The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
MRMCaov is an R package for statistical comparison of diagnostic tests - such as those based on medical imaging - for which ratings have been obtained from multiple readers and on multiple cases. Features of the package include the following.
Enter the following at the R console to install the package.
To cite MRMCaov in publications, please use the following two
references, including the R package URL.
Smith BJ, Hillis SL, Pesce LL (2023). _MCMCaov: Multi-Reader
Multi-Case Analysis of Variance_. R package version 0.3.0,
<https://github.com/brian-j-smith/MRMCaov>.
Smith BJ, Hillis SL (2020). "Multi-reader multi-case analysis of
variance software for diagnostic performance comparison of imaging
modalities." In Samuelson F, Taylor-Phillips S (eds.), _Proceedings
of SPIE 11316, Medical Imaging 2020: Image Perception, Observer
Performance, and Technology Assessment_, 113160K.
doi:10.1117/12.2549075 <https://doi.org/10.1117/12.2549075>,
<https://pubmed.ncbi.nlm.nih.gov/32351258>.
To see these entries in BibTeX format, use 'print(<citation>,
bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.
@Manual{MRMCaov-package,
author = {Brian J Smith and Stephen L Hillis and Lorenzo L Pesce},
title = {{MCMCaov}: Multi-Reader Multi-Case Analysis of Variance},
year = {2023},
note = {R package version 0.3.0},
url = {https://github.com/brian-j-smith/MRMCaov},
}
@InProceedings{MRMCaov-SPIE2020,
author = {Brian J. Smith and Stephen L. Hillis},
title = {Multi-reader multi-case analysis of variance software for diagnostic performance comparison of imaging modalities},
booktitle = {Proceedings of SPIE 11316, Medical Imaging 2020: Image Perception, Observer Performance, and Technology Assessment},
editor = {Frank Samuelson and Sian Taylor-Phillips},
month = {16 March},
year = {2020},
pages = {113160K},
doi = {10.1117/12.2549075},
url = {https://pubmed.ncbi.nlm.nih.gov/32351258},
}
A common study design for comparing the diagnostic performance of imaging modalities, or diagnostic tests, is to obtain modality-specific ratings from multiple readers of multiple cases (MRMC) whose true statuses are known. In such a design, receiver operating characteristic (ROC) indices, such as area under the ROC curve (ROC AUC), can be used to quantify correspondence between reader ratings and case status. Indices can then be compared statistically to determine if there are differences between modalities. However, special statistical methods are needed when readers or cases represent a random sample from a larger population of interest and there is overlap between modalities, readers, and/or cases. An ANOVA model designed for these characteristics of MRMC studies was initially proposed by Dorfman et al. (Dorfman, Berbaum, and Metz 1992) and Obuchowski and Rockette (Obuchowski and Rockette 1995) and later unified and improved by Hillis and colleagues (Hillis et al. 2005; Hillis 2007, 2018; Hillis, Berbaum, and Metz 2008). Their models are implemented in the MRMCaov R package (Smith, Hillis, and Pesce 2022).
MRMCaov implements multi-reader multi-case analysis based on the Obuchowski and Rockette (1995) analysis of variance (ANOVA) model \[ \hat{\theta}_{ij} = \mu + \tau_i + R_j + (\tau R)_{ij} + \epsilon_{ij}, \] where \(i = 1,\ldots,t\) and \(j = 1,\ldots,r\) index diagnostic tests and readers; \(\hat{\theta}_{ij}\) is a reader performance metric, such as ROC AUC, estimated over multiple cases; \(\mu\) an overall study mean; \(\tau_i\) a fixed test effect; \(R_j\) a random reader effect; \((\tau R)_{ij}\) a random test \(\times\) reader interaction effect; and \(\epsilon_{ij}\) a random error term. The random terms \(R_j\), \((\tau R)_{ij}\), and \(\epsilon_{ij}\) are assumed to be mutually independent and normally distributed with 0 means and variances \(\sigma^2_R\), \(\sigma^2_{TR}\), and \(\sigma^2_\epsilon\).
The error covariances between tests and between readers are further assumed to be equal, resulting in the three covariances \[ \text{Cov}(\epsilon_{ij}, \epsilon_{i'j'}) = \left\{ \begin{array}{lll} \text{Cov}_1 & i \ne i', j = j' & \text{(different test, same reader)} \\ \text{Cov}_2 & i = i', j \ne j' & \text{(same test, same reader)} \\ \text{Cov}_3 & i \ne i', j \ne j' & \text{(different test, different reader)}. \end{array} \right. \] Obuchowski and Rockette (1995) suggest a covariance ordering of \(\text{Cov}_1 \ge \text{Cov}_2 \ge \text{Cov}_3 \ge 0\) based on clinical considerations. Hillis (2014) later showed that these can be replaced with the less restrictive orderings \(\text{Cov}_1 \ge \text{Cov}_3\), \(\text{Cov}_2 \ge \text{Cov}_3\), and \(\text{Cov}_3 \ge 0\). Alternatively, the covariance can be specified as the population correlations \(\rho_i = \text{Cov}_i / \sigma^2_\epsilon\).
In the Obuchowski-Rockette ANOVA model, \(\sigma^2_\epsilon\) can be interpreted as the performance metric variance for a single fixed reader and test; and \(\text{Cov}_1\), \(\text{Cov}_2\), and \(\text{Cov}_3\) as the performance metric covariances for the same reader of two different tests, two different readers of the same test, and two different readers of two different tests. These error variance and covariance parameters are estimated in the package by averaging the reader and test-specific estimates computed using jackknifing (Efron 1982) or, for empirical ROC AUC, an unbiased estimator (Gallas, Pennello, and Meyers 2007) or the method of DeLong (DeLong, DeLong, and Clarke-Pearson 1988).
Use of the MRMCaov package is illustrated with data from a study comparing the relative performance of cinematic presentation of MRI (CINE MRI) to single spin-echo magnetic resonance imaging (SE MRI) for the detection of thoracic aortic dissection (VanDyke et al. 1993). In the study, 45 patients with aortic dissection and 69 without dissection were imaged with both modalities. Based on the images, five radiologists rated patients disease statuses as 1 = definitely no aortic dissection, 2 = probably no aortic dissection, 3 = unsure about aortic dissection, 4 = probably aortic dissection, or 5 = definitely aortic dissection. Interest lies in estimating ROC curves for each combination of reader and modality and in comparing modalities with respect to summary statistics from the curves. The study data are included in the package as a data frame named VanDyke
.
