The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Spurious Precision in Meta-Analysis of Observational
Research
by Zuzana Irsova, Pedro R. D. Bom, Tomas Havranek, and Heiko
Rachinger
Project Website: https://meta-analysis.cz/maive/
MAIVE addresses a fundamental problem in meta-analysis of observational research: spurious precision.
Traditional meta-analysis assigns more weight to studies with lower standard errors, assuming higher precision. However, in observational research, precision can be manipulated through p-hacking and other questionable research practices, invalidating:
MAIVE implements an instrumental variable approach to limit bias caused by spurious precision in meta-analysis.
install.packages("MAIVE")install.packages("devtools")
devtools::install_github("meta-analysis-es/maive")library(MAIVE)# Prepare your data
data <- data.frame(
bs = c(...), # Effect sizes
sebs = c(...), # Standard errors
Ns = c(...), # Sample sizes
study_id = c(...) # Study IDs (optional)
)
# Run MAIVE with defaults (PET-PEESE, instrumented SEs, no weights)
result <- maive(
dat = data,
method = 3, # PET-PEESE (default)
weight = 0, # No weights (default)
instrument = 1, # Instrument SEs (default)
studylevel = 2, # Cluster-robust (default)
SE = 3, # Wild bootstrap (default)
AR = 1 # Anderson-Rubin CI (default)
)
# View results
print(result$Estimate) # MAIVE estimate
print(result$SE) # Standard error
print(result$Hausman) # Hausman test
print(result$`F-test`) # First-stage F-testThe maive() function expects a data frame with:
| Column | Label | Description |
|---|---|---|
| 1 | bs |
Primary estimates (effect sizes) |
| 2 | sebs |
Standard errors (must be > 0) |
| 3 | Ns |
Sample sizes (must be > 0) |
| 4 | study_id |
Study identification (optional, for clustering/fixed effects) |
waive() function)The function returns:
vignette("introduction")?maive and
?waive.github/DEVELOPMENT-WORKFLOW.md.github/CRAN-SUBMISSION.md# Create example data
set.seed(123)
data <- data.frame(
bs = rnorm(50, mean = 0.3, sd = 0.2),
sebs = runif(50, min = 0.05, max = 0.3),
Ns = sample(100:1000, 50, replace = TRUE),
study_id = rep(1:10, each = 5)
)
# Run MAIVE
result <- maive(data, method = 3, weight = 0, instrument = 1,
studylevel = 2, SE = 3, AR = 1)
# Compare with standard estimate
cat("MAIVE Estimate:", result$Estimate, "\n")
cat("Standard Estimate:", result$StdEstimate, "\n")
cat("Hausman Test:", result$Hausman, "\n")
# Use WAIVE for robust estimation with outlier downweighting
result_waive <- waive(data, method = 3, instrument = 1,
studylevel = 2, SE = 3, AR = 1)
cat("WAIVE Estimate:", result_waive$Estimate, "\n")If you use MAIVE in your research, please cite:
Irsova, Z., Bom, P. R. D., Havranek, T., & Rachinger, H. (2024). Spurious Precision in Meta-Analysis of Observational Research. Available at: https://meta-analysis.cz/maive/
Keane, M., & Neal, T. (2023). Instrument strength in IV estimation and inference: A guide to theory and practice. Journal of Econometrics, 235(2), 1625-1653. https://doi.org/10.1016/j.jeconom.2022.12.009
Tipton, E. (2015). Small sample adjustments for robust variance estimation with cluster-correlated data. Psychological Methods, 20(3), 375–389. https://doi.org/10.1037/met0000019
We welcome contributions! Please see our GitHub repository for:
MIT License - see LICENSE file for details.
Questions? Contact the maintainer or visit our project website.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.