The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
MIMER is an R package designed for analyzing the MIMIC-IV dataset, a repository of pseudonymized electronic health records. It offers a suite of data wrangling functions tailored specifically for preparing the dataset for research purposes, particularly in antimicrobial resistance (AMR) studies. MIMER simplifies complex data manipulation tasks, allowing researchers to focus on their primary inquiries without being bogged down by wrangling complexities. It integrates seamlessly with the AMR package and is ideal for R developers working in AMR research
MIMER::ndc_to_antimicrobial(ndc, class)
MIMER::ndc_is_antimicrobial(ndc, class)
MIMER::is_systemic_route(route, class)
MIMER::check_previous_events(df, cols, sort_by_col, patient_id_col,
event_indi_value="R", new_col_prefix="pr_event_",
time_period_in_days = 0, minimum_prev_events = 0)
MIMER::transpose_microbioevents(df, key_columns, required_columns, transpose_key_column,
transpose_value_column, fill = "N/A")
#not recommended to use
MIMER::clean_antibiotics(
x ,
...
)
You can install the development version of MIMER from GitHub with:
install.packages("devtools")
::install_github("CAMO-NET-LIV/MIMER") devtools
or install from CRAN using:
install.packages("MIMER")
This is a basic example which shows you how to solve a common problem:
library(MIMER)
## Warning: package 'MIMER' was built under R version 4.3.3
## basic example code
::ndc_to_antimicrobial(ndc='65649030303', class='antibacterial') MIMER
## Class 'ab'
## [1] RFX
library(MIMER)
## basic example code
::ndc_is_antimicrobial(ndc='65649030303') MIMER
## [1] TRUE
library(MIMER)
## basic example code
::is_systemic_route(route='PO/NG') MIMER
## [1] TRUE
library(MIMER)
## basic example code
<- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
df '90916742','90938332','90938332','90938332',
'90938332','90938332','90938332'),
chartdate= c('2178-07-03','2178-08-01','2178-08-01',
'2178-08-01','2178-09-25','2164-07-31',
'2164-12-22','2164-12-22','2165-01-07',
'2165-04-17','2165-05-05'),
CEFEPIME=c('R','R','R','R','S','R','R','R','S','S','S'),
CEFTAZIDIME=c('S','R','S','R','R','S','S','S','R','R','S'))
::check_previous_events(df,
MIMERcols = c('CEFTAZIDIME'),
sort_by_col = 'chartdate',
patient_id_col = 'subject_id',
event_indi_value='R')
## Checking Previous Events for
## CEFTAZIDIME
## Total Antibiotics Column (Events) Added : 1
## # A tibble: 11 × 5
## subject_id chartdate CEFEPIME CEFTAZIDIME pr_event_CEFTAZIDIME
## <chr> <chr> <chr> <chr> <lgl>
## 1 90938332 2164-07-31 R S FALSE
## 2 90938332 2164-12-22 R S FALSE
## 3 90938332 2164-12-22 R S FALSE
## 4 90938332 2165-01-07 S R FALSE
## 5 90938332 2165-04-17 S R TRUE
## 6 90938332 2165-05-05 S S TRUE
## 7 90916742 2178-07-03 R S FALSE
## 8 90916742 2178-08-01 R R FALSE
## 9 90916742 2178-08-01 R S FALSE
## 10 90916742 2178-08-01 R R FALSE
## 11 90916742 2178-09-25 S R TRUE
## example with 'minimum_prev_events' parameter
<- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
df '90916742','90938332','90938332','90938332',
'90938332','90938332','90938332'),
chartdate= c('2178-07-03','2178-08-01','2178-07-22',
'2178-08-03','2178-09-25','2164-07-31',
'2164-12-22','2164-12-22','2165-01-07',
'2165-04-17','2165-05-05'),
CEFEPIME=c('R','S','R','S','S','R','R','R','S','S','S'),
CEFTAZIDIME=c('S','R','S','R','R','S','S','S','R','R','S'))
::check_previous_events(df,
MIMERcols = c('CEFEPIME'),
sort_by_col = 'chartdate',
patient_id_col = 'subject_id',
minimum_prev_events = 2)
## Checking Previous Events for
## CEFEPIME
## Total Antibiotics Column (Events) Added : 1
## # A tibble: 11 × 5
## subject_id chartdate CEFEPIME CEFTAZIDIME pr_event_CEFEPIME
## <chr> <chr> <chr> <chr> <lgl>
## 1 90938332 2164-07-31 R S FALSE
## 2 90938332 2164-12-22 R S FALSE
## 3 90938332 2164-12-22 R S FALSE
## 4 90938332 2165-01-07 S R TRUE
## 5 90938332 2165-04-17 S R TRUE
## 6 90938332 2165-05-05 S S TRUE
## 7 90916742 2178-07-03 R S FALSE
## 8 90916742 2178-07-22 R S FALSE
## 9 90916742 2178-08-01 S R TRUE
## 10 90916742 2178-08-03 S R TRUE
## 11 90916742 2178-09-25 S R TRUE
## example with 'time_period_in_days' parameter
<- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
