Calculate the lifetable death distribution

# **Description**

Minus the decumulation of the survival curve gives the death distribution. Or the element-wise product of 1x and the conditional death probabilities qx gives the same thing.

# Usage

```
lx_to_dx(lx)
```

# **Arguments**

1x

numeric vector of lifetable survivors at exact age x

#### Value

numeric vector of dx values

mx\_to\_ax

produce single-age ax values

### **Description**

We assume mid-interval ax except for age 0 and potentially the open age group. ax is defined as the average years lived in each age interval by those that die within the interval, and it is used to increase the precision of lifetable estimates. We allow ourselves the midpoint rule for single ages because it has little leverage. If we were working with abridged ages then we would need to use a more sophisticated method.

# Usage

```
mx_to_ax(
   mx,
   nx = rep(1, length(mx)),
   age = 0:(length(mx) - 1),
   sex = "t",
   closeout = TRUE
)
```

mx\_to\_e0 21

# **Arguments**

| mx       | numeric vector of the mortality rates (central death rates)                                |
|----------|--------------------------------------------------------------------------------------------|
| nx       | age interval width, assumes 1 by default                                                   |
| age      | integer vector of the lower bound of each age group (currently only single ages supported) |
| sex      | character: Male ("m"), Female ("f"), or Total ("t")                                        |
| closeout | logical. Default TRUE.                                                                     |

### **Details**

For the case of Total sex, we estimate the male and female a(0) using the Andreev-Kingkade rule of thumb, and then average them. We assume a value of 1/2 for all other ages, unless closeout = TRUE, in which case we close with 1/mx for the final value.

### Value

numeric vector of ax values, the same length as mx

### References

Andreev EM, Kingkade WW (2015). "Average age at death in infancy and infant mortality level: Reconsidering the Coale-Demeny formulas at current levels of low mortality." *Demographic Research*, **33**, 363–390.

| mx_to_e0 | calculate life expectancy at birth from mortality rates |  |
|----------|---------------------------------------------------------|--|
|----------|---------------------------------------------------------|--|

# **Description**

We follow the full chain of standard lifetable column calculations to translate mx to ex, then select the first element of ex. If min(age) > 0, then we return remaining life expectancy at the lowest given age.

# Usage

```
mx_to_e0(mx, age, sex = "t", nx = rep(1, length(age)), closeout = TRUE)
```

# **Arguments**

| mx       | numeric vector of the mortality rates (central death rates)                                |
|----------|--------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported) |
| sex      | character: Male ("m"), Female ("f"), or Total ("t")                                        |
| nx       | age interval width, assumes 1 by default                                                   |
| closeout | logical. Default TRUE.                                                                     |

22 mx\_to\_qx

### Value

numeric scalar of e0

| mx_to_ex | calculate remaining life expectancy from mortality rates |
|----------|----------------------------------------------------------|
| mx_to_ex | calculate remaining life expectancy from mortality rates |

### **Description**

We follow the full chain of standard lifetable column calculations to translate mx to ex.

# Usage

```
mx_to_ex(mx, age, nx = rep(1, length(age)), sex = "t", closeout = TRUE)
```

### **Arguments**

mx numeric vector of the mortality rates (central death rates)

age integer vector of the lower bound of each age group (currently only single ages

supported)

nx age interval width, assumes 1 by default

sex character: Male ("m"), Female ("f"), or Total ("t")

closeout logical. Default TRUE.

#### Value

numeric vector of ex, the same length as mx

|  | mx_to_qx | produce single-age qx values |  |
|--|----------|------------------------------|--|
|--|----------|------------------------------|--|

# Description

qx gives conditional death probabilities, in this case forced to be consistent with a set of mx and ax values per HMD Method Protocol eq 71.

# Usage

```
mx_{to}qx(mx, ax, nx = rep(1, length(mx)), closeout = TRUE)
```

### **Arguments**

mx numeric vector of the mortality rates (central death rates)

ax numeric vector of ax values

nx age interval width, assumes 1 by default

closeout logical. Default TRUE.

plot.LEdecomp 23

# Value

numeric vector of qx, the same length as mx

plot.LEdecomp Plot Life-Expectancy Decomposition Results (ggplot2)

# Description

Plot contributions (or sensitivities) to a life expectancy difference by age or by age and cause using ggplot2. This is just for a quick default plot method.

# Usage

```
## S3 method for class 'LEdecomp'
plot(
  Х,
 what = c("LEdecomp", "sens"),
  geom = c("auto", "line", "bar"),
  col = NULL,
 1wd = 1.2,
 xlab = "Age",
 ylab = NULL,
 main = NULL,
 legend = TRUE,
 legend_pos = "right",
  abridged_midpoints = FALSE,
  layout = c("overlay", "facet"),
  ncol = NULL,
)
```

# **Arguments**

| x                | An object of class "LEdecomp".                                                                                                                                            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| what             | Which series to plot: "LEdecomp" (default) or "sens".                                                                                                                     |
| geom             | Plot geometry: "auto", "line", or "bar". If "auto", "bar" is used for what = "LEdecomp" and "line" for what = "sens".                                                     |
| col              | Optional vector of colors for causes. If NULL, a fixed palette is used and recycled as needed.                                                                            |
| lwd              | Line width for cause lines (default 1.2).                                                                                                                                 |
| xlab, ylab, main | Axis labels and main title. If ylab is NULL, the default is "Difference explained (years)" for what = "LEdecomp" and "Sensitivity $d(e\theta)/d(mx)$ " for what = "sens". |
| legend           | Logical. Show legend (primarily relevant for layout = "overlay").                                                                                                         |

24 plot.LEdecomp

#### **Details**

By default, if what = "LEdecomp" we plot using bars (geom = "bar"), but you can override this. For bar plots, recall it's the area, not the height that the eye reads; for this reason, if your data is in non-single ages, we divide out the interval width, so that the implied uniform graduation to single ages still sums to the gap. If what = "sens" note we plot on a single-age scale even if the data are in abridged ages.

#### Value

Invisibly returns the ggplot object (after printing).

