The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Consider a statistical model \(p({\boldsymbol{Y}}\mid {\boldsymbol{\theta}}, {\boldsymbol{B}}, {\boldsymbol{\Sigma}})\) of the form \[\begin{equation} {\boldsymbol{Y}}\sim \textrm{MatNorm}({\boldsymbol{X}}_{\boldsymbol{\theta}}{\boldsymbol{B}}, {\boldsymbol{V}}_{\boldsymbol{\theta}}, {\boldsymbol{\Sigma}}), \tag{1} \end{equation}\] \({\boldsymbol{X}}_{\boldsymbol{\theta}}= {\boldsymbol{X}}_{n \times p}({\boldsymbol{\theta}})\) is the design matrix which depends on parameters \({\boldsymbol{\theta}}\), \({\boldsymbol{B}}_{p \times q}\) are regression coefficients, \({\boldsymbol{V}}_{\boldsymbol{\theta}}= {\boldsymbol{V}}_{n \times n}({\boldsymbol{\theta}})\) and \({\boldsymbol{\Sigma}}_{q \times q}\) are between-row and between-column variance matrices, and the Matrix-Normal distribution is defined as \[ {\boldsymbol{Z}}_{p \times q} \sim \textrm{MatNorm}({\boldsymbol{\Lambda}}_{p \times q}, {\boldsymbol{\Omega}}_{p \times p}, {\boldsymbol{\Sigma}}_{q \times q}) \quad \iff \quad \textrm{vec}({\boldsymbol{Z}}) \sim \mathcal{N}(\textrm{vec}({\boldsymbol{\Lambda}}), {\boldsymbol{\Sigma}}\otimes {\boldsymbol{\Omega}}), \] where \(\textrm{vec}({\boldsymbol{Z}})\) is a vector stacks the columns of \({\boldsymbol{Z}}\), and \({\boldsymbol{\Sigma}}\otimes {\boldsymbol{\Omega}}\) denotes the Kronecker product.
Model (1) is referred to as a Linear Model with Nuisance parameters (LMN) \(({\boldsymbol{B}}, {\boldsymbol{\Sigma}})\) for parameters of interest \({\boldsymbol{\theta}}\). The LMN package provides tools to efficiently conduct Frequentist or Bayesian inference on all parameters \({\boldsymbol{\Theta}}= ({\boldsymbol{\theta}}, {\boldsymbol{B}}, {\boldsymbol{\Sigma}})\) by estimating \({\boldsymbol{\theta}}\) first, and subsequently \(({\boldsymbol{B}}, {\boldsymbol{\Sigma}})\), as illustrated in the examples below.
In Chan et al. (1992), a model for the interest rate \(R_t\) as a function of time is given by the stochastic differential equation (SDE) \[\begin{equation} \mathrm{d}R_t = -\gamma(R_t - \mu) \Delta t+ \sigma R_t^\lambda\mathrm{d}B_t, \tag{3} \end{equation}\] where \(B_t\) is Brownian motion and the parameters are restricted to \(\gamma, \mu, \sigma, \lambda > 0\). Suppose the data \({\boldsymbol{R}}= (R_0, \ldots, R_N)\) consists of equispaced observations \(R_n = R_{n\cdot \Delta t}\) with interobservation time \(\Delta t\). A commonly-used discrete-time approximation is given by \[\begin{equation} R_{n+1} \mid R_0,\ldots,R_n \sim \mathcal{N}\big(R_n - \gamma(R_n - \mu)\Delta t, \sigma^2 R_n^{2\lambda} \Delta t\big). \tag{4} \end{equation}\] Sample data from the discrete-time approximation (4) to the so-called generalized Cox-Ingersoll-Ross (gCIR) model (3) is generated below, with \(\Delta t= 1/12\) (one month) \(N = 240\) (20 years), and true parameter values \({\boldsymbol{\Theta}}= (\gamma, \mu, \sigma, \lambda) = (0.07, 0.01, 0.6, 0.9)\).