## reader treatment case truth rating case2 case3
## 1 1 1 1 0 1 1.1 1.1
## 2 1 2 1 0 3 1.1 2.1
## 3 2 1 1 0 2 2.1 1.1
## 4 2 2 1 0 3 2.1 2.1
## 5 3 1 1 0 2 3.1 1.1
## 6 3 2 1 0 2 3.1 2.1
## 7 4 1 1 0 1 4.1 1.1
## 8 4 2 1 0 2 4.1 2.1
## 9 5 1 1 0 3 5.1 1.1
## 10 5 2 1 0 2 5.1 2.1
## 11 1 1 2 0 2 1.2 1.2
## 12 1 2 2 0 3 1.2 2.2
## 13 2 1 2 0 3 2.2 1.2
## 14 2 2 2 0 2 2.2 2.2
## 15 3 1 2 0 2 3.2 1.2
## 16 3 2 2 0 4 3.2 2.2
## 17 4 1 2 0 1 4.2 1.2
## 18 4 2 2 0 2 4.2 2.2
## 19 5 1 2 0 5 5.2 1.2
## 20 5 2 2 0 2 5.2 2.2
## ... with 1120 more rows
The study employed a factorial design in which each of the five radiologists read and rated both the CINE and SE MRI images from all 114 cases. The original study variables in the VanDyke
data frame are summarized below along with two additional case2
and case3
variables that represent hypothetical study designs in which cases are nested within readers (reader
) and within imaging modalities (treatment
), respectively.
Variable | Description |
---|---|
reader |
unique identifiers for the five radiologists |
treatment |
identifiers for the imaging modality (1 = CINE MRI, 2 = SE MRI) |
case |
identifiers for the 114 cases |
truth |
indicator for thoracic aortic dissection (1 = performed, 0 = not performed) |
rating |
five-point ratings given to case images by the readers |
case2 |
example identifiers representing nesting of cases within readers |
case3 |
example identifiers representing nesting of cases within treatments |
Data from other studies may be analyzed with the package and should follow the format of VanDyke
with columns for reader, treatment, and case identifiers as well as true event statuses and reader ratings. The variable names, however, may be different.
A multi-reader multi-case (MRMC) analysis, as the name suggests, involves multiple readers of multiple cases to compare reader performance metrics across two or more diagnostic tests. An MRMC analysis can be performed with a call to the mrmc()
function to specify a reader performance metric, study variables and observations, and covariance estimation method.
MRMC Function
mrmc(response, test, reader, case, data, cov = jackknife)
Description
Returns an
mrmc
class object of data that can be used to estimate and compare reader performance metrics in a multi-reader multi-case statistical analysis.Arguments
response
: object defining true case statuses, corresponding reader ratings, and a reader performance metric to compute on them.test
,reader
,case
: variables containing the test, reader, and case identifiers for theresponse
observations.data
: data frame containing the response and identifier variables.cov
: functionjackknife
,unbiased
, orDeLong
to estimate reader performance metric covariances.
The response variable in the mrmc()
specification is defined with one of the performance metrics described in the following sections. Results from mrmc()
can be displayed with print()
and passed to summary()
for statistical comparisons of the diagnostic tests. The summary call produces ANOVA results from a global test of equality of ROC AUC means across all tests and statistical tests of pairwise differences, along with confidence intervals for the differences and intervals for individual tests.
MRMC Summary Function
summary(object, conf.level = 0.95)
Description
Returns a
summary.mrmc
class object of statistical results from a multi-reader multi-case analysis.Arguments
object
: results frommrmc()
.conf.level
: confidence level for confidence intervals.
Area under the ROC curve is a measure of concordance between numeric reader ratings and true binary case statuses. It provides an estimate of the probability that a randomly selected positive case will have a higher rating than a negative case. ROC AUC values range from 0 to 1, with 0.5 representing no concordance and 1 perfect concordance. AUC can be computed with the functions described below for binormal, binormal likelihood-ratio, and empirical ROC curves. Empirical curves are also referred to as trapezoidal. The functions also support calculation of partial AUC over a range of sensitivities or specificities.
ROC AUC Functions
binormal_auc(truth, rating, partial = FALSE, min = 0, max = 1, normalize = FALSE)
binormalLR_auc(truth, rating, partial = FALSE, min = 0, max = 1, normalize = FALSE)
empirical_auc(truth, rating, partial = FALSE, min = 0, max = 1, normalize = FALSE)
trapezoidal_auc(truth, rating, partial = FALSE, min = 0, max = 1, normalize = FALSE)
Description
Returns computed area under the receiver operating character curve estimated with a binormal model (
binormal_auc
), binormal likelihood-ratio model (binormalLR_auc
), or empirically (empirical_auc
ortrapezoidal_auc
).Arguments
truth
: vector of true binary case statuses, with positive status taken to be the highest level.rating
: numeric vector of case ratings.partial
: character string"sensitivity"
or"specificity"
for calculation of partial AUC, orFALSE
for full AUC. Partial matching of the character strings is allowed. A value of"specificity"
results in area under the ROC curve between the givenmin
andmax
specificity values, whereas"sensitivity"
results in area to the right of the curve between the given sensitivity values.min
,max
: minimum and maximum sensitivity or specificity values over which to calculate partial AUC.normalize
: logical indicating whether partial AUC is divided by the interval width (max - min
) over which it is calculated.
In the example below, mrmc()
is called to compare CINE MRI and SE MRI treatments in an MRMC analysis of areas under binormal ROC curves computed for the readers of cases in the VanDyke study.
## Compare ROC AUC treatment means for the VanDyke example
est <- mrmc(
binormal_auc(truth, rating), treatment, reader, case, data = VanDyke
)
## Warning in binormal_params(data$truth, data$rating, ...):
## Binormal curve fit has AUC = 1 due to lack of interior points.
## Consider fitting an empirical curve instead.
The print()
function can be applied to mrmc()
output to display information about the reader performance metrics, including the
truth
(1) defining positive case status,data$binormal_auc
) for each test ($treatment
) and reader ($reader
),N
), andShow MRMC Performance Metrics
## Call:
## mrmc(response = binormal_auc(truth, rating), test = treatment,
## reader = reader, case = case, data = VanDyke)
##
## Positive truth status: 1
##
## Response metric data:
##
## # A tibble: 10 × 2
## N data$binormal_auc $treatment $reader
## <dbl> <dbl> <fct> <fct>
## 1 114 0.933 1 1
## 2 114 0.890 1 2
## 3 114 0.929 1 3
## 4 114 0.970 1 4
## 5 114 0.833 1 5
## 6 114 0.951 2 1
## 7 114 0.935 2 2
## 8 114 0.928 2 3
## 9 114 1 2 4
## 10 114 0.945 2 5
##
## ANOVA Table:
##
## Df Sum Sq Mean Sq
## treatment 1 0.0041142 0.0041142
## reader 4 0.0104325 0.0026081
## treatment:reader 4 0.0037916 0.0009479
##
##
## Obuchowski-Rockette error variance and covariance estimates:
##
## Estimate Correlation
## Error 0.0010790500 NA
## Cov1 0.0003125013 0.2896078
## Cov2 0.0003115986 0.2887713
## Cov3 0.0001937688 0.1795735
MRMC statistical tests are performed with a call to summary()
. Results include a test of the global null hypothesis that performances are equal across all diagnostic tests, tests of their pairwise mean differences, and estimated mean performances for each one.