Reserved for future use.

```
data("US_data_CoD", package = "LEdecomp")
allc <- subset(US_data_CoD, Period == 2010 & cause == "All-causes") |>
  as.data.frame()
# Make Female vs Male all-cause schedules, Age 0:100
ac_w <- reshape(allc[, c("Gender","Age","mxt")],</pre>
                 timevar = "Gender", idvar = "Age", direction = "wide")
names(ac_w) <- sub("^mxt\\.", "", names(ac_w))</pre>
ac_w <- ac_w[order(ac_w$Age), ]</pre>
dec_ac <- LEdecomp(</pre>
 mx1 = ac_w Male,
 mx2 = ac_wFemale,
  age = 0:100,
  method = "sen_arriaga"
# Simple single-line plot
plot(dec_ac, main = "All-cause Arriaga, 2010 Female vs Male")
## End(Not run)
## Example 2: Cause of death, one year, Female vs Male
cod <- subset(US_data_CoD, Period == 2010 & cause != "All-causes")</pre>
```

*qx\_to\_lx* 25

```
cod_w <- reshape(cod[, c("Gender","Age","cause","mxt")],</pre>
                  timevar = "Gender", idvar = c("cause", "Age"),
                  direction = "wide")|>
  as.data.frame()
names(cod_w) <- sub("^mxt\\.", "", names(cod_w))</pre>
cod_w <- cod_w[order(cod_w$cause, cod_w$Age), ]</pre>
dec_cod <- LEdecomp(</pre>
  mx1 = cod_w$Male,
  mx2 = cod_w$Female,
  age = 0:100,
  n_causes = length(unique(cod_w$cause)),
  cause_names = unique(cod$cause_id),
  method = "sen_arriaga"
)
# Overlay of all causes
plot(dec_cod, layout = "overlay", main = "Arriaga CoD, 2010 Female vs Male", legend.pos = "top")
# Facet by cause (3 columns)
plot(dec_cod, layout = "facet", ncol = 3, main = "Arriaga by cause (faceted)")
## Example 3: How to add an all-cause total line yourself (overlay)
p <- plot(dec_cod, layout = "overlay", main = "Overlay with manual Total")</pre>
y_mat <- if (is.matrix(dec_cod$LEdecomp)) dec_cod$LEdecomp else</pre>
  matrix(dec_cod$LEdecomp, nrow = length(dec_cod$age))
total <- rowSums(y_mat)</pre>
p + ggplot2::geom_line(
  data = data.frame(age = dec_cod$age, total = total),
  mapping = ggplot2::aes(x = .data\$age, y = .data\$total),
  inherit.aes = FALSE, color = "black", linewidth = 1.1)
```

qx\_to\_lx

Calculate the survival curve

# Description

The survival curve is calculated as the cumulative product of the conditional survival probabilities, which are the complement of conditional death probabilities, qx, except we take care to start with a clean 1. This function no radix option. 1x with a radix of 1 can be interpreted as the probability of surviving from birth to age x.

### Usage

```
qx_to_lx(qx, radix = 1)
```

26 sen\_arriaga

# **Arguments**

qx numeric vector of conditional death probabilities radix initial lifetable cohort size, \$1(0)\$. Default 1.

#### Value

numeric vector of 1x values

rcumsum

top-down cumulative sums, as in the lifetable Tx

# **Description**

Why write x > rev() > cumsum() > rev() when you can just write rcumsum(x)?

# Usage

rcumsum(x)

# **Arguments**

Χ

numeric vector

#### Value

numeric vector the same length as x

sen\_arriaga

the sensitivity implied by a classic Arriaga decomposition

# **Description**

The sensitivity of life expectancy to a perturbation in mortality rates can be derived by dividing the Arriaga decomposition result  $\Delta$  by the difference mx2-mx1.

$$s_x = \frac{\Delta}{nM_x^2 - n M_x^1}$$

# Usage

```
sen_arriaga(
    mx1,
    mx2,
    age = 0:(length(mx1) - 1),
    nx = rep(1, length(mx1)),
    sex1 = "t",
    sex2 = sex1,
    closeout = TRUE
)
```

sen\_arriaga 27

# **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                                     |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                                       |
| nx       | integer vector of age intervals, default 1.                                                                                                      |
| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                              |
| sex2     | character either the sex for population 2: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                                      |

#### Value

s numeric vector with one element per age group, and which gives the sensitivity values for each age.

### References

Arriaga EE (1984). "Measuring and explaining the change in life expectancies." *Demography*, **21**, 83–96. Preston S, Heuveline P, Guillot M (2000). *Demography: measuring and modeling population processes*. Wiley-Blackwell.

# See Also

```
arriaga
```

```
a <- .001
b <- .07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
cc <- arriaga(mx1, mx2, age = x)
# examples can come from above too
s <- sen_arriaga(mx1, mx2, age = x)
plot(x, s)
cc_check <- s * (mx2 - mx1)
plot(x,cc)
lines(x,cc_check)</pre>
```

sen\_arriaga\_instantaneous

Estimate sensitivity of life expectancy for a set of mortality rates

### **Description**

This implementation gives a good approximation of the sensitivity of life expectancy to perturbations in mortality rates (central death rates). Since the Arriaga approach requires two versions of mortality rates mx1, mx2, we create these by slightly perturbing mx up and down. Then we calculate the Arriaga sensitivity in each direction and take the average. Specifically, we create mx1 and mx2 as

$$m_x^1 = m_x \cdot \left(\frac{1}{1-h}\right)$$
$$m_x^2 = m_x \cdot (1-h)$$

where h is small value given by the argument perturb.

# Usage

```
sen_arriaga_instantaneous(
   mx,
   age = 0:(length(mx1) - 1),
   sex = "t",
   nx = rep(1, length(mx)),
   perturb = 1e-06,
   closeout = TRUE
)
```

# Arguments

| mx       | numeric vector of mortality rates (central death rates)                                                     |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| sex      | character Male ("m"), Female ("f"), or Total ("t")                                                          |
| nx       | integer vector of age intervals, default 1.                                                                 |
| perturb  | numeric constant, a very small number                                                                       |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

### **Details**

A minor correction might be needed for the final age group for the case of the reverse-direction Arriaga sensitivity. Note also for values of perturb (h) that are less than 1e-7 we might lose stability in results.

### Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

#### **Examples**

```
<- .001
   <- .07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 < -a/2 * exp(x * b)
mx < -(mx1 + mx2) / 2
      <- sen_arriaga_instantaneous(mx, age = x)</pre>
     <- sen_arriaga_instantaneous(mx1, age = x)</pre>
      <- sen_arriaga_instantaneous(mx2, age = x)</pre>
s1_d < -sen_arriaga(mx1, mx2, age = x)
s2_d <- sen_arriaga(mx2, mx1, age = x)
delta <- mx2 - mx1
# dots give our point estimate of sensitivity at the average of the rates,
# which is different from the
plot(x, s*delta, ylim = c(0, .3))
lines(x,s1*delta,col = "red")
lines(x,s2*delta,col = "blue")
# the sensitivity of the average is different
# from the average of the sensitivities!
lines(x, ((s1+s2)) / 2 * delta)
# and these are different from the directional sensitivities
# covering the whole space from mx1 to mx2:
lines(x, s1_d*delta, col = "red", lty =2)
lines(x, s2_d*delta, col = "blue", lty =2)
```

sen\_arriaga\_instantaneous2

Estimate sensitivity of life expectancy for a set of mortality rates by perturbing in the log space.

