The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Introduction to Logic Forest

library(LogicForest)
library(data.table)
#> Warning: package 'data.table' was built under R version 4.2.3
library(LogicReg)
#> Warning: package 'LogicReg' was built under R version 4.2.3
#> Loading required package: survival

load(system.file("data", "LF.data.rda", package="LogicForest"))
data(LF.data)

#Set using annealing parameters using the logreg.anneal.control 
#function from LogicReg package

newanneal<-logreg.anneal.control(start=1, end=-2, iter=2500)

#typically more than 2500 iterations (iter>25000) would be used for 
#the annealing algorithm.  A typical forest also contains at 
#least 100 trees.  These parameters were set to allow for faster
#run times

#The data set LF.data contains 50 binary predictors and a binary
#response Ybin
LF.fit1<-logforest(resp=LF.data$Ybin, Xs=LF.data[,1:50], nBS=20, anneal.params=newanneal)
print(LF.fit1)
#> Number of logic regression trees = 20
#> Out of Bag Misclassification = 0.115
#> 
#> 5 most important predictors 
#> 
#>     Top 5 Predictors   Normalized Predictor Importance   Frequency
#> 1   X5                 1                                 20       
#> 2   X4                 0.6592                            19       
#> 3   X9                 0.0059                            1        
#> 4   X2                 0                                 <NA>     
#> 5   X3                 0                                 <NA>     
#> 
#> 5 most important interactions 
#> 
#>     Top 5 Interactions   Normalized Interaction Importance   Frequency
#> 1   X4 & X5              1                                   18       
#> 2   X5                   0.0544                              1        
#> 3   !X1 & X4 & X5        0.0221                              1        
#> 4   X5 & !X42            0.0161                              1        
#> 5   X5 & !X9             0.0131                              1
predict(LF.fit1)
#> OOB Predicted values
#> 
#>   [1] 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0
#>  [38] 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0
#>  [75] 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0
#> [112] 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0
#> [149] 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
#> [186] 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0
#> 
#> Proportion of OOB trees that predict 1
#>   [1] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000
#>   [8] 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 0.0000000
#>  [15] 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000
#>  [22] 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 1.0000000
#>  [29] 0.8333333 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000
#>  [36] 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#>  [43] 0.1428571 1.0000000 0.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#>  [50] 0.8750000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#>  [57] 0.0000000 1.0000000 1.0000000 0.0000000 1.0000000 0.2500000 0.8750000
#>  [64] 0.0000000 1.0000000 0.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [71] 1.0000000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 0.0000000
#>  [78] 1.0000000 0.0000000 0.0000000 1.0000000 1.0000000 0.0000000 1.0000000
#>  [85] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [92] 0.0000000 1.0000000 0.9090909 1.0000000 1.0000000 0.0000000 0.8333333
#>  [99] 0.1111111 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000
#> [106] 0.0000000 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [113] 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000
#> [120] 0.0000000 0.3333333 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#> [127] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [134] 1.0000000 1.0000000 1.0000000 0.0000000 1.0000000 1.0000000 1.0000000
#> [141] 0.0000000 0.1111111 1.0000000 0.9230769 1.0000000 1.0000000 0.0000000
#> [148] 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000 1.0000000
#> [155] 0.9000000 0.1111111 0.2000000 0.0000000 1.0000000 0.0000000 1.0000000
#> [162] 0.0000000 0.0000000 0.1111111 0.0000000 0.0000000 0.0000000 1.0000000
#> [169] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.2000000
#> [176] 0.0000000 1.0000000 0.0000000 0.0000000 0.1000000 0.0000000 1.0000000
#> [183] 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000
#> [190] 1.0000000 1.0000000 0.0000000 1.0000000 0.8888889 0.0000000 0.0000000
#> [197] 1.0000000 1.0000000 0.0000000 0.0000000

#Changing print parameters
LF.fit2<-logforest(resp=LF.data$Ybin, Xs=LF.data[,1:50], nBS=20,
anneal.params=newanneal, norm=TRUE, numout=10)
print(LF.fit2)
#> Number of logic regression trees = 20
#> Out of Bag Misclassification = 0.115
#> 
#> 10 most important predictors 
#> 
#>      Top 10 Predictors   Normalized Predictor Importance   Frequency
#> 1    X5                  1                                 19       
#> 2    X4                  0.9856                            19       
#> 3    X1                  0                                 <NA>     
#> 4    X2                  0                                 <NA>     
#> 5    X3                  0                                 <NA>     
#> 6    X6                  0                                 <NA>     
#> 7    X7                  0                                 <NA>     
#> 8    X8                  0                                 <NA>     
#> 9    X9                  0                                 <NA>     
#> 10   X10                 0                                 <NA>     
#> 
#> 10 most important interactions 
#> 
#>      Top 10 Interactions   Normalized Interaction Importance   Frequency
#> 1    X4 & X5               1                                   18       
#> 2    X4                    0.0467                              1        
#> 3    X5                    0.0435                              1        
#> 4    <NA>                  <NA>                                <NA>     
#> 5    <NA>                  <NA>                                <NA>     
#> 6    <NA>                  <NA>                                <NA>     
#> 7    <NA>                  <NA>                                <NA>     
#> 8    <NA>                  <NA>                                <NA>     
#> 9    <NA>                  <NA>                                <NA>     
#> 10   <NA>                  <NA>                                <NA>

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.