Show MRMC Test Results
## Multi-Reader Multi-Case Analysis of Variance
## Data: VanDyke
## Factor types: Random Readers and Random Cases
## Covariance method: jackknife
##
## Experimental design: factorial
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Estimate Correlation
## reader 0.0007113799 NA
## treatment:reader 0.0002991713 NA
## Error 0.0010790500 NA
## Cov1 0.0003125013 0.2896078
## Cov2 0.0003115986 0.2887713
## Cov3 0.0001937688 0.1795735
##
##
## ANOVA global test of equal treatment binormal_auc:
## MS(T) MS(T:R) Cov2 Cov3 Denominator F df1
## 1 0.004114188 0.0009478901 0.0003115986 0.0001937688 0.001537039 2.676697 1
## df2 p-value
## 1 10.51753 0.1313668
##
##
## 95% CIs and tests for treatment binormal_auc pairwise differences:
## Comparison Estimate StdErr df CI.Lower CI.Upper t
## 1 1 - 2 -0.04056692 0.02479548 10.51753 -0.09544840 0.01431455 -1.636061
## p-value
## 1 0.1313668
##
##
## 95% treatment binormal_auc CIs (each analysis based only on data for the
## specified treatment):
## Estimate MS(R) Cov2 StdErr df CI.Lower CI.Upper
## 1 0.9109867 0.0027417526 0.0004612201 0.03177374 13.55866 0.8426301 0.9793433
## 2 0.9515536 0.0008142524 0.0001619772 0.01802298 15.91432 0.9133299 0.9897774
ROC curves estimated by mrmc()
can be displayed with plot()
and their parameters extracted with parameters()
.
Show MRMC ROC Curves
## Warning in binormal_params(data$truth, data$rating, ...):
## Binormal curve fit has AUC = 1 due to lack of interior points.
## Consider fitting an empirical curve instead.
Show MRMC ROC Curve Parameters
## Warning in binormal_params(data$truth, data$rating, ...):
## Binormal curve fit has AUC = 1 due to lack of interior points.
## Consider fitting an empirical curve instead.
## # A tibble: 10 × 3
## Group$reader $treatment a b
## <fct> <fct> <dbl> <dbl>
## 1 1 1 1.70 0.537
## 2 2 1 1.40 0.561
## 3 3 1 1.74 0.635
## 4 4 1 1.93 0.202
## 5 5 1 1.06 0.464
## 6 1 2 1.85 0.503
## 7 2 2 1.66 0.447
## 8 3 2 1.62 0.488
## 9 4 2 Inf 1
## 10 5 2 1.73 0.422
As an alternative to AUC as a summary of ROC curves, Abbey et al. (2013) propose an expected utility metric defined as \[ \text{EU} = \max_\text{FPR}(\text{TPR}(\text{FPR}) - \beta \times \text{FPR}), \] where \(\text{TPR}(\text{FPR})\) are true positive rates on the ROC curve, and FPR are false positive rates ranging from 0 to 1.
ROC Curve Expected Utility Functions
binormal_eu(truth, rating, slope = 1)
binormalLR_eu(truth, rating, slope = 1)
empirical_eu(truth, rating, slope = 1)
trapezoidal_eu(truth, rating, slope = 1)
Description
Returns expected utility of an ROC curve.
Arguments
truth
: vector of true binary case statuses, with positive status taken to be the highest level.rating
: numeric vector of case ratings.slope
: numeric slope (\(\beta\)) at which to compute expected utility.
Functions are provided to extract sensitivity from an ROC curve for a given specificity and vice versa.
ROC Curve Sensitivity and Specificity Functions
binormal_sens(truth, rating, spec)
binormal_spec(truth, rating, sens)
binormalLR_sens(truth, rating, spec)
binormalLR_spec(truth, rating, sens)
empirical_sens(truth, rating, spec)
empirical_spec(truth, rating, sens)
trapezoidal_sens(truth, rating, spec)
trapezoidal_spec(truth, rating, sens)
Description
Returns the sensitivity/specificity from an ROC curve at a specified specificity/sensitivity.
Arguments
truth
: vector of true binary case statuses, with positive status taken to be the highest level.rating
: numeric vector of case ratings.spec
,sens
: specificity/sensitivity on the ROC curve at which to return sensitivity/specificity.
Metrics for binary reader ratings are also available.
Sensitivity and Specificity Functions
binary_sens(truth, rating)
binary_spec(truth, rating)
Description
Returns the sensitivity or specificity.
Arguments
truth
: vector of true binary case statuses, with positive status taken to be the highest level.rating
: factor or numeric vector of 0-1 binary ratings.
## Compare sensitivity for binary classification
VanDyke$binary_rating <- VanDyke$rating >= 3
est <- mrmc(
binary_sens(truth, binary_rating), treatment, reader, case, data = VanDyke
)
Show MRMC Performance Metrics
## Call:
## mrmc(response = binary_sens(truth, binary_rating), test = treatment,
## reader = reader, case = case, data = VanDyke)
##
## Positive truth status: 1
##
## Response metric data:
##
## # A tibble: 10 × 2
## N data$binary_sens $treatment $reader
## <dbl> <dbl> <fct> <fct>
## 1 45 0.889 1 1
## 2 45 0.778 1 2
## 3 45 0.822 1 3
## 4 45 0.933 1 4
## 5 45 0.689 1 5
## 6 45 0.978 2 1
## 7 45 0.822 2 2
## 8 45 0.911 2 3
## 9 45 1 2 4
## 10 45 0.889 2 5
##
## ANOVA Table:
##
## Df Sum Sq Mean Sq
## treatment 1 0.023901 0.0239012
## reader 4 0.049679 0.0124198
## treatment:reader 4 0.007210 0.0018025
##
##
## Obuchowski-Rockette error variance and covariance estimates:
##
## Estimate Correlation
## Error 0.0023681257 NA
## Cov1 0.0009943883 0.4199052
## Cov2 0.0010145903 0.4284360
## Cov3 0.0006604938 0.2789100
Show MRMC Test Results
## Multi-Reader Multi-Case Analysis of Variance
## Data: VanDyke
## Factor types: Random Readers and Random Cases
## Covariance method: jackknife
##
## Experimental design: factorial
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Estimate Correlation
## reader 0.0049747475 NA
## treatment:reader 0.0007828283 NA
## Error 0.0023681257 NA
## Cov1 0.0009943883 0.4199052
## Cov2 0.0010145903 0.4284360
## Cov3 0.0006604938 0.2789100
##
##
## ANOVA global test of equal treatment binary_sens:
## MS(T) MS(T:R) Cov2 Cov3 Denominator F df1
## 1 0.02390123 0.001802469 0.00101459 0.0006604938 0.003572952 6.689493 1
## df2 p-value
## 1 15.71732 0.02008822
##
##
## 95% CIs and tests for treatment binary_sens pairwise differences:
## Comparison Estimate StdErr df CI.Lower CI.Upper t
## 1 1 - 2 -0.09777778 0.03780451 15.71732 -0.1780371 -0.0175185 -2.586405
## p-value
## 1 0.02008822
##
##
## 95% treatment binary_sens CIs (each analysis based only on data for the
## specified treatment):
## Estimate MS(R) Cov2 StdErr df CI.Lower CI.Upper
## 1 0.8222222 0.009135802 0.001646465 0.05893747 14.456811 0.6961876 0.9482568
## 2 0.9200000 0.005086420 0.000382716 0.03741657 7.575855 0.8328691 1.0000000
Special statistical methods are needed in MRMC analyses to estimate covariances between performance metrics from different readers and tests when cases are treated as a random sample and are rated by more than one reader or evaluated with more than one test. For this estimation, the package provides the DeLong method (DeLong, DeLong, and Clarke-Pearson 1988), jackknifing (Efron 1982), and an unbiased method (Gallas, Pennello, and Meyers 2007). The applicability of each depends on the study design as well as the performance metric being analyzed. DeLong is appropriate for a balanced factorial design and empirical ROC AUC, jackknifing for any design and metric, and unbiased for any design and empirical ROC AUC.