### **Description**

This is a second approach for estimating the sensitivity for a single set of rates. Here, rather than directly expanding and contracting rates to convert mx into mx1 and mx2 we instead shift the logged mortality rates up and down by the factor perturb = h. Specifically:

$$m_x^1 = e^{\ln(m_x) + h}$$

$$m_x^2 = e^{\ln(m_x) - h}$$

# Usage

```
sen_arriaga_instantaneous2(
   mx,
   age = 0:(length(mx1) - 1),
   sex = "t",
   nx = rep(1, length(mx)),
   perturb = 1e-06,
   closeout = TRUE
)
```

# Arguments

| mx       | numeric vector of mortality rates (central death rates)                                                     |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| sex      | character Male ("m"), Female ("f"), or Total ("t")                                                          |
| nx       | integer vector of age intervals, default 1.                                                                 |
| perturb  | numeric constant, a very small number                                                                       |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

### Value

numeric vector of sensitivity of life expectancy to perturbations in mx

# See Also

```
sen_arriaga_instantaneous
```

sen\_arriaga\_sym 31

| sen_arriaga_sym | Estimate sensitivity of life expectancy using a symmetrical Arriaga approach. |
|-----------------|-------------------------------------------------------------------------------|
|                 | prouch.                                                                       |

# **Description**

This approach conducts a classic Arriaga decomposition in both directions, averaging the (sign-adjusted) result, i.e.  $a_avg = (arriaga(mx1, mx2, ...) - arriaga(mx2, mx1, ...)) / 2$ , then approximates the sensitivity by dividing out the rate differences, i.e.  $s = a_avg / (mx2 - mx1)$ . A resulting decomposition will be exact because the two arriaga directions are exact, but this method might be vulnerable to 0s in the denominator.

# Usage

```
sen_arriaga_sym(
    mx1,
    mx2,
    age = 0:(length(mx1) - 1),
    nx = rep(1, length(mx1)),
    sex1 = "t",
    sex2 = sex1,
    closeout = TRUE
)
```

# **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                         |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                           |
| nx       | integer vector of age intervals, default 1.                                                                                          |
| sex1     | character either the sex for population 1: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ")                                      |
| sex2     | character either the sex for population 2: Male ("m"), Female ("f"), or Total ("t") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                          |

### Value

numeric vector of life expectancy sensitivity to perturbations in mx evaluated at the average of mx1 and mx2.

# See Also

```
arriaga
```

### **Examples**

```
a <- .001
b <- .07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
s <- sen_arriaga_sym(mx1, mx2, age = x)

e01 <- mx_to_e0(mx1,age=x)
e02 <- mx_to_e0(mx2,age=x)
(Delta <- e02 - e01)
deltas <- mx2- mx1
sum(deltas * s)
mx_avg <- (mx1+mx2) / 2
plot(x, s, type = '1')
lines(x, sen_arriaga_instantaneous(mx_avg, age=x),col = "blue")</pre>
```

sen\_arriaga\_sym\_instantaneous

Instantaneous sensitivity via symmetrical Arriaga decomposition

# **Description**

Estimates the sensitivity of life expectancy to small changes in age-specific mortality rates using the symmetrical Arriaga decomposition. This is done by applying a small multiplicative perturbation to the input mortality rates and using the symmetrical sensitivity function sen\_arriaga\_sym().

Specifically, the function constructs:

$$m_x^1 = m_x \cdot \left(\frac{1}{1-h}\right)$$

$$m_x^2 = m_x \cdot (1 - h)$$

and applies sen\_arriaga\_sym(mx1, mx2, ...) to the result.

# Usage

```
sen_arriaga_sym_instantaneous(
   mx,
   age = 0:(length(mx1) - 1),
   sex = "t",
   nx = rep(1, length(mx)),
   perturb = 1e-06,
   closeout = TRUE
)
```

### **Arguments**

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| perturb  | Numeric; a small constant determining the perturbation size (default 1e-6).                                 |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

#### **Details**

This function yields an instantaneous approximation to the derivative of life expectancy with respect to mortality, evaluated at the input schedule. Because sen\_arriaga\_sym() is itself symmetrical, only the "forward" perturbation is required.

#### Value

numeric vector of life expectancy sensitivity to perturbations in mx.

#### See Also

sen\_arriaga\_sym, sen\_arriaga\_sym\_instantaneous2, sen\_lopez\_ruzicka\_instantaneous

### **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_arriaga_sym_instantaneous(mx, age = x)
plot(x, s, type = "l")</pre>
```

sen\_arriaga\_sym\_instantaneous2

Estimate sensitivity of life expectancy for a set of mortality rates by perturbing in the log space.

# Description

This is a second approach for estimating the sensitivity for a single set of rates. Here, rather than directly expanding and contracting rates to convert mx into mx1 and mx2 we instead shift the logged mortality rates up and down by the factor perturb = h. Specifically:

$$m_x^1 = e^{\ln(m_x) + h}$$
$$m_x^2 = e^{\ln(m_x) - h}$$

# Usage

```
sen_arriaga_sym_instantaneous2(
   mx,
   age = 0:(length(mx1) - 1),
   sex = "t",
   nx = rep(1, length(mx)),
   perturb = 1e-06,
   closeout = TRUE
)
```

# Arguments

| mx       | numeric vector of mortality rates (central death rates)                                                     |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| sex      | character Male ("m"), Female ("f"), or Total ("t")                                                          |
| nx       | integer vector of age intervals, default 1.                                                                 |
| perturb  | numeric constant, a very small number                                                                       |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

# Value

numeric vector of life expectancy sensitivity to perturbations in mx.

# See Also

```
sen_arriaga_instantaneous
```

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_arriaga_sym_instantaneous2(mx, age = x)
plot(x, s, type = "1")</pre>
```

sen\_chandrasekaran\_II Sensitivity from Chandrasekaran II decomposition

# **Description**

Computes the sensitivity of life expectancy to changes in age-specific mortality rates using the Chandrasekaran II decomposition approach described by Ponnapalli (2005). The sensitivity is obtained by dividing the age-specific contributions (from chandrasekaran\_II()) by the differences in mortality rates (mx2 - mx1). This yields a pointwise estimate of the derivative of life expectancy with respect to each age-specific mortality rate evaluated at an imagined midpoint between the first a second set of mortality rates.

35

# Usage

```
sen_chandrasekaran_II(
   mx1,
   mx2,
   age = (1:length(mx1)) - 1,
   nx = rep(1, length(mx1)),
   sex1 = "t",
   sex2 = sex1,
   closeout = TRUE
)
```

### **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                         |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                           |
| nx       | integer vector of age intervals, default 1.                                                                                          |
| sex1     | character either the sex for population 1: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ")                                      |
| sex2     | character either the sex for population 2: Male ("m"), Female ("f"), or Total ("t") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                          |

# **Details**

This give numerically identical results to sen\_arriaga\_sym(), sen\_lopez\_ruzicka\_sym(), and sen\_chandrasekaran\_III().

### Value

A numeric vector of sensitivity values by age group. numeric vector of sensitivity of life expectancy to perturbations in mx between mx1 and mx2.

