The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The GroupEff_par
function estimates group effects using
embeddings and structured input data. This vignette demonstrates the
usage of the GroupEff_par
function with example data
included in the package.
Ensure the MUGS
package is loaded before running the
example:
Load the required datasets for the example:
# Load required data
data(S.1)
data(S.2)
data(X.group.source)
data(X.group.target)
data(U.1)
data(U.2)
Prepare the variables required for the GroupEff_par
function:
# Extract names and create name lists
names.list.1 <- rownames(S.1)
names.list.2 <- rownames(S.2)
full.name.list <- c(names.list.1, names.list.2)
# Initialize beta matrix
beta.names.1 <- unique(c(colnames(X.group.source), colnames(X.group.target)))
beta.int <- matrix(0, 400, 10) # Replace with appropriate dimensions
rownames(beta.int) <- beta.names.1
Run the GroupEff_par
function:
GroupEff_par.out <- GroupEff_par(
S.MGB = S.1,
S.BCH = S.2,
n.MGB = 2000,
n.BCH = 2000,
U.MGB = U.1,
U.BCH = U.2,
V.MGB = U.1,
V.BCH = U.2,
X.MGB.group = X.group.source,
X.BCH.group = X.group.target,
n.group = 400,
name.list = full.name.list,
beta.int = beta.int,
lambda = 0,
p = 10,
n.core = 2
)
Explore the structure and key components of the output:
# View structure of the output
str(GroupEff_par.out)
# Print specific components of the result
cat("\nEstimated Group Effects:\n")
print(GroupEff_par.out$effects[1:5, 1:3]) # Show the first 5 rows and 3 columns of effects
cat("\nRegularization Path:\n")
print(GroupEff_par.out$path)
n.MGB
, n.BCH
, p
, and
lambda
to test different scenarios.S.1
, S.2
, U.1
, U.2
,
etc.) are correctly loaded and aligned.This vignette demonstrated how to use the GroupEff_par
function for estimating group effects. Adjust input parameters and
datasets to test different scenarios and interpret the output components
for your analysis.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.