Covariance Method | Study Design | Metric | Function |
---|---|---|---|
DeLong | Factorial | Empirical ROC AUC | DeLong() |
Jackknife | Any | Any | jackknife() |
Unbiased | Any | Empirical ROC AUC | unbiased() |
Jackknifing is the default covariance method for mrmc()
. Others can be specified with its cov
argument.
## DeLong method
est <- mrmc(
empirical_auc(truth, rating), treatment, reader, case, data = VanDyke,
cov = DeLong
)
Show MRMC Test Results
## Multi-Reader Multi-Case Analysis of Variance
## Data: VanDyke
## Factor types: Random Readers and Random Cases
## Covariance method: DeLong
##
## Experimental design: factorial
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Estimate Correlation
## reader 0.0015364254 NA
## treatment:reader 0.0002045840 NA
## Error 0.0007921325 NA
## Cov1 0.0003420090 0.4317573
## Cov2 0.0003395265 0.4286234
## Cov3 0.0002358497 0.2977402
##
##
## ANOVA global test of equal treatment empirical_auc:
## MS(T) MS(T:R) Cov2 Cov3 Denominator F df1
## 1 0.004796171 0.0005510306 0.0003395265 0.0002358497 0.001069415 4.484854 1
## df2 p-value
## 1 15.06611 0.05123303
##
##
## 95% CIs and tests for treatment empirical_auc pairwise differences:
## Comparison Estimate StdErr df CI.Lower CI.Upper
## 1 1 - 2 -0.04380032 0.0206825 15.06611 -0.0878671960 0.0002665519
## t p-value
## 1 -2.117747 0.05123303
##
##
## 95% treatment empirical_auc CIs (each analysis based only on data for the
## specified treatment):
## Estimate MS(R) Cov2 StdErr df CI.Lower CI.Upper
## 1 0.8970370 0.003082629 0.0004775239 0.03307642 12.59597 0.8253461 0.9687280
## 2 0.9408374 0.001304602 0.0002015292 0.02150464 12.56530 0.8942155 0.9874592
## Unbiased method
est <- mrmc(
empirical_auc(truth, rating), treatment, reader, case, data = VanDyke,
cov = unbiased
)
Show MRMC Test Results
## Multi-Reader Multi-Case Analysis of Variance
## Data: VanDyke
## Factor types: Random Readers and Random Cases
## Covariance method: unbiased
##
## Experimental design: factorial
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Estimate Correlation
## reader 0.0015365290 NA
## treatment:reader 0.0002077588 NA
## Error 0.0007883925 NA
## Cov1 0.0003416706 0.4333762
## Cov2 0.0003390650 0.4300713
## Cov3 0.0002356148 0.2988547
##
##
## ANOVA global test of equal treatment empirical_auc:
## MS(T) MS(T:R) Cov2 Cov3 Denominator F df1
## 1 0.004796171 0.0005510306 0.000339065 0.0002356148 0.001068281 4.489614 1
## df2 p-value
## 1 15.03418 0.0511618
##
##
## 95% CIs and tests for treatment empirical_auc pairwise differences:
## Comparison Estimate StdErr df CI.Lower CI.Upper
## 1 1 - 2 -0.04380032 0.02067154 15.03418 -0.0878519409 0.0002512968
## t p-value
## 1 -2.118871 0.0511618
##
##
## 95% treatment empirical_auc CIs (each analysis based only on data for the
## specified treatment):
## Estimate MS(R) Cov2 StdErr df CI.Lower CI.Upper
## 1 0.8970370 0.003082629 0.0004771788 0.0330712 12.58802 0.8253526 0.9687214
## 2 0.9408374 0.001304602 0.0002009512 0.0214912 12.53391 0.8942323 0.9874424
By default, readers and cases are treated as random effects by mrmc()
. Random effects are the appropriate designations when inference is intended for the larger population from which study readers and cases are considered to be a random sample. Either, but not both, can be specified as fixed effects with the fixed()
function in applications where study readers or cases make up the entire group to which inference is intended. When readers are designated as fixed, mrmc()
test results additionally include reader-specific pairwise comparisons of the diagnostic tests as well as mean estimates of the performance metric for each reader-test combination.
