
Package ‘MEGB’
January 29, 2025

Type Package

Title Gradient Boosting for Longitudinal Data

Version 0.1

Author Oyebayo Ridwan Olaniran [aut, cre],
Saidat Fehintola Olaniran [aut]

Maintainer Oyebayo Ridwan Olaniran <olaniran.or@unilorin.edu.ng>

Description Gradient boosting is a powerful statistical learning method known for its ability to model
complex relationships between predictors and outcomes while performing inherent variable se-
lection.
However, traditional gradient boosting methods lack flexibility in handling longitudi-
nal data where
within-subject correlations play a critical role. In this package, we propose a novel approach
Mixed Effect Gradient Boosting ('MEGB'), designed specifically for high-
dimensional longitudinal data.
'MEGB' incorporates a flexible semi-
parametric model that embeds random effects within the gradient boosting
framework, allowing it to account for within-
individual covariance over time. Additionally, the method
efficiently handles scenarios where the number of predictors greatly exceeds the number of ob-
servations
(p>>n) making it particularly suitable for genomics data and other large-scale biomedical studies.

License GPL-2

Encoding UTF-8

Imports stats, gbm, MASS, latex2exp

NeedsCompilation no

RoxygenNote 7.3.2.9000

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Repository CRAN

Date/Publication 2025-01-29 17:00:02 UTC

1

2 MEGB

Contents
MEGB . 2
predict.MEGB . 4
simLong . 5

Index 8

MEGB Mixed Effect Gradient Boosting (MEGB) Algorithm

Description

MEGB is an adaptation of the gradient boosting regression method to longitudinal data similar to the
Mixed Effect Random Forest (MERF) developed by Hajjem et. al. (2014) <doi:10.1080/00949655.2012.741599>
which was implemented by Capitaine et. al. (2020) <doi:10.1177/0962280220946080>. The algo-
rithm estimates the parameters of a semi-parametric mixed-effects model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ϵi is the
residual error.

Usage

MEGB(
X,
Y,
id,
Z,
iter = 100,
ntree = 500,
time,
shrinkage = 0.05,
interaction.depth = 1,
n.minobsinnode = 5,
cv.folds = 0,
delta = 0.001,
verbose = TRUE

)

Arguments

X [matrix]: A N x p matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.

MEGB 3

Z [matrix]: A N x q matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

ntree [numeric]: Number of trees to grow. This should not be set to too small a
number, to ensure that every input row gets predicted at least a few times. The
default value is ntree=500.

time [vector]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

shrinkage [numeric]: a shrinkage parameter applied to each tree in the expansion. Also
known as the learning rate or step-size reduction. The default value is set to
0.05.

interaction.depth

[numeric]: The maximum depth of variable interactions: 1 builds an additive
model, 2 builds a model with up to two-way interactions, etc. The default value
is set to 1.

n.minobsinnode [numeric]: minimum number of observations (not total weights) in the terminal
nodes of the trees. The default value is set to 5.

cv.folds [numeric]: Number of cross-validation folds to perform. If cv.folds>1 then gbm,
in addition to the usual fit, will perform a cross-validation and calculate an es-
timate of generalization error returned in cv_error. The default value is set to
0.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to 0.001

verbose [boolean]: If TRUE, MEGB will print out number of iterations to achieve con-
vergence. Default is TRUE.

Value

A fitted MEGB model which is a list of the following elements:

• forest: GBMFit obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• LL: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

• OOB: OOB error of the fitted random forest at each iteration.

4 predict.MEGB

Examples

set.seed(1)
data <-simLong(n = 20,p = 6,rel_p = 6,time_points = 10,rho_W = 0.6, rho_Z=0.6,

random_sd_intercept = sqrt(0.5),
random_sd_slope = sqrt(3),

noise_sd = 0.5,linear=TRUE) # Generate the data composed by n=20 individuals.
Train a MEGB model on the generated data. Should take ~ 7 seconds
megb <- MEGB(X=as.matrix(data[,-1:-5]),Y=as.matrix(data$Y),
Z=as.matrix(data[,4:5]),id=data$id,time=data$time,ntree=500,cv.folds=0,verbose=TRUE)
megb$forest # is the fitted gradient boosting (GBMFit) (obtained at the last iteration).
megb$random_effects # are the predicted random effects for each individual.
plot(megb$LL,type="o",col=2) # evolution of the log-likelihood.
megb$OOB # OOB error at each iteration.

predict.MEGB Predict with longitudinal trees and random forests.

Description

Predict with longitudinal trees and random forests.

Usage

S3 method for class 'MEGB'
predict(object, X, Z, id, time, ntree, ...)

Arguments

object : a longituRF output of (S)MERF; (S)REEMforest; (S)MERT or (S)REEMtree
function.

X [matrix]: matrix of the fixed effects for the new observations to be predicted.

Z [matrix]: matrix of the random effects for the new observations to be predicted.

id [vector]: vector of the identifiers of the new observations to be predicted.

time [vector]: vector of the time measurements of the new observations to be pre-
dicted.

ntree [numeric]: Number of trees to be used in prediction not less than number of
trees used in the model object MEGB. The default value is ntree=500.