# simulate data from the gcir model
gcir_sim <- function(N, dt, Theta, x0) {
# parameters
gamma <- Theta[1]
mu <- Theta[2]
sigma <- Theta[3]
lambda <- Theta[4]
Rt <- rep(NA, N+1)
Rt[1] <- x0
for(ii in 1:N) {
Rt[ii+1] <- rnorm(1, mean = Rt[ii] - gamma * (Rt[ii] - mu) * dt,
sd = sigma * Rt[ii]^lambda * sqrt(dt))
}
Rt
}
# true parameter values
Theta <- c(gamma = .07, mu = .01, sigma = .6, lambda = .9)
dt <- 1/12 # interobservation time (in years)
N <- 12 * 20 # number of observations (20 years)
Rt <- gcir_sim(N = N, dt = dt, Theta = Theta, x0 = Theta["mu"])
par(mar = c(4,4,.5,.5))
plot(x = 0:N*dt, y = 100*Rt, pch = 16, cex = .8,
xlab = "Time (years)", ylab = "Interest Rate (%)")
The likelihood for \({\boldsymbol{\Theta}}\) is of LMN form (1) with \({\boldsymbol{\theta}}= \lambda\), \({\boldsymbol{B}}_{2 \times 1} = (\gamma, \gamma \mu)\), \({\boldsymbol{\Sigma}}_{1 \times 1} = \sigma^2\), and
\[
\begin{aligned}
{\boldsymbol{Y}}_{N\times 1} & = \begin{bmatrix} R_1 - R_0 \\ \vdots \\ R_N - R_{N-1} \end{bmatrix}, & {\boldsymbol{X}}_{N \times 2} & = \begin{bmatrix} - R_0 \Delta t& \Delta t\\ \vdots & \vdots \\ - R_{N-1} \Delta t& \Delta t\end{bmatrix}, & {\boldsymbol{V}}_{N \times N}(\lambda) & = \begin{bmatrix} X_0^{2\lambda} \Delta t& & 0 \\ & \ddots & \\ 0 & & X_{N-1}^{2\lambda} \Delta t\end{bmatrix}.
\end{aligned}
\]
Thus, we may proceed to maximum likelihood estimation via profile likelihood as above, using the Vtype = diag
argument to lmn_suff()
to optimize calculations for diagonal \({\boldsymbol{V}}\).
# precomputed values
Y <- matrix(diff(Rt))
X <- cbind(-Rt[1:N], 1) * dt
# since Rt^(2*lambda) is calculated as exp(2*lambda * log(Rt)),
# precompute 2*log(Rt) to speed up calculations
lR2 <- 2 * log(Rt[1:N])
# sufficient statistics for gCIR model
gcir_suff <- function(lambda) {
lmn_suff(Y = Y, X = X,
V = exp(lambda * lR2) * dt, Vtype = "diag")
}
# _negative_ profile likelihood for gCIR model
gcir_prof <- function(lambda) {
if(lambda <= 0) return(Inf)
-lmn_prof(suff = gcir_suff(lambda))
}
# MLE of Theta via profile likelihood
# profile likelihood for lambda
opt <- optimize(f = gcir_prof, interval = c(.001, 10))
lambda_mle <- opt$minimum
# conditional MLE for remaining parameters
suff <- gcir_suff(lambda_mle)
Theta_mle <- c(gamma = suff$Bhat[1,1],
mu = suff$Bhat[2,1]/suff$Bhat[1,1],
sigma = sqrt(suff$S[1,1]/suff$n),
lambda = lambda_mle)
Theta_mle
## gamma mu sigma lambda
## -0.02757594 -0.16881757 0.49526361 0.85936149
However, we can see that the profile likelihood method produces negative estimates of \(\gamma\) and \(\mu\), i.e., outside of the parameter support. We could try to restrict or penalize the likelihood optimization problem to obtain an admissible MLE, but then the profile likelihood simplifications would no longer apply.