## Fixed readers
est <- mrmc(
empirical_auc(truth, rating), treatment, fixed(reader), case, data = VanDyke
)
Show MRMC Test Results
## Multi-Reader Multi-Case Analysis of Variance
## Data: VanDyke
## Factor types: Fixed Readers and Random Cases
## Covariance method: jackknife
##
## Experimental design: factorial
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Estimate Correlation
## reader 0.0015349993 NA
## treatment:reader 0.0002004025 NA
## Error 0.0008022883 NA
## Cov1 0.0003466137 0.4320314
## Cov2 0.0003440748 0.4288668
## Cov3 0.0002390284 0.2979333
##
##
## ANOVA global test of equal treatment empirical_auc:
## MS(T) Cov1 Cov2 Cov3 Denominator X2 df
## 1 0.004796171 0.0003466137 0.0003440748 0.0002390284 0.0008758604 5.475953 1
## p-value
## 1 0.01927984
##
##
## 95% CIs and tests for treatment empirical_auc pairwise differences:
## Comparison Estimate StdErr CI.Lower CI.Upper z
## 1 1 - 2 -0.04380032 0.01871748 -0.08048591 -0.00711473 -2.340075
## p-value
## 1 0.01927984
##
##
## 95% treatment empirical_auc CIs (each analysis based only on data for the
## specified treatment):
## Estimate Var(Error) Cov2 StdErr CI.Lower CI.Upper
## 1 0.8970370 0.0010141028 0.0004839618 0.02428971 0.8494301 0.9446440
## 2 0.9408374 0.0005904738 0.0002041879 0.01677632 0.9079564 0.9737183
##
##
## Reader-specific 95% CIs and tests for empirical_auc pairwise differences (each
## analysis based only on data for the specified reader):
## Reader Comparison Estimate StdErr CI.Lower CI.Upper z
## 1 1 1 - 2 -0.02818035 0.02551213 -0.078183215 0.021822507 -1.1045864
## 2 2 1 - 2 -0.04653784 0.02630183 -0.098088476 0.005012792 -1.7693768
## 3 3 1 - 2 -0.01787440 0.03120965 -0.079044180 0.043295388 -0.5727202
## 4 4 1 - 2 -0.02624799 0.01729129 -0.060138290 0.007642316 -1.5179891
## 5 5 1 - 2 -0.10016103 0.04405746 -0.186512066 -0.013809995 -2.2734182
## p-value
## 1 0.26933885
## 2 0.07683102
## 3 0.56683414
## 4 0.12901715
## 5 0.02300099
##
##
## Single reader 95% CIs:
## empirical_auc treatment reader StdErr CI.Lower CI.Upper
## 1 0.9196457 1 1 0.0301255164 0.8606008 0.9786907
## 2 0.8587762 1 2 0.0363753335 0.7874818 0.9300705
## 3 0.9038647 1 3 0.0282594118 0.8484773 0.9592522
## 4 0.9731079 1 4 0.0173388332 0.9391244 1.0000000
## 5 0.8297907 1 5 0.0417201720 0.7480206 0.9115607
## 6 0.9478261 2 1 0.0221416887 0.9044292 0.9912230
## 7 0.9053140 2 2 0.0298151099 0.8468775 0.9637506
## 8 0.9217391 2 3 0.0297673065 0.8633963 0.9800820
## 9 0.9993559 2 4 0.0007213348 0.9979421 1.0000000
## 10 0.9299517 2 5 0.0262023046 0.8785961 0.9813073
## Fixed cases
est <- mrmc(
empirical_auc(truth, rating), treatment, reader, fixed(case), data = VanDyke
)
Show MRMC Test Results
## Multi-Reader Multi-Case Analysis of Variance
## Data: VanDyke
## Factor types: Random Readers and Fixed Cases
## Experimental design: factorial
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Not applicable because cases are fixed
##
##
## ANOVA global test of equal treatment empirical_auc:
## MS(T) MS(T:R) F df1 df2 p-value
## 1 0.004796171 0.0005510306 8.704 1 4 0.04195875
##
##
## 95% CIs and tests for treatment empirical_auc pairwise differences:
## Comparison Estimate df StdErr CI.Lower CI.Upper t
## 1 1 - 2 -0.04380032 4 0.01484629 -0.08502022 -0.00258042 -2.950254
## p-value
## 1 0.04195875
##
##
## 95% treatment empirical_auc CIs (each analysis based only on data for the
## specified treatment):
## Estimate MS(R) StdErr df CI.Lower CI.Upper
## 1 0.8970370 0.003082629 0.02482994 4 0.8280981 0.9659760
## 2 0.9408374 0.001304602 0.01615303 4 0.8959894 0.9856854
MRMCaov supports factorial, nested, and partially paired study designs. In a factorial design, one set of cases is evaluated by all readers and tests. This is the design employed by the VanDyke study as indicated by its dataset case
identifier values which appear within each combination of the reader
and treatment
identifiers. Designs in which a different set of cases is evaluated by each reader or with each test can be specified with unique codings of case identifiers within the corresponding nesting factor. Example codings for these two nested designs are included in the VanDyke
dataset as case2
and case3
. The case2
identifiers differ from reader to reader and thus represent a study design in which cases are nested within readers. Likewise, the case3
identifiers differ by test and are an example design of cases nested within tests. Additionally, the package supports partially paired designs in which ratings may not be available on all cases for some readers or tests; e.g., as a result of missing values. Nested and partially paired designs require specification of jackknife (default) or unbiased as the covariance estimation method.
## Case identifier codings for factorial and nested study designs
## Observation
## Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## reader 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4
## treatment 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
## case 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
## case2 1.1 1.1 2.1 2.1 3.1 3.1 4.1 4.1 5.1 5.1 1.2 1.2 2.2 2.2 3.2 3.2 4.2
## case3 1.1 2.1 1.1 2.1 1.1 2.1 1.1 2.1 1.1 2.1 1.2 2.2 1.2 2.2 1.2 2.2 1.2
## Observation
## Factor 18 19 20 21 22 23 24 25 26 27 28 29 30
## reader 4 5 5 1 1 2 2 3 3 4 4 5 5
## treatment 2 1 2 1 2 1 2 1 2 1 2 1 2
## case 2 2 2 3 3 3 3 3 3 3 3 3 3
## case2 4.2 5.2 5.2 1.3 1.3 2.3 2.3 3.3 3.3 4.3 4.3 5.3 5.3
## case3 2.2 1.2 2.2 1.3 2.3 1.3 2.3 1.3 2.3 1.3 2.3 1.3 2.3
## ... with 1110 more observations
## Cases nested within readers
est <- mrmc(
empirical_auc(truth, rating), treatment, reader, case2, data = VanDyke
)
Show MRMC Test Results
## Multi-Reader Multi-Case Analysis of Variance
## Data: VanDyke
## Factor types: Random Readers and Random Cases
## Covariance method: jackknife
##
## Experimental design: cases nested within reader
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Estimate Correlation
