The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The R package LW1949 automates the steps taken in Litchfield and Wilcoxon’s (1949) manual approach to evaluating dose-effect experiments (Adams et al. 2016). Letting the computer do the work saves time and yields the best fit possible using the Litchfield Wilcoxon approach (by minimizing the chi-squared statistic). You can also try a brief demonstration of LW1949 in this web app.
Install
install.packages("LW1949")
and load the LW1949 package.
library(LW1949)
Use the dataprep
function to create a data frame with the results of a dose-effect experiment. Provide information on three key input variables,
dose
),ntot
), andnfx
).conc <- c(0.0625, 0.125, 0.25, 0.5, 1, 2, 3)
numtested <- rep(8, 7)
numaffected <- c(1, 4, 4, 7, 8, 8, 8)
mydat <- dataprep(dose=conc, ntot=numtested, nfx=numaffected)
The dataprep
function puts the input variables into a data frame along with several new variables,
rec
),pfx
),log10dose
),bitpfx
),fxcateg
) identifying none (0), partial (50), and complete (100) effects, andLWkeep
) to identify observations to keep when applying Litchfield and Wilcoxon’s (1949) method (their step A).mydat
## dose ntot nfx rec pfx log10dose bitpfx fxcateg LWkeep
## 1 0.0625 8 1 1 0.125 -1.2041200 -1.150349 50 TRUE
## 2 0.1250 8 4 2 0.500 -0.9030900 0.000000 50 TRUE
## 3 0.2500 8 4 3 0.500 -0.6020600 0.000000 50 TRUE
## 4 0.5000 8 7 4 0.875 -0.3010300 1.150349 50 TRUE
## 5 1.0000 8 8 5 1.000 0.0000000 Inf 100 TRUE
## 6 2.0000 8 8 6 1.000 0.3010300 Inf 100 TRUE
## 7 3.0000 8 8 7 1.000 0.4771213 Inf 100 FALSE
Use the fitLWauto
and LWestimate
functions to fit a dose-effect relation following Litchfield and Wilcoxon’s (1949) method.
intslope <- fitLWauto(mydat)
fLW <- LWestimate(intslope, mydat)
The output from fitLWauto
is a numeric vector of length two, the estimated intercept and slope of the best fitting line on the log10-probit scale..
intslope
## Intercept Slope
## 1.749662 2.308293
The output from LWestimate
is a list with three elements,
chi
, the chi-squared test comparing observed and expected effects, including the expected effects, the “corrected” expected effects (step B in Litchfield and Wilcoxon 1949), and the contribution to the chi-squared statistic (their step C);params
, the estimated intercept and slope on the log10-probit scale; andLWest
, additional estimates calculated in the process of using Litchfield and Wilcoxon’s (1949) method (their steps D and E).fLW
## $chi
## $chi$chi
## chistat df pval
## 1.0439487 4.0000000 0.9030603
##
## $chi$contrib
## exp obscorr contrib
## [1,] 0.1515518 0.1250000 0.03721500
## [2,] 0.3688371 0.5000000 0.37314483
## [3,] 0.6405505 0.5000000 0.43966002
## [4,] 0.8542407 0.8750000 0.02365253
## [5,] 0.9599117 0.9868022 0.14430194
## [6,] 0.9927479 0.9976003 0.02597436
##
##
## $params
## Intercept Slope
## 1.749662 2.308293
##
## $LWest
## ED50 lower upper npartfx ED16 ED84
## 0.17458650 0.08783511 0.34701895 4.00000000 0.06474275 0.47079321
## S lowerS upperS Nprime fED50 fS
## 2.69661856 1.40677894 5.16907910 16.00000000 1.98766192 1.91687441
Use the predlinear
function and the fitted Litchfield and Wilcoxon model to estimate the effective doses for specified percent effects (with 95% confidence limits).
pctaffected <- c(25, 50, 99.9)
predlinear(pctaffected, fLW)
## pct ED lower upper
## [1,] 25.0 0.08908568 0.03942532 0.2012985
## [2,] 50.0 0.17458650 0.08783511 0.3470189
## [3,] 99.9 3.80857563 0.45491114 31.8858942
Use the plotDELP
and plotDE
functions to plot the raw data on the log10-probit and arithmetics scales. Observations with no or 100% affected are plotted using white filled circles (at 0.1 and 99.9% respectively in the log10-probit plot).
Use the predLinesLP
and predLines
functions to add the L-W predicted relations to both plots, with 95% horizontal confidence intervals for the predicted dose to elicit a given percent affected.
plotDELP(mydat)
predLinesLP(fLW)
plotDE(mydat)
predLines(fLW)
Adams, J. V., K. S. Slaght, and M. A. Boogaard. 2016. An automated approach to Litchfield and Wilcoxon’s evaluation of dose-effect experiments using the R package LW1949. Environmental Toxicology and Chemistry 35(12):3058-3061. DOI 10.1002/etc.3490
Litchfield, J. T. Jr. and F. Wilcoxon. 1949. A simplified method of evaluating dose-effect experiments. Journal of Pharmacology and Experimental Therapeutics 96(2):99-113.
LW1949. An automated approach (R package) to Litchfield and Wilcoxon’s (1949) evaluation of dose-effect experiments. Available on Cran, with the latest development version on GitHub.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.