Instead, consider the following Bayesian approach. First, we note that the conjugate prior for \(({\boldsymbol{B}}, {\boldsymbol{\Sigma}})\) in the LMN model conditional on \({\boldsymbol{\theta}}\) is the Matrix-Normal Inverse-Wishart (MNIW) distribution, \[ {\boldsymbol{B}}, {\boldsymbol{\Sigma}}\mid {\boldsymbol{\theta}}\sim \textrm{MNIW}({\boldsymbol{\Lambda}}_{\boldsymbol{\theta}}, {\boldsymbol{\Omega}}_{\boldsymbol{\theta}}, {\boldsymbol{\Psi}}_{\boldsymbol{\theta}}, \nu_{\boldsymbol{\theta}}) \qquad \iff \qquad \begin{aligned} {\boldsymbol{B}}\mid {\boldsymbol{\Sigma}}& \sim \textrm{MatNorm}({\boldsymbol{\Lambda}}_{\boldsymbol{\theta}}, {\boldsymbol{\Omega}}_{\boldsymbol{\theta}}^{-1}, {\boldsymbol{\Sigma}}) \\ {\boldsymbol{\Sigma}}& \sim \textrm{InvWish}({\boldsymbol{\Psi}}_{\boldsymbol{\theta}}, \nu_{\boldsymbol{\theta}}), \end{aligned} \] where \(\textrm{InvWish}\) denotes the Inverse-Wishart distribution, and the hyperparameters \({\boldsymbol{\Phi}}_{\boldsymbol{\theta}}= ({\boldsymbol{\Lambda}}_{\boldsymbol{\theta}}, {\boldsymbol{\Omega}}_{\boldsymbol{\theta}}, {\boldsymbol{\Psi}}_{\boldsymbol{\theta}}, \nu_{\boldsymbol{\theta}})\) can depend on \({\boldsymbol{\theta}}\). Thus, for the prior distribution \(\pi({\boldsymbol{B}}, {\boldsymbol{\Sigma}}, {\boldsymbol{\theta}})\) given by
\[\begin{equation} \begin{aligned} {\boldsymbol{\theta}}& \sim \pi({\boldsymbol{\theta}}) \\ {\boldsymbol{B}}, {\boldsymbol{\Sigma}}\mid {\boldsymbol{\theta}}& \sim \textrm{MNIW}({\boldsymbol{\Lambda}}_{\boldsymbol{\theta}}, {\boldsymbol{\Omega}}_{\boldsymbol{\theta}}, {\boldsymbol{\Psi}}_{\boldsymbol{\theta}}, \nu_{\boldsymbol{\theta}}), \end{aligned} \tag{5} \end{equation}\]
we have the following analytical results:
The conjugate posterior distribution \(p({\boldsymbol{B}}, {\boldsymbol{\Sigma}}\mid {\boldsymbol{Y}}, {\boldsymbol{\theta}})\) is also \(\textrm{MNIW}\), with closed-form expressions for the hyperparameters \(\hat {\boldsymbol{\Phi}}_{\boldsymbol{\theta}}= (\hat {\boldsymbol{\Lambda}}_{\boldsymbol{\theta}}, \hat {\boldsymbol{\Omega}}_{\boldsymbol{\theta}}, \hat {\boldsymbol{\Psi}}_{\boldsymbol{\theta}}, \hat \nu_{\boldsymbol{\theta}})\) calculated by lmn_post()
.
The marginal posterior distribution \(p({\boldsymbol{\theta}}\mid {\boldsymbol{Y}})\) has a closed-form expression calculated by lmn_marg()
.
Both closed-form expressions are provided below. Putting these results together, we can efficiently conduct Bayesian inference for LMN models by first sampling \({\boldsymbol{\theta}}^{(1)}, \ldots, {\boldsymbol{\theta}}^{(B)} \sim p({\boldsymbol{\theta}}\mid {\boldsymbol{Y}})\), then conditionally sampling \(({\boldsymbol{B}}^{(b)}, {\boldsymbol{\Sigma}}^{(b)}) \stackrel {\textrm{ind}}{\sim}\textrm{MNIW}(\hat {\boldsymbol{\Phi}}_{{\boldsymbol{\theta}}^{(b)}})\) for \(b = 1,\ldots, B\). This is done in the R code below with the default prior
\[
\pi({\boldsymbol{\Theta}}) \propto |{\boldsymbol{\Sigma}}|^{-(q+1)/2},
\]
which is obtained from lmn_prior()
:
## $Lambda
## [,1]
## [1,] 0
## [2,] 0
##
## $Omega
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
##
## $Psi
## [,1]
## [1,] 0
##
## $nu
## [1] 0
First, we implement a grid-based sampler for \(\lambda \sim p(\lambda \mid {\boldsymbol{R}})\):
# log of marginal posterior p(lambda | R)
gcir_marg <- function(lambda) {
suff <- gcir_suff(lambda)
post <- lmn_post(suff, prior)
lmn_marg(suff = suff, prior = prior, post = post)
}
# grid sampler for lambda ~ p(lambda | R)
# estimate the effective support of lambda by taking
# mode +/- 5 * sqrt(quadrature)
lambda_mode <- optimize(f = gcir_marg,
interval = c(.01, 10),
maximum = TRUE)$maximum
lambda_quad <- -numDeriv::hessian(func = gcir_marg, x = lambda_mode)[1]
lambda_rng <- lambda_mode + c(-5,5) * 1/sqrt(lambda_quad)
# plot posterior on this range
lambda_seq <- seq(lambda_rng[1], lambda_rng[2], len = 1000)
lambda_lpdf <- sapply(lambda_seq, gcir_marg) # log-pdf
# normalized pdf
lambda_pdf <- exp(lambda_lpdf - max(lambda_lpdf))
lambda_pdf <- lambda_pdf / sum(lambda_pdf) / (lambda_seq[2]-lambda_seq[1])
par(mar = c(2,4,2,.5))
plot(lambda_seq, lambda_pdf, type = "l",
xlab = expression(lambda), ylab = "",
main = expression(p(lambda*" | "*bold(R))))
The grid appears to have captured the effective support of \(p(\lambda \mid {\boldsymbol{R}})\), so we may proceed to conditional sampling. To do this effectively we use the function mniw::rmniw()
in the mniw package, which vectorizes simulations over different MNIX parameters \(\hat {\boldsymbol{\Phi}}_{{\boldsymbol{\theta}}^{(1)}}, \ldots, {\boldsymbol{\Phi}}_{{\boldsymbol{\theta}}^{(1)}}\).