### References

Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172.

#### See Also

```
chandrasekaran_II, sen_arriaga, sen_arriaga_sym
```

# **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
s <- sen_chandrasekaran_II(mx1, mx2, age = x)

# Check that multiplying sensitivity by rate difference approximates the decomposition cc_check <- s * (mx2 - mx1)
cc <- chandrasekaran_II(mx1, mx2, age = x)

plot(x, cc, type = "1")
lines(x, cc_check, col = "red", lty = 2)</pre>
```

sen\_chandrasekaran\_III

Sensitivity from Chandrasekaran III decomposition

# **Description**

Computes the implied sensitivity of life expectancy to changes in age-specific mortality rates using the Chandrasekaran III decomposition approach described by Ponnapalli (2005). The sensitivity is obtained by dividing the age-specific contributions (from chandrasekaran\_III()) by the differences in mortality rates (mx2 - mx1). This yields a pointwise estimate of the derivative of life expectancy with respect to each age-specific mortality rate evaluated at an imagined midpoint between the first a second set of mortality rates.

### Usage

```
sen_chandrasekaran_III(
    mx1,
    mx2,
    age = (1:length(mx1)) - 1,
    nx = rep(1, length(mx1)),
    sex1 = "t",
    sex2 = sex1,
```

```
closeout = TRUE
)
```

## **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                                     |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                                       |
| nx       | integer vector of age intervals, default 1.                                                                                                      |
| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                              |
| sex2     | character either the sex for population 2: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                                      |

#### **Details**

This gives numerically identical results to sen\_arriaga\_sym(), sen\_lopez\_ruzicka\_sym(), and sen\_chandrasekaran\_II().

#### Value

A numeric vector of sensitivity values by age group.

## References

Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172.

#### See Also

chandrasekaran\_III, sen\_chandrasekaran\_II, sen\_arriaga\_sym, sen\_lopez\_ruzicka\_sym

```
a <- 0.001
b <- 0.07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
s <- sen_chandrasekaran_III(mx1, mx2, age = x)

# Check that multiplying sensitivity by rate difference approximates the decomposition cc_check <- s * (mx2 - mx1)
cc <- chandrasekaran_III(mx1, mx2, age = x)</pre>
```

```
plot(x, cc, type = "l")
lines(x, cc_check, col = "red", lty = 2)
```

sen\_chandrasekaran\_III\_instantaneous

Instantaneous sensitivity via Chandrasekaran III decomposition

## **Description**

Estimates the sensitivity of life expectancy to small changes in mortality rates using the Chandrasekaran III decomposition. This is done by perturbing the input mortality rates up and down by a small factor and computing directional sensitivity from the result.

Specifically:

$$m_x^1 = m_x \cdot \left(\frac{1}{1-h}\right)$$
$$m_x^2 = m_x \cdot (1-h)$$

and applies sen\_chandrasekaran\_III(mx1, mx2, ...) to the result.

## Usage

```
sen_chandrasekaran_III_instantaneous(
   mx,
   age = (1:length(mx1)) - 1,
   nx = rep(1, length(mx1)),
   sex = "t",
   perturb = 1e-06,
   closeout = TRUE
)
```

## Arguments

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| perturb  | Numeric; a small constant determining the perturbation size (default: 1e-6).                                |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

## **Details**

This approach provides an approximation of the derivative of life expectancy with respect to each age-specific mortality rate, evaluated near the input mx. It gives numerically identical results to sen\_arriaga\_sym\_instantaneous(), sen\_lopez\_ruzicka\_instantaneous(), and sen\_chandrasekaran\_II\_instantaneous().

#### Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

#### See Also

sen\_chandrasekaran\_III, sen\_chandrasekaran\_III\_instantaneous2, sen\_arriaga\_sym\_instantaneous, sen\_lopez\_ruzicka\_instantaneous

#### **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_chandrasekaran_III_instantaneous(mx, age = x)
plot(x, s, type = "1")</pre>
```

sen\_chandrasekaran\_III\_instantaneous2

Log-space instantaneous sensitivity via Chandrasekaran III decomposition

## **Description**

Estimates the sensitivity of life expectancy to small changes in mortality rates using the Chandrasekaran III decomposition and log-transformed perturbations. The method perturbs mx up and down in log space and averages the directional sensitivities to approximate the derivative.

Specifically:

$$m_x^1 = \exp(\ln m_x + h)$$
$$m_x^2 = \exp(\ln m_x - h)$$

and applies sen\_chandrasekaran\_III(mx1, mx2, ...) and sen\_chandrasekaran\_III(mx2, mx1, ...), returning their average.

## Usage

```
sen_chandrasekaran_III_instantaneous2(
   mx,
   age = (1:length(mx1)) - 1,
   nx = rep(1, length(mx1)),
   sex = "t",
   perturb = 1e-06,
   closeout = TRUE
)
```

#### **Arguments**

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| perturb  | Numeric; a small constant determining the perturbation size (default: 1e-6).                                |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and gx values? See details. |

#### **Details**

This version uses symmetric log-space perturbations. It gives numerically identical results to sen\_arriaga\_sym\_instantaneous2(), sen\_lopez\_ruzicka\_instantaneous2(), and sen\_chandrasekaran\_II\_instantaneous2().

#### Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

#### See Also

sen\_chandrasekaran\_III\_instantaneous, sen\_arriaga\_sym\_instantaneous2, sen\_lopez\_ruzicka\_instantaneous sen\_chandrasekaran\_II\_instantaneous2

## **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_chandrasekaran_III_instantaneous2(mx, age = x)
plot(x, s, type = "1")</pre>
```

```
sen_chandrasekaran_II_instantaneous
```

Instantaneous sensitivity via Chandrasekaran II decomposition

## **Description**

Estimates the sensitivity of life expectancy to small changes in mortality rates using the Chandrasekaran II decomposition. This is done by perturbing the input mortality rates up and down by a small factor and calculating the directional sensitivity.

Specifically, the function constructs:

$$m_x^1 = m_x \cdot \left(\frac{1}{1-h}\right)$$

$$m_x^2 = m_x \cdot (1 - h)$$

and applies sen\_chandrasekaran\_II(mx1, mx2, ...) to the result.

## Usage

```
sen_chandrasekaran_II_instantaneous(
   mx,
   age = (1:length(mx1)) - 1,
   nx = rep(1, length(mx)),
   sex = "t",
   perturb = 1e-06,
   closeout = TRUE
)
```

## Arguments

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| perturb  | Numeric; a small constant determining the perturbation size (default 1e-6).                                 |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

## Details

This approach gives a reasonable approximation of the derivative of life expectancy with respect to each age-specific mortality rate. It gives numerically identical results to sen\_arriaga\_sym\_instantaneous(), sen\_lopez\_ruzicka\_instantaneous(), and sen\_chandrasekaran\_III\_instantaneous().

## Value

numeric vector of sensitivity of life expectancy to perturbations in mx

## See Also

sen\_chandrasekaran\_II, sen\_chandrasekaran\_II\_instantaneous2, sen\_arriaga\_sym\_instantaneous

## **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_chandrasekaran_II_instantaneous(mx, age = x)
plot(x, s, type = "1")</pre>
```

sen\_chandrasekaran\_II\_instantaneous2

Log-space instantaneous sensitivity via Chandrasekaran II decomposition

## **Description**

Estimates the sensitivity of life expectancy to small changes in mortality rates using the Chandrasekaran II decomposition. This variant perturbs the mortality rates in **log space**, creating two versions of mx by adding and subtracting a small constant to log(mx), then exponentiating.