... : low levels arguments.

Value

vector of the predicted output for the new observations.

simLong 5

Examples

oldpar <- par(no.readonly = TRUE)
oldopt <- options()
set.seed(1)
data <-simLong(n = 20,p = 6,rel_p = 6,time_points = 10,rho_W = 0.6, rho_Z=0.6,

random_sd_intercept = sqrt(0.5),
random_sd_slope = sqrt(3),

noise_sd = 0.5,linear=TRUE) # Generate the data composed by n=20 individuals.
Train a MEGB model on the generated data. Should take ~ 7 seconds
megb <- MEGB(X=as.matrix(data[,-1:-5]),Y=as.matrix(data$Y),
Z=as.matrix(data[,4:5]),id=data$id,time=data$time,ntree=500,verbose=TRUE)
Then we predict on the learning sample :
pred.MEGB <- predict(megb, X=as.matrix(data[,-1:-5]), Z=as.matrix(data[,4:5]),
id=data$id, time=data$time,ntree=500)
Let's have a look at the predictions
the predictions are in red while the real output trajectories are in blue:
par(mfrow=c(4,5),mar=c(2,2,2,2))
for (i in unique(data$id)){

w <- which(data$id==i)
plot(data$time[w],data$Y[w],type="l",col="blue")
lines(data$time[w],pred.MEGB[w], col="red")

}
par(oldpar)
options(oldopt)

simLong Simulate Low/High Dimensional and Linear/Nonlinear Longitudinal
dataset.

Description

Simulate p-dimensional linear/Nonlinear mixed-effects model given by:

Yi(t) = f(Xi(t)) + Zi(t)βi + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at time
t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ϵi is the residual
error with variance σ2. If linear, f(Xi(t)) = Xi(t)θ, where θ = 1,∀p, otherwise if nonlinear, the
approach by Capitaine et al. (2021) is adapted.

Usage

simLong(
n,
p,
rel_p = 6,
time_points,
rho_W = 0.5,

6 simLong

rho_Z = 0.5,
random_sd_intercept = 2,
random_sd_slope = 1,
noise_sd = 1,
linear = TRUE

)

Arguments

n [numeric]: Number of individuals.

p [numeric]: Number of predictors.

rel_p [numeric]: Number of relevant predictors (true predictors that are correlated to
the outcome.). The default value is rel_p=6 if linear and rel_p=2 if nonlinear.

time_points [numeric]: Number of realizations per individual. The default value is time_points=10.

rho_W [numeric]: Within subject correlation. The default value is rho_W=0.5.

rho_Z [numeric]: Correlation between intercept and slope for the random effect coef-
ficients. The default value is rho_Z=0.5.

random_sd_intercept

[numeric]: Standard deviation for the random intercept. The default value is
random_sd_intercept=

√
0.5.

random_sd_slope

[numeric]: Standard deviation for the random slope. The default value is random_sd_slope=
√
3.

noise_sd [numeric]: Standard deviation for the random slope. The default value is noise_sd=0.5.

linear [boolean]: If TRUE, a linear mixed effect model is simulated, if otherwise, a
semi-parametric model similar to the one used in Capitaine et al. (2021).

Value

a dataframe of dimension (n*time_points) by (p+5) containing the following elements:

• id: vector of the individual IDs.

• time: vector of the time realizations.

• Y: vector of the outcomes variable.

• RandomIntercept: vector of the Random Intercept.

• RandomSlope: vector of the Random Slope.

• Vars : Remainder columns corresponding to the fixed effect variables.

Examples

set.seed(1)
data = simLong(n = 17,p = 6,rel_p = 6,time_points = 10,rho_W = 0.6, rho_Z=0.6,

random_sd_intercept = sqrt(0.5),
random_sd_slope = sqrt(3),
noise_sd = 0.5,linear=FALSE) # Generate the data

head(data) # first six rows of the data.
Let's see the output :

simLong 7

w <- which(data$id==1)
plot(data$time[w],data$Y[w],type="l",ylim=c(min(data$Y),max(data$Y)), col="grey")
for (i in unique(data$id)){

w <- which(data$id==i)
lines(data$time[w],data$Y[w], col='grey')

}
Let's see the fixed effects predictors:
oldpar <- par(no.readonly = TRUE)
oldopt <- options()
par(mfrow=c(2,3), mar=c(2,3,3,2))
for (i in 1:ncol(data[,-1:-5])){

w <- which(data$id==1)
plot(data$time[w],data[,-1:-5][w,i], col="grey",ylim=c(min(data[,-1:-5][,i]),
max(data[,-1:-5][,i])),xlim=c(1,max(data$time)),main=latex2exp::TeX(paste0("$X^{(",i,")}$")))
for (k in unique(data$id)){
w <- which(data$id==k)
lines(data$time[w],data[,-1:-5][w,i], col="grey")

}
}
par(oldpar)
options(oldopt)

Index

MEGB, 2

predict.MEGB, 4

simLong, 5

8

	MEGB
	predict.MEGB
	simLong
	Index