npost <- 5e4 # number of posterior draws
# marginal sampling from p(lambda | R)
lambda_post <- sample(lambda_seq, size = npost, prob = lambda_pdf,
replace = TRUE)
# conditional sampling from p(B, Sigma | lambda, R)
BSig_post <- lapply(lambda_post, function(lambda) {
lmn_post(gcir_suff(lambda), prior)
})
BSig_post <- list2mniw(BSig_post) # convert to vectorized mniw format
BSig_post <- mniw::rmniw(npost,
Lambda = BSig_post$Lambda,
Omega = BSig_post$Omega,
Psi = BSig_post$Psi,
nu = BSig_post$nu)
# convert to Theta = (gamma, mu, sigma, lambda)
Theta_post <- cbind(gamma = BSig_post$X[1,1,],
mu = BSig_post$X[2,1,]/BSig_post$X[1,1,],
sigma = sqrt(BSig_post$V[1,1,]),
lambda = lambda_post)
apply(Theta_post, 2, min)
## gamma mu sigma lambda
## -0.9897117 -717.6090519 0.2101862 0.6300930
We can see that the posterior sampling scheme above for \(p({\boldsymbol{\Theta}}\mid {\boldsymbol{R}})\) did not always produce positive values for \(\gamma\) and \(\mu\). However, we can correct this post-hoc by making use of the following fact:
Rejection Sampling. Suppose that for a given prior \({\boldsymbol{\Theta}}\sim \pi({\boldsymbol{\Theta}})\) and likelihood function \(p({\boldsymbol{R}}\mid {\boldsymbol{\Theta}})\), we obtain a sample \({\boldsymbol{\Theta}}^{(1)}, \ldots, {\boldsymbol{\Theta}}^{(B)}\) from the posterior distribution \(p({\boldsymbol{\Theta}}\mid {\boldsymbol{R}})\). Then if we keep only the samples such that \({\boldsymbol{\Theta}}^{(b)} \in \mathcal{S}\), this results in samples from the posterior distribution with likelihood \(p({\boldsymbol{R}}\mid {\boldsymbol{\Theta}})\) and constrained prior distribution \({\boldsymbol{\Theta}}\sim \pi({\boldsymbol{\Theta}}\mid {\boldsymbol{\Theta}}\in S)\).
In other words, if we eliminate from Theta_post
all rows for which \(\gamma < 0\) or \(\mu < 0\), we are left with a sample form the posterior distribution with prior
\[ \pi({\boldsymbol{\Theta}}) \propto 1/\sigma^2 \times \boldsymbol{\textrm{I}}\{\gamma, \mu > 0\}. \]
Posterior parameter distributions from the corresponding rejection sampler are displayed below.