## reader 1.293517e-03 NA
## treatment:reader 9.213005e-05 NA
## Error 8.079682e-04 NA
## Cov1 3.490676e-04 0.4320314
## Cov2 0.000000e+00 0.0000000
## Cov3 0.000000e+00 0.0000000
##
##
## ANOVA global test of equal treatment empirical_auc:
## MS(T) MS(T:R) Cov2 Cov3 Denominator F df1 df2 p-value
## 1 0.004796171 0.0005510306 0 0 0.0005510306 8.704 1 4 0.04195875
##
##
## 95% CIs and tests for treatment empirical_auc pairwise differences:
## Comparison Estimate StdErr df CI.Lower CI.Upper t
## 1 1 - 2 -0.04380032 0.01484629 4 -0.08502022 -0.00258042 -2.950254
## p-value
## 1 0.04195875
##
##
## 95% treatment empirical_auc CIs (each analysis based only on data for the
## specified treatment):
## Estimate MS(R) Cov2 StdErr df CI.Lower CI.Upper
## 1 0.8970370 0.003082629 0 0.02482994 4 0.8280981 0.9659760
## 2 0.9408374 0.001304602 0 0.01615303 4 0.8959894 0.9856854
## Cases nested within tests
est <- mrmc(
empirical_auc(truth, rating), treatment, reader, case3, data = VanDyke
)
Show MRMC Test Results
## Multi-Reader Multi-Case Analysis of Variance
## Data: VanDyke
## Factor types: Random Readers and Random Cases
## Covariance method: jackknife
##
## Experimental design: cases nested within treatment
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Estimate Correlation
## reader 1.642585e-03 NA
## treatment:reader 9.078969e-05 NA
## Error 8.058382e-04 NA
## Cov1 0.000000e+00 0.0000000
## Cov2 3.455973e-04 0.4288668
## Cov3 0.000000e+00 0.0000000
##
##
## ANOVA global test of equal treatment empirical_auc:
## MS(T) MS(T:R) Cov2 Cov3 Denominator F df1 df2
## 1 0.004796171 0.0005510306 0.0003455973 0 0.002279017 2.104491 1 68.42325
## p-value
## 1 0.1514363
##
##
## 95% CIs and tests for treatment empirical_auc pairwise differences:
## Comparison Estimate StdErr df CI.Lower CI.Upper t
## 1 1 - 2 -0.04380032 0.03019283 68.42325 -0.10404242 0.01644178 -1.450686
## p-value
## 1 0.1514363
##
##
## 95% treatment empirical_auc CIs (each analysis based only on data for the
## specified treatment):
## Estimate MS(R) Cov2 StdErr df CI.Lower CI.Upper
## 1 0.8970370 0.003082629 0.0004861032 0.03320586 12.79430 0.8251827 0.9688914
## 2 0.9408374 0.001304602 0.0002050913 0.02158730 12.75962 0.8941114 0.9875634
A single-reader multi-case (SRMC) analysis involves a single readers of multiple cases to compare reader performance metrics across two or more diagnostic tests. An SRMC analysis can be performed with a call to srmc()
.
SRMC Function
srmc(response, test, case, data, cov = jackknife)
Description
Returns an
srmc
class object of data that can be used to estimate and compare reader performance metrics in a single-reader multi-case statistical analysis.Arguments
response
: object defining true case statuses, corresponding reader ratings, and a reader performance metric to compute on them.test
,case
: variables containing the test and case identifiers for theresponse
observations.data
: data frame containing the response and identifier variables.cov
: functionjackknife
,unbiased
, orDeLong
to estimate reader performance metric covariances.
The function is used similar to mrmc()
but without the reader
argument. Below is an example SRMC analysis performed with one of the readers from the VanDyke
dataset.
## Subset VanDyke dataset by reader 1
VanDyke1 <- subset(VanDyke, reader == "1")
## Compare ROC AUC treatment means for reader 1
est <- srmc(binormal_auc(truth, rating), treatment, case, data = VanDyke1)
Show SRMC Performance Metrics
## Call:
## srmc(response = binormal_auc(truth, rating), test = treatment,
## case = case, data = VanDyke1)
##
## Positive truth status: 1
##
## Response metric data:
##
## # A tibble: 2 × 2
## N data$binormal_auc $treatment $reader
## <dbl> <dbl> <fct> <fct>
## 1 114 0.933 1 1
## 2 114 0.951 2 1
##
## ANOVA Table:
##
## Df Sum Sq Mean Sq
## treatment 1 0.00010393 0.00010393
## reader 0 0.00000000 0.00000000
## treatment:reader 0 0.00000000 0.00000000
##
##
## Obuchowski-Rockette error variance and covariance estimates:
##
## Estimate Correlation
## Error 0.0008371345 NA
## Cov1 0.0004275594 0.5107416
## Cov2 0.0000000000 0.0000000
## Cov3 0.0000000000 0.0000000
Show SRMC ROC Curve Parameters
## # A tibble: 2 × 3
## Group$reader $treatment a b
## <fct> <fct> <dbl> <dbl>
## 1 1 1 1.70 0.537
## 2 1 2 1.85 0.503
Show SRMC Test Results
## Single-Reader Multi-Case Analysis of Variance
## Data: VanDyke1
## Factor types: Fixed Readers and Random Cases
## Covariance method: jackknife
##
## Experimental design: cases nested within reader
##
## Obuchowski-Rockette variance component and covariance estimates:
##
## Estimate Correlation
## Error 0.0008371345 NA
## Cov1 0.0004275594 0.5107416
## Cov2 0.0000000000 0.0000000
## Cov3 0.0000000000 0.0000000
##
##
## 95% CIs and tests for treatment binormal_auc pairwise differences:
## Comparison Estimate StdErr CI.Lower CI.Upper z p-value
## 1 1 - 2 -0.01765763 0.0286208 -0.07375337 0.03843810 -0.616951 0.537267
##
##
## Single reader 95% CIs:
## binormal_auc treatment reader StdErr CI.Lower CI.Upper
## 1 0.9331609 1 1 0.03348342 0.8675346 0.9987872
## 2 0.9508186 2 1 0.02351871 0.9047228 0.9969144
A single-test and single-reader multi-case (STMC) analysis involves a single reader of multiple cases to estimate a reader performance metric for one diagnostic test. An STMC analysis can be performed with a call to stmc()
.
STMC Function
stmc(response, case, data, cov = jackknife)
Description
Returns an
stmc
class object of data that can be used to estimate a reader performance metric in a single-test and single-reader multi-case statistical analysis.Arguments
response
: object defining true case statuses, corresponding reader ratings, and a reader performance metric to compute on them.case
: variable containing the case identifiers for theresponse
observations.data
: data frame containing the response and identifier variables.cov
: functionjackknife
,unbiased
, orDeLong
to estimate reader performance metric covariances.
The function is used similar to mrmc()
but without the test
and reader
arguments. In the following example, an STMC analysis is performed with one of the tests and readers from the VanDyke
dataset.
## Subset VanDyke dataset by treatment 1 and reader 1
VanDyke11 <- subset(VanDyke, treatment == "1" & reader == "1")
## Estimate ROC AUC for treatment 1 and reader 1
est <- stmc(binormal_auc(truth, rating), case, data = VanDyke11)
Show STMC ROC Curve Parameters
## # A tibble: 1 × 2
## a b
## <dbl> <dbl>
## 1 1.70 0.537
Show STMC ROC AUC Estimate
## binormal_auc StdErr CI.Lower CI.Upper
## 0.93316094 0.03348342 0.86753465 0.99878723
ROC curves can be estimated, summarized, and displayed apart from a multi-case statistical analysis with the roc_curves()
function. Supported estimation methods include the empirical distribution (default), binormal model, and binormal likelihood-ratio model.