Specifically:

$$m_x^1 = \exp(\ln m_x + h)$$
$$m_x^2 = \exp(\ln m_x - h)$$

and applies sen\_chandrasekaran\_II(mx1, mx2, ...) to the result.

## Usage

```
sen_chandrasekaran_II_instantaneous2(
   mx,
   age = (1:length(mx1)) - 1,
   nx = rep(1, length(mx)),
   sex = "t",
   perturb = 1e-06,
   closeout = TRUE
)
```

## Arguments

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| perturb  | Numeric; a small constant determining the perturbation size (default 1e-6).                                 |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

sen\_e0\_mx\_lt 43

#### **Details**

This approach provides a log-linear perturbation of the mortality schedule and can be used to estimate the derivative of life expectancy with respect to logged mortality rates. It gives numerically identical results to sen\_arriaga\_sym\_instantaneous2(), sen\_lopez\_ruzicka\_instantaneous2(), and sen\_chandrasekaran\_III\_instantaneous2().

#### Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

#### See Also

sen\_chandrasekaran\_II\_instantaneous, sen\_arriaga\_sym\_instantaneous2, sen\_lopez\_ruzicka\_instantaneous2

## **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_chandrasekaran_II_instantaneous2(mx, age = x)
plot(x, s, type = "1")</pre>
```

sen\_e0\_mx\_lt

A direct approximation of the sensitivity of life expectancy at birth to changes in mortality.

#### **Description**

This function tries to get the direct discrete life expectancy sensitivity to m(x), in continuous math it's -l(x)e(x), we just need to find the best approx with a discrete lifetable. This direct lifetable-based calculation requires a few approximations to get a usable value whenever we're working with discrete data. In continuous notation, we know that the sensitivity s(x)

$$s(x) = -l(x)e(x)$$

but it is not obvious what to use from a discrete lifetable. In this implementation, we use L(x) and an a(x)-weighted average of successive e(x) values, specifically, we calculate:

$$s_x = -L_x \cdot (e_x \cdot (1 - a_x) + e_{x+1} \cdot a_x)$$

This seems to be a very good approximation for ages >0, but we still have a small, but unaccounted-for discrepancy in age 0, at least when comparing with also-imperfect numerical derivatives.

44 sen\_lopez\_ruzicka

#### Usage

```
sen_e0_mx_lt(
    mx,
    age = 0:(length(mx) - 1),
    nx = rep(1, length(mx)),
    sex = "t",
    closeout = TRUE
)
```

# **Arguments**

```
numeric vector of the mortality rates (central death rates)

age integer vector of the lower bound of each age group (currently only single ages supported)

nx age interval width, assumes 1 by default

sex character: Male ("m"), Female ("f"), or Total ("t")

closeout logical. Default TRUE.
```

#### Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

## **Examples**

```
x <- 0:100
mx <- 0.001 * exp(x * 0.07)
sl <- sen_e0_mx_lt(mx,age=x,sex='t',closeout=TRUE)
sn <- numDeriv::grad(mx_to_e0, mx, age=x, sex = 't', closeout=TRUE)

plot(x,sl)
lines(x,sn)
# examine residuals:
sl - sn
# Note discrepancies in ages >0 are due to numerical precision only

plot(x, sl - sn, main = "still uncertain what accounts for the age 0 discrepancy")
```

sen\_lopez\_ruzicka

Sensitivity from Lopez-Ruzicka decomposition

## **Description**

Computes the sensitivity of life expectancy to changes in age-specific mortality rates using the Lopez-Ruzicka decomposition approach. The sensitivity is calculated by dividing the age-specific contributions (from lopez\_ruzicka()) by the differences in mortality rates (mx2 - mx1). This gives a pointwise estimate of the derivative of life expectancy with respect to each age-specific mortality rate, evaluated at an imagined midpoint between the two input rate schedules.

sen\_lopez\_ruzicka 45

## Usage

```
sen_lopez_ruzicka(
    mx1,
    mx2,
    age = (1:length(mx1)) - 1,
    nx = rep(1, length(mx1)),
    sex1 = "t",
    sex2 = sex1,
    closeout = TRUE
)
```

## **Arguments**

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                                     |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                                       |
| nx       | integer vector of age intervals, default 1.                                                                                                      |
| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                              |
| sex2     | character either the sex for population 2: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                                      |

## **Details**

This method gives numerically identical results to sen\_arriaga().

## Value

A numeric vector of sensitivity values by age group.

## References

Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172.

## See Also

lopez\_ruzicka, sen\_arriaga, sen\_chandrasekaran\_III

#### **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a / 2 * exp(x * b)
s <- sen_lopez_ruzicka(mx1, mx2, age = x)

# Check that multiplying sensitivity by rate difference reproduces the decomposition cc_check <- s * (mx2 - mx1)
cc <- lopez_ruzicka(mx1, mx2, age = x)

plot(x, cc, type = "1")
lines(x, cc_check, col = "red", lty = 2)</pre>
```

sen\_lopez\_ruzicka\_instantaneous

Instantaneous sensitivity via Lopez-Ruzicka decomposition

#### **Description**

Estimates the sensitivity of life expectancy to small changes in mortality rates using the Lopez-Ruzicka decomposition. This is done by perturbing the input mortality rates up and down by a small factor and averaging the resulting directional sensitivities to approximate a symmetric derivative.

Specifically:

$$m_x^1 = m_x \cdot \left(\frac{1}{1-h}\right)$$

$$m_x^2 = m_x \cdot (1 - h)$$

and applies  $sen_lopez_ruzicka(mx1, mx2, ...)$  and  $sen_lopez_ruzicka(mx2, mx1, ...)$ , returning their average.

## Usage

```
sen_lopez_ruzicka_instantaneous(
   mx,
   age = (1:length(mx1)) - 1,
   nx = rep(1, length(mx1)),
   sex = "t",
   perturb = 1e-06,
   closeout = TRUE
)
```

## **Arguments**

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| perturb  | Numeric; a small constant determining the perturbation size (default: 1e-6).                                |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

#### **Details**

This method gives numerically identical results to sen\_arriaga\_sym\_instantaneous(), sen\_chandrasekaran\_II\_instantaneous().

#### Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

#### See Also

```
sen_lopez_ruzicka, sen_lopez_ruzicka_instantaneous2, sen_arriaga_sym_instantaneous, sen_chandrasekaran_II_instantaneous
```

## **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_lopez_ruzicka_instantaneous(mx, age = x)
plot(x, s, type = "l")</pre>
```

```
sen_lopez_ruzicka_instantaneous2
```

Log-space instantaneous sensitivity via Lopez-Ruzicka decomposition

## **Description**

Estimates the sensitivity of life expectancy to small changes in mortality rates using the Lopez-Ruzicka decomposition and log-space perturbation. This is done by shifting the log of the input mortality rates up and down by a small constant, then exponentiating, and computing the average directional sensitivity.

Specifically:

$$m_x^1 = \exp(\ln m_x + h)$$
$$m_x^2 = \exp(\ln m_x - h)$$

and applies  $sen_lopez_ruzicka(mx1, mx2, ...)$  and  $sen_lopez_ruzicka(mx2, mx1, ...)$ , returning their average.

## Usage

```
sen_lopez_ruzicka_instantaneous2(
  mx,
  age = (1:length(mx1)) - 1,
  nx = rep(1, length(mx1)),
  sex = "t",
  perturb = 1e-06,
  closeout = TRUE
)
```

## **Arguments**

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| perturb  | Numeric; a small constant determining the perturbation size (default: 1e-6).                                |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

## **Details**

This approach gives numerically identical results to sen\_arriaga\_sym\_instantaneous2(), sen\_chandrasekaran\_II\_instantaneous2().

## Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

#### See Also

sen\_lopez\_ruzicka\_instantaneous, sen\_arriaga\_sym\_instantaneous2, sen\_chandrasekaran\_III\_instantaneous

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_lopez_ruzicka_instantaneous2(mx, age = x)</pre>
```

```
plot(x, s, type = "l")
```

sen\_lopez\_ruzicka\_sym Sensitivity from symmetric Lopez-Ruzicka decomposition

## **Description**

Computes the sensitivity of life expectancy to changes in age-specific mortality rates using the symmetric version of the Lopez-Ruzicka decomposition, as described by Ponnapalli (2005). The sensitivity is obtained by dividing the symmetric decomposition result by the differences in mortality rates (mx2 - mx1). This yields a pointwise estimate of the derivative of life expectancy with respect to each age-specific mortality rate evaluated at an imagined midpoint between the first and second set of mortality rates.

## Usage

```
sen_lopez_ruzicka_sym(
  mx1,
  mx2,
  age = (1:length(mx1)) - 1,
  nx = rep(1, length(mx1)),
  sex1 = "t",
  sex2 = sex1,
  closeout = TRUE
)
```

## Arguments

| mx1      | numeric vector of the mortality rates (central death rates) for population 1                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| mx2      | numeric vector of the mortality rates (central death rates) for population 2                                                                     |
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                                                       |
| nx       | integer vector of age intervals, default 1.                                                                                                      |
| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                              |
| sex2     | character either the sex for population 2: Male (" $m$ "), Female (" $f$ "), or Total (" $t$ ") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                                      |

#### **Details**

This method gives numerically identical results to sen\_arriaga\_sym(), sen\_chandrasekaran\_II(), and sen\_chandrasekaran\_III().

#### Value

A numeric vector of sensitivity values by age group.

#### References

Ponnapalli KM (2005). "A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth." *Demographic Research*, **12**, 141–172.

#### See Also

lopez\_ruzicka\_sym, sen\_arriaga\_sym, sen\_chandrasekaran\_III, sen\_chandrasekaran\_III

## **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx1 <- a * exp(x * b)
mx2 <- a/2 * exp(x * b)
s <- sen_lopez_ruzicka_sym(mx1, mx2, age = x)
# Check equivalence with symmetric Arriaga
s2 <- sen_arriaga_sym(mx1, mx2, age = x)
all.equal(s, s2)</pre>
```

```
sen_lopez_ruzicka_sym_instantaneous
```

Instantaneous sensitivity via symmetrical Lopez-Ruzicka decomposition

## **Description**

Estimates the instantaneous sensitivity of life expectancy to small proportional changes in mortality rates, using the symmetrical Lopez-Ruzicka decomposition. This implementation perturbs the rates up and down around a central value and applies the symmetrical decomposition to the result.

Specifically, the function constructs:

$$m_x^1 = m_x \cdot \left(\frac{1}{1-h}\right)$$

$$m_x^2 = m_x \cdot (1 - h)$$

and applies sen\_lopez\_ruzicka\_sym(mx1, mx2, ...) to the result.

#### Usage

```
sen_lopez_ruzicka_sym_instantaneous(
   mx,
   age = 0:(length(mx) - 1),
   nx = rep(1, length(mx)),
   sex = "t",
   perturb = 1e-06,
   closeout = TRUE
)
```

## Arguments

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| perturb  | Numeric; a small constant determining the perturbation size (default 1e-6).                                 |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

#### **Details**

This gives a pointwise estimate of the derivative of life expectancy with respect to each age-specific mortality rate, evaluated symmetrically around the given mortality schedule. It gives numerically identical results to e.g. sen\_arriaga\_sym\_instantaneous() and sen\_chandrasekaran\_II\_instantaneous().

#### Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

## See Also

 $\verb|sen_lopez_ruzicka_sym_instantaneous|| 2, \verb|sen_arriaga_sym_instantaneous|| 2, \verb|s$ 

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_lopez_ruzicka_sym_instantaneous(mx, age = x)
plot(x, s, type = "1")</pre>
```

```
sen_lopez_ruzicka_sym_instantaneous2
```

Log-scale instantaneous sensitivity via symmetrical Lopez-Ruzicka decomposition

## Description

Estimates the instantaneous sensitivity of life expectancy using symmetric perturbations in log-scale mortality rates, based on the Lopez-Ruzicka decomposition.

Specifically, the function constructs:

$$m_x^1 = \exp(\log m_x + h)$$
$$m_x^2 = \exp(\log m_x - h)$$

and applies sen\_lopez\_ruzicka\_sym(mx1, mx2, ...) to the result.

# Usage

```
sen_lopez_ruzicka_sym_instantaneous2(
   mx,
   age = 0:(length(mx) - 1),
   nx = rep(1, length(mx)),
   sex = "t",
   perturb = 1e-06,
   closeout = TRUE
)
```

#### **Arguments**

| mx       | Numeric vector of mortality rates (central death rates).                                                    |
|----------|-------------------------------------------------------------------------------------------------------------|
| age      | integer vector of the lower bound of each age group (currently only single ages supported)                  |
| nx       | integer vector of age intervals, default 1.                                                                 |
| sex      | Character; "m" for male, "f" for female, or "t" for total.                                                  |
| perturb  | Numeric; a small constant determining the perturbation size (default 1e-6).                                 |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details. |

#### **Details**

This method gives results equivalent to sen\_lopez\_ruzicka\_sym\_instantaneous() and sen\_arriaga\_sym\_instantaneou and is preferred when working with log-transformed mortality schedules.

## Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

sen\_min 53

#### See Also

sen\_lopez\_ruzicka\_sym, sen\_lopez\_ruzicka\_sym\_instantaneous, sen\_arriaga\_sym\_instantaneous2

## **Examples**

```
a <- 0.001
b <- 0.07
x <- 0:100
mx <- a * exp(x * b)
s <- sen_lopez_ruzicka_sym_instantaneous2(mx, age = x)
plot(x, s, type = "l")</pre>
```

sen\_min

sen min

## **Description**

Most sensitivity methods in this packages (sen\_arriaga\_sym() excepted) are approximations; when used in decompositions they will tend to imply residuals. To acheive near-exact additivity for a decomposition using these sensitivity approaches, one can try to find a different weighting of rates from populations 1 and 2, rather than simply taking their arithmetic average. Here we turn this into an optimization problem, where we find the weighting w that implies an exactly additive decomposition to an arbitrary degree of tolerance.

$$m_x = m_x^1 * w + m_x^2 * (1 - w)$$

#### Usage

```
sen_min(
   mx1,
   mx2,
   age,
   sex1,
   sex2 = sex1,
   closeout = TRUE,
   sen_fun = sen_arriaga_instantaneous,
   tol = 1e-10,
   ...
)
```

## **Arguments**

mx1 numeric vector of the mortality rates (central death rates) for population 1
mx2 numeric vector of the mortality rates (central death rates) for population 2
age integer vector of the lower bound of each age group (currently only single ages supported)

sen\_min

| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| sex2     | character either the sex for population 2: Male ("m"), Female ("f"), or Total ("t") assumed same as sex1 unless otherwise specified. |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                          |
| sen_fun  | function name, current options include sen_arriaga_instantaneous, sen_arriaga_instantaneous1 sen_arriaga_sym, sen_e0_mx_lt, sen_num  |
| tol      | double. tolerance level for residual, passed to optimise()                                                                           |
|          | optional arguments to pass to sen_fun()                                                                                              |

## **Details**

We expect the value w to be close to .5, and only search the interval [.4, .6]. This may need to be revisited in case that proves too narrow.

#### Value

age-specific sensitivity of life expectancy to changes in mortality rates.

```
a <- .001
b <- .07
x <- 0:100
mx1 < -a * exp(x * b)
mx2 <- a/2 * exp(x * b)
mx < -(mx1 + mx2) / 2
s1 \leftarrow sen_min(mx1, mx2,
              age = x, sex1 = 't',
              closeout = TRUE,
              sen_fun = sen_arriaga_instantaneous)
s2 \leftarrow sen_min(mx1, mx2,
              age = x, sex1 = 't',
              closeout = TRUE,
              sen_fun = sen_e0_mx_lt,
               tol = 1e-12)
# check sums
e01 <- mx_to_e0(mx1,age=x,sex='t',closeout=TRUE)</pre>
e02 <- mx_to_e0(mx2,age=x,sex='t',closeout=TRUE)
(gap <- e02 - e01)
delta <- mx2 - mx1
(gap1 <- sum(s1 * delta))
(gap2 \leftarrow sum(s2 * delta))
gap2-gap
plot(x, s1, type= 'l')
lines(x, s2, col = 'red', lty = 2, lwd = 2)
```

sen\_num 55

```
plot(x, s2-s1, main = "age 0 difference is due to imprecision in lifetable approach for this age")
```

sen\_num

A numerical approximation of the sensitivity of life expectancy at birth to changes in mortality.

## **Description**

Here we produce a numerical derivative based on the methods implemented in the numDeriv::grad() function. Tweaking the optional arguments of numDeriv::grad(), passed in via . . . might lead to greater precision, but this method actually performs usably well with its defaults.

## Usage

```
sen_num(
  mx,
  age = (1:length(mx)) - 1,
  nx = rep(1, length(mx)),
  sex = "t",
  closeout = TRUE,
  ...
)
```

## Arguments

```
numeric vector of the mortality rates (central death rates)

age integer vector of the lower bound of each age group (currently only single ages supported)

nx age interval width, assumes 1 by default

sex character: Male ("m"), Female ("f"), or Total ("t")

closeout logical. Default TRUE.

... optional arguments to pass to mx_to_e0()
```

#### Value

numeric vector of sensitivity of life expectancy to perturbations in mx.

```
x <- 0:100
mx <- 0.001 * exp(x * 0.07)
sn <- sen_num(mx,age=x,sex='t',closeout=TRUE)
sa <- sen_arriaga_instantaneous2(mx, age=x,sex='t',perturb = 1e-4)
plot(x,sa)
lines(x,sn)</pre>
```

sen\_resid

```
# examine residuals:
sn - sa
# Note discrepancies in ages >0 are due to numerical precision only
plot(x, sn - sa, main = "still uncertain what accounts for the age 0 discrepancy")
```

sen\_resid

sen\_resid

#### **Description**

Most sensitivity methods in this packages (sen\_arriaga\_sym() excepted) are approximations; when used in decompositions they will tend to imply residuals. To acheive near-exact additivity for a decomposition using these sensitivity approaches, one can try to find a different weighting of rates from populations 1 and 2, rather than simply taking their arithmetic average. Here we turn this into an optimization problem, where we find the weighting w that implies an exactly additive decomposition to an arbitrary degree of tolerance. This function gives said residual, for purposes of optimizing using sen\_min(). We export this auxiliary function because one might wish to know the value w that balances rates such that the decomposition is exact.

$$m_x = m_x^1 * w + m_x^2 * (1 - w)$$

## Usage

```
sen_resid(
  w = 0.5,
  mx1,
  mx2,
  age = 0:(length(mx) - 1),
  nx = rep(1, length(mx)),
  sex1,
  sex2 = sex1,
  closeout = TRUE,
  sen_fun = sen_arriaga_instantaneous,
  ...
)
```

## Arguments

| W   | the parameter weight to optimize, default 0.5                                              |
|-----|--------------------------------------------------------------------------------------------|
| mx1 | numeric vector of the mortality rates (central death rates) for population 1               |
| mx2 | numeric vector of the mortality rates (central death rates) for population 2               |
| age | integer vector of the lower bound of each age group (currently only single ages supported) |
| nx  | integer vector of age intervals, default 1.                                                |

US\_data 57

| sex1     | character either the sex for population 1: Male ("m"), Female ("f"), or Total ("t")                                                                                                                                                                                                                                                                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sex2     | character either the sex for population 2: Male ("m"), Female ("f"), or Total ("t") assumed same as sex1 unless otherwise specified.                                                                                                                                                                                                                         |
| closeout | logical. Default TRUE. Shall we use the HMD Method Protocol to close out the ax and qx values? See details.                                                                                                                                                                                                                                                  |
| sen_fun  | function name, current options include sen_e0_mx_lt, sen_arriaga_instantaneous, sen_arriaga_instantaneous2, sen_arriaga_sym, sen_num,sen_chandrasekaran_II_instantaneous, sen_chandrasekaran_ii_instantaneous2,sen_chandrasekaran_iii_instantaneous, sen_chandrasekaran_iii_instantaneous2,sen_lopez_ruzicka_instantaneous, sen_lopez_ruzicka_instantaneous2 |
|          | optional arguments passed to a given sensitivity function.                                                                                                                                                                                                                                                                                                   |

#### Value

age-specific sensitivity of life expectancy to changes in mortality rates.