# keep only draws for which gamma, mu > 0
ikeep <- pmin(Theta_post[,1], Theta_post[,2]) > 0
mean(ikeep) # a good number of draws get discarded
## [1] 0.45556
Theta_post <- Theta_post[ikeep,]
# convert mu to log scale for plotting purposes
Theta_post[,"mu"] <- log10(Theta_post[,"mu"])
# posterior distributions and true parameter values
Theta_names <- c("gamma", "log[10](mu)", "sigma", "lambda")
Theta_true <- Theta
Theta_true["mu"] <- log10(Theta_true["mu"])
par(mfrow = c(2,2), mar = c(2,2,3,.5)+.5)
for(ii in 1:ncol(Theta_post)) {
hist(Theta_post[,ii], breaks = 40, freq = FALSE,
xlab = "", ylab = "",
main = parse(text = paste0("p(",
Theta_names[ii], "*\" | \"*bold(R))")))
abline(v = Theta_true[ii], col = "red", lwd = 2)
if(ii == 1) {
legend("topright", inset = .05,
legend = c("Posterior Distribution", "True Parameter Value"),
lwd = c(NA, 2), pch = c(22, NA), seg.len = 1.5,
col = c("black", "red"), bg = c("white", NA), cex = .85)
}
}
For the regression model (1) with conjugate prior (5), the posterior distribution \(p({\boldsymbol{B}}, {\boldsymbol{\Sigma}}, {\boldsymbol{\theta}}\mid {\boldsymbol{Y}})\) is given by
\[ \begin{aligned} {\boldsymbol{\theta}}\mid {\boldsymbol{Y}}& \sim p({\boldsymbol{\theta}}\mid {\boldsymbol{Y}}) \propto \pi({\boldsymbol{\theta}}) \frac{\Xi({\boldsymbol{\Psi}}_{{\boldsymbol{\theta}}}, \nu_{{\boldsymbol{\theta}}})}{\Xi(\hat{\boldsymbol{\Psi}}_{{\boldsymbol{\theta}}},\hat\nu_{{\boldsymbol{\theta}}})} \left(\frac{|{\boldsymbol{\Omega}}_{{\boldsymbol{\theta}}}|(2\pi)^{-n}}{|\hat {\boldsymbol{\Omega}}_{{\boldsymbol{\theta}}}||{\boldsymbol{V}}_{{\boldsymbol{\theta}}}|}\right)^{q/2} \\ {\boldsymbol{B}}, {\boldsymbol{\Sigma}}\mid {\boldsymbol{\theta}}, {\boldsymbol{Y}}& \sim \textrm{MNIW}(\hat {\boldsymbol{\Lambda}}_{\boldsymbol{\theta}}, \hat{\boldsymbol{\Omega}}_{\boldsymbol{\theta}}, \hat {\boldsymbol{\Psi}}_{\boldsymbol{\theta}}, \hat \nu_{\boldsymbol{\theta}}), \end{aligned} \]
where
\[ \begin{aligned} \Xi({\boldsymbol{\Psi}},\nu) & = \frac{|{\boldsymbol{\Psi}}|^{\nu/2}}{\sqrt{2^{\nu q}} \Gamma_q(\tfrac \nu 2)}, & \Gamma_q(a) & = \pi^{q(q-1)/4} \prod_{j=1}^q \Gamma[a + \tfrac 1 2(1-j)], \\ \hat {\boldsymbol{\Omega}}_{{\boldsymbol{\theta}}} & = {\boldsymbol{\Omega}}_{{\boldsymbol{\theta}}} + {\boldsymbol{T}}_{{\boldsymbol{\theta}}}, & \hat {\boldsymbol{\Lambda}}_{{\boldsymbol{\theta}}} & = \hat {\boldsymbol{\Omega}}_{{\boldsymbol{\theta}}}^{-1}({\boldsymbol{T}}_{{\boldsymbol{\theta}}} \hat {\boldsymbol{B}}_{{\boldsymbol{\theta}}} + {\boldsymbol{\Omega}}_{{\boldsymbol{\theta}}} {\boldsymbol{\Lambda}}_{{\boldsymbol{\theta}}}), \\ \hat \nu_{{\boldsymbol{\theta}}} & = \nu_{{\boldsymbol{\theta}}} + n, & \hat {\boldsymbol{\Psi}}_{{\boldsymbol{\theta}}} & = {\boldsymbol{\Psi}}_{{\boldsymbol{\theta}}} + {\boldsymbol{S}}_{{\boldsymbol{\theta}}} + \hat {\boldsymbol{B}}_{{\boldsymbol{\theta}}}' {\boldsymbol{T}}_{{\boldsymbol{\theta}}} \hat {\boldsymbol{B}}_{{\boldsymbol{\theta}}} + {\boldsymbol{\Lambda}}_{{\boldsymbol{\theta}}}' {\boldsymbol{\Omega}}_{{\boldsymbol{\theta}}} {\boldsymbol{\Lambda}}_{{\boldsymbol{\theta}}} - \hat {\boldsymbol{\Lambda}}_{{\boldsymbol{\theta}}}' \hat {\boldsymbol{\Omega}}_{{\boldsymbol{\theta}}} \hat {\boldsymbol{\Lambda}}_{{\boldsymbol{\theta}}}, \end{aligned} \]
and \({\boldsymbol{T}}_{{\boldsymbol{\theta}}}\), \({\boldsymbol{S}}_{{\boldsymbol{\theta}}}\) and \(\hat {\boldsymbol{B}}_{{\boldsymbol{\theta}}}\) are outputs from lmn_suff()
defined above.
Chan, K.C., Karolyi, G.A., Longstaff, F.A., and Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. The Journal of Finance, 47 (3), 1209–1227.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.