ROC Curves Function
roc_curves(truth, rating, groups = list(), method = "empirical")
Description
Returns an
roc_curves
class object of estimated ROC curves.Arguments
truth
: vector of true binary case statuses, with positive status taken to be the highest level.rating
: numeric vector of case ratings.groups
: list or data frame of grouping variables of the same lengths astruth
andrating
.method
: character string indicating the curve type as"binormal"
,"binormalLR"
,"empirical"
, or"trapezoidal"
.
A single curve can be estimated over all observations or multiple curves estimated within the levels of one or more grouping variables. Examples of both are given in the following sections using variables from the VanDyke
dataset referenced inside of calls to the with()
function. Alternatively, the variables may be referenced with the $
operator; e.g., VanDyke$truth
and VanDyke$rating
. Resulting curves from roc_curves()
can be displayed with the print()
and plot()
functions.
Multiple group-specific curves can be obtained from roc_curves()
by supplying a list or data frame of grouping variables to the groups
argument. Groups will be formed and displayed in the order in which grouping variables are supplied. For instance, a second grouping variable will be plotted within the first one.
Estimated parameters for curves obtained with the binormal or binormal likelihood-ratio models can be extracted as a data frame with the parameters()
function.
## Binormal curves
curves_binorm <- with(VanDyke, {
roc_curves(truth, rating,
groups = list(Treatment = treatment, Reader = reader),
method = "binormal")
})
## Warning in binormal_params(data$truth, data$rating, ...):
## Binormal curve fit has AUC = 1 due to lack of interior points.
## Consider fitting an empirical curve instead.
## # A tibble: 10 × 3
## Group$Treatment $Reader a b
## <fct> <fct> <dbl> <dbl>
## 1 1 1 1.70 0.537
## 2 2 1 1.85 0.503
## 3 1 2 1.40 0.561
## 4 2 2 1.66 0.447
## 5 1 3 1.74 0.635
## 6 2 3 1.62 0.488
## 7 1 4 1.93 0.202
## 8 2 4 Inf 1
## 9 1 5 1.06 0.464
## 10 2 5 1.73 0.422
Estimates for different parameterizations of the binormal likelihood-ratio model are additionally returned and include those of the binormal model and the simplification of Pan and Metz (1997; Metz and Pan 1999) as well as those of the bi-chi-squared model (Hillis 2017).
## Binormal likelihood-ratio curves
curves_binormLR <- with(VanDyke, {
roc_curves(truth, rating,
groups = list(Treatment = treatment, Reader = reader),
method = "binormalLR")
})
## Warning in binormalLR_params(data$truth, data$rating, ...):
## Likelihood ratio binormal curve fit has AUC = 1 due to lack of interior points.
## Consider fitting an empirical curve instead.
## # A tibble: 10 × 4
## Group$Treatment $Reader Metz$d_a $c bichisquared…¹ $theta binorma…²
## <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 2.13 -0.298 3.42 1.71e+ 0 1.71e+0
## 2 2 1 2.35 -0.321 3.79 1.70e+ 0 1.87e+0
## 3 1 2 1.73 -0.281 3.17 1.32e+ 0 1.40e+0
## 4 2 2 0.00700 -0.791 73.3 3.48e- 7 4.99e-3
## 5 1 3 0.0140 -0.746 47.0 2.22e- 6 9.99e-3
## 6 2 3 2.08 -0.330 3.94 1.23e+ 0 1.65e+0
## 7 1 4 0.000417 -0.932 797. 1.09e-10 2.95e-4
## 8 2 4 Inf 0 1 Inf Inf
## 9 1 5 0.895 -0.508 9.37 5.94e- 2 6.66e-1
## 10 2 5 2.02 -0.553 12.1 2.18e- 1 1.49e+0
## # … with 1 more variable: binormal$b <dbl>, and abbreviated variable names
## # ¹bichisquared$lambda, ²binormal$a
Points on an ROC curve estimated with roc_curves()
can be extracted with the points()
function. True positive rates (TPRs) and false positive rates (FPRs) on the estimated curve are returned for a given set of sensitivity or specificity values or, in the case of empirical curves, the original points. ROC curve points can be displayed with print()
and plot()
.
ROC Points Function
## Method for class 'roc_curves'
points(x, metric = "specificity", values = seq(0, 1, length = 101), ...)
## Method for class 'empirical_curves'
points(x, metric = "specificity", values = NULL, which = "curve", ...)
Description
Returns an
roc_points
class object that is a data frame of false positive and true positive rates from an estimated ROC curve.Arguments
x
: object fromroc_curves()
for which to compute points on the curves.metric
: character string specifying"specificity"
or"sensitivity"
as the reader performance metric to whichvalues
correspond.values
: numeric vector of values at which to compute ROC curve points, orNULL
for default empirical values as determined bywhich
.which
: character string indicating whether to use curve-specific observed values and 0 and 1 ("curve"
), the combination of these values over all curves ("curves"
), or only the observed curve-specific values ("observed"
).
## Extract points at given specificities
curve_spec_pts <- points(curves, metric = "spec", values = c(0.5, 0.7, 0.9))
print(curve_spec_pts)
## # A tibble: 30 × 3
## Group$Treatment $Reader FPR TPR
## * <fct> <fct> <dbl> <dbl>
## 1 1 1 0.1 0.862
## 2 1 1 0.3 0.908
## 3 1 1 0.5 0.935
## 4 2 1 0.1 0.843
## 5 2 1 0.3 0.966
## 6 2 1 0.5 0.978
## 7 1 2 0.1 0.747
## 8 1 2 0.3 0.821
## 9 1 2 0.5 0.872
## 10 2 2 0.1 0.821
## # … with 20 more rows
## Extract points at given sensitivities
curve_sens_pts <- points(curves, metric = "sens", values = c(0.5, 0.7, 0.9))
print(curve_sens_pts)
## # A tibble: 30 × 3
## Group$Treatment $Reader FPR TPR
## * <fct> <fct> <dbl> <dbl>
## 1 1 1 0.0116 0.5
## 2 1 1 0.0246 0.7
## 3 1 1 0.254 0.9
## 4 2 1 0 0.5
## 5 2 1 0 0.7
## 6 2 1 0.337 0.9
## 7 1 2 0.0130 0.5
## 8 1 2 0.0543 0.7
## 9 1 2 0.609 0.9
## 10 2 2 0 0.5
## # … with 20 more rows
A mean ROC curve from multiple group-specific curves returned by roc_curves()
can be computed with the means()
function. Curves can be averaged over sensitivities, specificities, or binormal parameters (Chen and Samuelson 2014). Averaged curves can be displayed with print()
and plot()
.