## **Examples**

```
<- .001
b
    <- .07
    <- 0:100
mx1 < -a * exp(x * b)
mx2 < -a/2 * exp(x * b)
w <- optimize(sen_resid,</pre>
              mx1 = mx1,
              mx2 = mx2,
              age = x,
              sen_fun = sen_arriaga_instantaneous,
              sex1 = 't',
              sex2 = 't',
              closeout = TRUE,
              interval = c(.4,.6))$minimum
W
```

US\_data

US Mortality data

# Description

Data from the US total population from the Human Mortality Dataset and from National Center for Health Statistics (NCHS). The use of two dataset is justified because NCHS does not contain information of exposures above age 85. The dataset contains information on mortality rates (mxt), registered deaths (Dxt) and the size of the population at risk of death (Ext) by period, from 2000 to 2020, and by age, from 0 to 100 years, for both males and females.

58 US\_data\_CoD

#### Usage

US\_data

#### **Format**

A data frame with 4242 rows and 6 columns with class "LEdecompData" and "data.frame" including the following information

- Age a vector containing the ages considered in the dataset, 0, 1, ..., 99, and 100.
- Gender a vector containing the information regarding the gender, "Male" or "Female".
- Period a vector containing the periods of the dataset from 2000 to 2020.
- Ext a vector containing the size of the population at risk of death by age and period.
- Dxt a vector containing the number of registered deaths by age and period.
- mxt a vector mortality rates for the corresponding age and period.

## **Examples**

#The dataset is executed with the following information  $US\_data$ 

US\_data\_CoD

US cause-of-death Mortality data

#### **Description**

Data from the US total population from the Human Mortality Dataset and from National Center for Health Statistics (NCHS). In this case, we have information with the number of deaths by 18 different causes, for more information please review the cause\_id and the National Center for Health Statistics (NCHS). The use of two dataset is justified because NCHS does not contain information of exposures above age 85. The dataset contains information on mortality rates (mxt), registered deaths (Dxt) and the size of the population at risk of death (Ext) by period, from 2000 to 2020, and by age, from 0 to 100 years, for both males and females. In addition, we have the number of deaths by cause between 0 and 100 years of age and between 2000 and 2020.

#### Usage

US\_data\_CoD

#### **Format**

A data frame with 80598 rows and 8 columns with class "LEdecompData" and "data.frame" including the following information

- Age a vector containing the ages considered in the dataset, 0, 1, ..., 99, and 100.
- Gender a vector containing the information regarding the gender, "Male" or "Female".
- Period a vector containing the periods of the dataset from 2000 to 2020.

US\_data\_CoD 59

- Ext a vector containing the size of the population at risk of death by age and period.
- Dxt a vector containing the number of registered deaths by age and period.
- mxt a vector mortality rates for the corresponding age and period.
- cause a vector containing a brief summary of the corresponding cause of death.
- cause\_id a vector containing the corresponding identification number for the cause of death.

# **Examples**

 $\mbox{\em \#The dataset}$  is executed with the following information US\_data\_CoD

# **Index**

| * datasets                                               | sen_arriaga_sym_instantaneous2, 33, 33,            |
|----------------------------------------------------------|----------------------------------------------------|
| US_data, 57                                              | 40, 43, 48, 53                                     |
| US_data_CoD, 58                                          | sen_chandrasekaran_II, 35, 37, 41, 50              |
|                                                          | sen_chandrasekaran_II_instantaneous,               |
| abridge_mx, 3                                            | 40, 43, 47                                         |
| ald_to_Lx, 3                                             | sen_chandrasekaran_II_instantaneous2,              |
| arriaga, 4, 6, 18, 27, 31                                | 40, 41, 42                                         |
| arriaga(), <i>14</i>                                     | $sen\_chandrasekaran\_III, 36, 39, 45, 50$         |
| arriaga_sym, 6, <i>11</i> , <i>19</i>                    | $sen\_chandrasekaran\_III\_instantaneous,$         |
| arriaga_sym(), 14                                        | 38, 40                                             |
| available_methods, 7                                     | sen_chandrasekaran_III_instantaneous2.  39, 39, 48 |
| chandrasekaran_II, 8, 11, 19, 36                         | $sen_e0_mx_1t, 43$                                 |
| chandrasekaran_III, 9, 18, 19, 37                        | sen_e0_mx_lt(), <i>14</i>                          |
|                                                          | sen_lopez_ruzicka,44,47                            |
| LEdecomp, 11                                             | sen_lopez_ruzicka_instantaneous, 33, 39            |
| lL_to_ex, 16                                             | 46, 48                                             |
| lopez_ruzicka, 17, <i>19</i> , <i>45</i>                 | sen_lopez_ruzicka_instantaneous2, $40$ ,           |
| lopez_ruzicka_sym, <i>11</i> , <i>18</i> , 18, <i>50</i> | 43, 47, 47                                         |
| $lx_to_dx, 20$                                           | sen_lopez_ruzicka_sym, 37, 49, 51, 53              |
|                                                          | <pre>sen_lopez_ruzicka_sym_instantaneous,</pre>    |
| $mx_to_ax, 20$                                           | 50, 53                                             |
| mx_to_e0, 21                                             | <pre>sen_lopez_ruzicka_sym_instantaneous2,</pre>   |
| mx_to_ex, 22                                             | 51, 52                                             |
| mx_to_qx, 22                                             | sen_min, 53                                        |
|                                                          | sen_num, 55                                        |
| plot.LEdecomp, 23                                        | sen_resid,56                                       |
| qx_to_1x, 25                                             | US_data, 57                                        |
|                                                          | US_data_CoD, 58                                    |
| rcumsum, 26                                              |                                                    |
| sen_arriaga, 26, 36, 45                                  |                                                    |
| sen_arriaga(), 14                                        |                                                    |
| sen_arriaga_instantaneous, 28, 30, 34                    |                                                    |
| sen_arriaga_instantaneous2, 29                           |                                                    |
| sen_arriaga_sym, 31, 33, 36, 37, 50                      |                                                    |
| sen_arriaga_sym(), 14                                    |                                                    |
| sen_arriaga_sym_instantaneous, 32, 39,                   |                                                    |
| 41. 47. 51                                               |                                                    |