df '90916742','90938332','90938332','90938332',
'90938332','90938332','90938332'),
chartdate= c('2178-07-03','2178-08-01','2178-07-22',
'2178-08-03','2178-09-25','2164-07-31',
'2164-12-22','2164-12-22','2165-01-07',
'2165-04-17','2165-05-05'),
CEFEPIME=c('R','S','R','S','S','R','R','R','S','S','S'),
CEFTAZIDIME=c('S','R','S','R','R','S','S','S','R','R','S'))
::check_previous_events(df,
MIMERcols = c('CEFTAZIDIME'),
sort_by_col = 'chartdate',
patient_id_col = 'subject_id',
time_period_in_days = 25)
## Checking Previous Events for
## CEFTAZIDIME
## Total Antibiotics Column (Events) Added : 1
## # A tibble: 11 × 5
## subject_id chartdate CEFEPIME CEFTAZIDIME pr_event_CEFTAZIDIME
## <chr> <chr> <chr> <chr> <lgl>
## 1 90938332 2164-07-31 R S FALSE
## 2 90938332 2164-12-22 R S FALSE
## 3 90938332 2164-12-22 R S FALSE
## 4 90938332 2165-01-07 S R FALSE
## 5 90938332 2165-04-17 S R FALSE
## 6 90938332 2165-05-05 S S TRUE
## 7 90916742 2178-07-03 R S FALSE
## 8 90916742 2178-07-22 R S FALSE
## 9 90916742 2178-08-01 S R FALSE
## 10 90916742 2178-08-03 S R TRUE
## 11 90916742 2178-09-25 S R FALSE
## example with 'time_period_in_days' & 'minimum_prev_events' parameters
<- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
df '90916742','90938332','90938332',
'90938332','90938332','90938332','90938332'),
chartdate= c('2178-07-03','2178-08-01','2178-08-01',
'2178-08-01','2178-09-25','2164-07-31',
'2164-12-22','2164-12-22','2165-01-07',
'2165-04-17','2165-05-05'),
CEFEPIME=c('R','R','R','R','S','R','R','R','S','S','S'),
CEFTAZIDIME=c('S','R','S','R','R','S','S','S','R','R','S'))
::check_previous_events(df,
MIMERcols = c('CEFEPIME'),
sort_by_col = 'chartdate',
patient_id_col = 'subject_id',
time_period_in_days = 62,
minimum_prev_events = 2)
## Checking Previous Events for
## CEFEPIME
## Total Antibiotics Column (Events) Added : 1
## # A tibble: 11 × 5
## subject_id chartdate CEFEPIME CEFTAZIDIME pr_event_CEFEPIME
## <chr> <chr> <chr> <chr> <lgl>
## 1 90938332 2164-07-31 R S FALSE
## 2 90938332 2164-12-22 R S FALSE
## 3 90938332 2164-12-22 R S FALSE
## 4 90938332 2165-01-07 S R TRUE
## 5 90938332 2165-04-17 S R FALSE
## 6 90938332 2165-05-05 S S FALSE
## 7 90916742 2178-07-03 R S FALSE
## 8 90916742 2178-08-01 R R FALSE
## 9 90916742 2178-08-01 R S FALSE
## 10 90916742 2178-08-01 R R FALSE
## 11 90916742 2178-09-25 S R TRUE
##example for transpose_microbioevents
<- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
test_data '90916742','90938332','90938332','90938332',
'90938332','90938332','90938332'),
chartdate= c('2178-07-03','2178-08-01','2178-08-01',
'2178-08-01','2178-09-25','2164-07-31',
'2164-12-22','2164-12-22','2165-01-07',
'2165-04-17','2165-05-05'),
ab_name=c('CEFEPIME','CEFTAZIDIME','CEFEPIME',
'CEFEPIME','CEFTAZIDIME','CEFTAZIDIME',
'CEFEPIME','CEFEPIME','CEFTAZIDIME',
'CEFTAZIDIME','CEFEPIME'),
interpretation=c('S','R','S','R','R','S','S','S','R','R','S'))
::transpose_microbioevents(test_data,
MIMERkey_columns = c('subject_id','chartdate','ab_name') ,
required_columns =c('subject_id','chartdate'),
transpose_key_column = 'ab_name',
transpose_value_column = 'interpretation',
fill = "N/A",
non_empty_filter_column='subject_id')
## subject_id chartdate CEFEPIME CEFTAZIDIME
## 1 90916742 2178-07-03 S N/A
## 2 90916742 2178-08-01 N/A R
## 3 90916742 2178-09-25 N/A R
## 4 90938332 2164-07-31 N/A S
## 5 90938332 2165-01-07 N/A R
## 6 90938332 2165-04-17 N/A R
## 7 90938332 2165-05-05 S N/A
library(MIMER)
## basic example code
::clean_antibiotics(c("Amoxicilli")) MIMER
## [1] "Amoxicillin"
library(MIMER)
## basic example code
<- data.frame(drug = c("Amoxicilln","moxicillin","Paracetamol") )
df ::clean_antibiotics(df, drug_col = drug) MIMER
## drug abx_name synonyms is_abx
## 1 Amoxicilln Amoxicillin Amoxicillin TRUE
## 2 moxicillin Amoxicillin Amoxicillin TRUE
## 3 Paracetamol <NA> <NA> FALSE
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.