ROC Means Function
## Method for class 'roc_curves'
mean(x, ...)
## Method for class 'binormal_curves'
mean(x, method = "points", ...)
Description
Returns an
roc_points
class object.Arguments
x
: object fromroc_curves()
for which to average over the curves.method
: character string indicating whether to average binormal curves over"points"
or"parameters"
....
: optional arguments passed topoints()
, including at whichmetric
("sensitivity"
or"specificity"
) values to average points on the ROC curves.
## Average sensitivities at given specificities (default)
curves_mean <- mean(curves)
print(curves_mean)
## # A tibble: 20 × 2
## FPR TPR
## * <dbl> <dbl>
## 1 0 0
## 2 0 0.402
## 3 0.0145 0.686
## 4 0.0290 0.762
## 5 0.0435 0.790
## 6 0.0580 0.802
## 7 0.0725 0.813
## 8 0.101 0.835
## 9 0.116 0.844
## 10 0.130 0.852
## 11 0.159 0.862
## 12 0.188 0.872
## 13 0.319 0.904
## 14 0.362 0.912
## 15 0.435 0.925
## 16 0.638 0.956
## 17 0.667 0.961
## 18 0.696 0.966
## 19 0.913 0.992
## 20 1 1
## Average specificities at given sensitivities
curves_mean <- mean(curves, metric = "sens")
print(curves_mean)
## # A tibble: 23 × 2
## FPR TPR
## * <dbl> <dbl>
## 1 0 0
## 2 0.00698 0.511
## 3 0.00804 0.556
## 4 0.00899 0.578
## 5 0.00995 0.6
## 6 0.0109 0.622
## 7 0.0214 0.667
## 8 0.0280 0.689
## 9 0.0358 0.711
## 10 0.0450 0.733
## # … with 13 more rows
The reader performance metrics described previously for use with mrmc()
and related functions to analyze multi and single-reader multi-case studies can be applied to truth and rating vectors as stand-alone functions. This enables estimation of performance metrics for other applications, such as predictive modeling, that may be of interest.
AUC, partial AUC, sensitivity, and specificity are estimated below with an empirical ROC curve. Estimates with binormal and binormal likelihood-ratio curves can be obtained by replacing empirical
in the function names with binormal
and binormalLR
, respectively.
## [1] 0.9229791
## Partial area for specificity from 0.7 to 1.0
empirical_auc(VanDyke$truth, VanDyke$rating, partial = "spec", min = 0.70, max = 1.0)
## [1] 0.2499923
## Partial area for sensitivity from 0.7 to 1.0
empirical_auc(VanDyke$truth, VanDyke$rating, partial = "sens", min = 0.70, max = 1.0)
## [1] 0.2262129
## [1] 0.8812346
## [1] 0.94434
Sensitivity and specificity for binary ratings are available with the binary_sens()
and binary_spec()
functions as demonstrated in the next example based on a binary rating created from the numeric one in the VanDyke
dataset.
## Create binary classification
VanDyke$binary_rating <- VanDyke$rating >= 3
## Sensitivity
binary_sens(VanDyke$truth, VanDyke$binary_rating)
## [1] 0.8711111
## [1] 0.8478261
Abbey, Craig K, Frank W Samuelson, and Brandon D Gallas. 2013. “Statistical Power Considerations for a Utility Endpoint in Observer Performance Studies.” Academic Radiology 207: 798–806.
Chen, W, and Frank W Samuelson. 2014. “The Average Receiver Operating Characteristic Curve in Multireader Multicase Imaging Studies.” The British Journal of Radiology 87 (1040): 20140016.
DeLong, E R, D M DeLong, and D L Clarke-Pearson. 1988. “Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach.” Biometrics 44 (3): 837–45.
Dorfman, D D, K S Berbaum, and C E Metz. 1992. “Receiver Operating Characteristic Rating Analysis. Generalization to the Population of Readers and Patients with the Jackknife Method.” Investigative Radiology 27 (9): 723–31.
Efron, Bradley. 1982. The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: SIAM.
Gallas, B D, G A Pennello, and K J Meyers. 2007. “Multireader Multicase Variance Analysis for Binary Data.” Journal of the Optical Society of America A 24 (12): B70–B80.
Hillis, S L. 2007. “A Comparison of Denominator Degrees of Freedom Methods for Multiple Observer ROC Analysis.” Statistics in Medicine 26 (3): 596–619.
———. 2014. “A Marginal-Mean ANOVA Approach for Analyzing Mulitreader Multicase Radiological Imaging Data.” Statistics in Medicine 33 (2): 330–60.
———. 2017. “Equivalence of Binormal Likelihood-Ratio and Bi-Chi-Squared Roc Curve Models.” Statistics in Medicine 35 (12): 2031–57.
———. 2018. “Relationship Between Roe and Metz Simulation Model for Multireader Diagnostic Data and Obuchowski-Rockette Model Parameters.” Statistics in Medicine 37: 2067–93.
Hillis, S L, K S Berbaum, and C E Metz. 2008. “Recent Developments in the Dorfman-Berbaum-Metz Procedure for Multireader ROC Study Analysis.” Academic Radiology 15: 647–61.
Hillis, S L, N A Obuchowski, K M Schartz, and K S Berbaum. 2005. “A Comparison of the Dorfman-Berbaum-Metz and Obuchowski-Rockette Methods for Receiver Operating Characteristic (ROC) Data.” Statistics in Medicine 24: 1579–1607.
Metz, Charles E, and Xiaochuan Pan. 1999. “"Proper" Binormal ROC Curves: Theory and Maximum-Likelihood Estimation.” Journal of Mathematical Psychology 43 (1): 1–33.
Obuchowski, N A, and H E Rockette. 1995. “Hypothesis Testing of Diagnostic Accuracy for Multiple Readers and Multiple Tests: An ANOVA Approach with Dependent Observations.” Communications in Statistics–Simulation and Computation 24 (2): 285–308.
Pan, Xiaochuan, and Charles E Metz. 1997. “The "Proper" Binormal Model: Parametric Receiver Operating Characteristic Curve Estimation with Degenerate Data.” Statistics in Radiology 4 (5): 380–89.
Smith, Brian J, Stephen L Hillis, and Lorenzo L Pesce. 2022. MCMCaov: Multi-Reader Multi-Case Analysis of Variance. https://github.com/brian-j-smith/MRMCaov.
VanDyke, C W, R D White, N A Obuchowski, M A Geisinger, R J Lorig, and M A Meziane. 1993. “Cine MRI in the Diagnosis of Thoracic Aortic Dissection.” Chicago, IL.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.