The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Type: Package
Title: Publication Bias Tests for Meta-Analysis of Diagnostic Accuracy Test
Version: 1.2-1
Date: 2023-12-20
Maintainer: Hisashi Noma <noma@ism.ac.jp>
Description: Generalized Egger tests for detecting publication bias in meta-analysis for diagnostic accuracy test (Noma (2020) <doi:10.1111/biom.13343>, Noma (2022) <doi:10.48550/arXiv.2209.07270>). These publication bias tests are generally more powerful compared with the conventional univariate publication bias tests and can incorporate correlation information between the outcome variables.
Imports: stats, MASS, metafor, mada, mvmeta
License: GPL-3
Encoding: UTF-8
LazyData: true
NeedsCompilation: no
Packaged: 2023-12-20 04:47:27 UTC; Hisashi
Author: Hisashi Noma ORCID iD [aut, cre]
Repository: CRAN
Date/Publication: 2023-12-20 12:10:06 UTC

The 'MVPBT' package.

Description

Generalized Egger tests to detect publication bias in meta-analysis for diagnostic accuracy test.

References

Noma, H. (2020). Discussion of “Testing small study effects in multivariate meta-analysis” by Chuan Hong, Georgia Salanti, Sally Morton, Richard Riley, Haitao Chu, Stephen E. Kimmel, and Yong Chen. Biometrics 76: 1255-1259. doi:10.1111/biom.13343

Noma, H. (2022). MVPBT: R package for publication bias tests in meta-analysis of diagnostic accuracy studies. arXiv:2209.07270. doi:10.48550/arXiv.2209.07270


Generalized Egger test to detect publication bias in bivariate meta-analysis for diagnostic accuracy test (MSSET2)

Description

Generalized Egger test to detect publication bias in bivariate meta-analysis for diagnostic accuracy test (called MSSET2 in Noma (2020)). This test does not consider the uncertainties of heterogeneity variance-covariance parameters, so MVPBT3 is recommended in practice.

Usage

MVPBT2(y,S)

Arguments

y

Summary outcome statistics

S

Covariance estimates of y

Value

References

Noma, H. (2020). Discussion of “Testing small study effects in multivariate meta-analysis” by Chuan Hong, Georgia Salanti, Sally Morton, Richard Riley, Haitao Chu, Stephen E. Kimmel, and Yong Chen. Biometrics 76: 1255-1259. doi:10.1111/biom.13343

Noma, H. (2022). MVPBT: R package for publication bias tests in meta-analysis of diagnostic accuracy studies. arXiv:2209.07270. doi:10.48550/arXiv.2209.07270

Examples


require(metafor)
require(mada)

data(cervical)

LAG <- cervical[cervical$method==2,]

fit1 <- reitsma(LAG)
summary(fit1)     # results of the bivariate meta-analysis

###

attach(LAG)

dta1 <- edta(TP,FN,TN,FP)

oldpar <- par(mfrow=c(1,1))
par(mfrow=c(1,3))

plot(fit1, predict=TRUE, cex=1.5, pch=19, sroclty=1, sroclwd=1.5, lty=2, 
 main="(a) SROC plot", xlim=c(0,1), ylim=c(0,1))
points(dta1$Fp,dta1$Se,pch=20,col="blue")
#legend(0.4,0.1,legend=c("95% confidence region","95% prediction region"),lty=c(2,3))

###

attach(dta1)

res1 <- rma(y[,1], S[,1])
funnel(res1,main="(b) Funnel plot for logit(Se)")
regtest(res1, model="lm")	# univariate Egger's test

res2 <- rma(y[,2], S[,3])
funnel(res2,main="(c) Funnel plot for logit(FPR)")
regtest(res2, model="lm")	# univariate Egger's test

###

MVPBT2(y,S)   # Generalized Egger test (MSSET2)

par(oldpar)    # Reset the graphic parameter

Generalized Egger test to detect publication bias in bivariate meta-analysis for diagnostic accuracy test (MSSET3)

Description

Generalized Egger test to detect publication bias in bivariate meta-analysis for diagnostic accuracy test (called MSSET3 in Noma (2020)). This test adequately consider the uncertainties of heterogeneity variance-covariance parameters by bootstrapping.

Usage

MVPBT3(y,S,B=2000)

Arguments

y

Summary outcome statistics

S

Covariance estimates of y

B

Number of bootstrap resampling (default: 2000)

Value

References

Noma, H. (2020). Discussion of “Testing small study effects in multivariate meta-analysis” by Chuan Hong, Georgia Salanti, Sally Morton, Richard Riley, Haitao Chu, Stephen E. Kimmel, and Yong Chen. Biometrics 76: 1255-1259. doi:10.1111/biom.13343

Noma, H. (2022). MVPBT: R package for publication bias tests in meta-analysis of diagnostic accuracy studies. arXiv:2209.07270. doi:10.48550/arXiv.2209.07270

Examples


require(metafor)
require(mada)

data(cervical)

LAG <- cervical[cervical$method==2,]

fit1 <- reitsma(LAG)
summary(fit1)     # results of the bivariate meta-analysis

###

attach(LAG)

dta1 <- edta(TP,FN,TN,FP)

oldpar <- par(mfrow=c(1,1))
par(mfrow=c(1,3))

plot(fit1, predict=TRUE, cex=1.5, pch=19, sroclty=1, sroclwd=1.5, lty=2, 
 main="(a) SROC plot", xlim=c(0,1), ylim=c(0,1))
points(dta1$Fp,dta1$Se,pch=20,col="blue")
#legend(0.4,0.1,legend=c("95% confidence region","95% prediction region"),lty=c(2,3))

###

attach(dta1)

res1 <- rma(y[,1], S[,1])
funnel(res1,main="(b) Funnel plot for logit(Se)")
regtest(res1, model="lm")	# univariate Egger's test

res2 <- rma(y[,2], S[,3])
funnel(res2,main="(c) Funnel plot for logit(FPR)")
regtest(res2, model="lm")	# univariate Egger's test

###

MVPBT3(y,S,B=20)   # Generalized Egger test (MSSET3)
# This is an example command for illustration. B should be >= 1000.

par(oldpar)    # Reset the graphic parameter

Funnel plots for the bivariate outcomes

Description

Funnel plots for the bivariate outcomes of diagnostic meta-analysis are created.

Usage

bifunnel(y,S)

Arguments

y

Summary outcome statistics

S

Covariance estimates of y

Value

Funnel plots for the logit-transformed sensitivities and false positive rates are presented.

References

Noma, H. (2020). Discussion of “Testing small study effects in multivariate meta-analysis” by Chuan Hong, Georgia Salanti, Sally Morton, Richard Riley, Haitao Chu, Stephen E. Kimmel, and Yong Chen. Biometrics 76: 1255-1259. doi:10.1111/biom.13343

Noma, H. (2022). MVPBT: R package for publication bias tests in meta-analysis of diagnostic accuracy studies. arXiv:2209.07270. doi:10.48550/arXiv.2209.07270

Examples


require(metafor)
require(mada)

data(cervical)

LAG <- cervical[cervical$method==2,]

fit1 <- reitsma(LAG)
summary(fit1)     # results of the bivariate meta-analysis

###

attach(LAG)

dta1 <- edta(TP,FN,TN,FP)

###

attach(dta1)

bifunnel(y,S)

Scheidler et al. (1997)'s cervical cancer data

Description

Dataset of a meta-analysis of diagnostic accuracy for radiological evaluation of lymph node metastases in patients with cervical cancer.

Usage

data(cervical)

Format

A data frame with 44 rows and 8 variables

References

Scheidler, J., Hricak, H., Yu, K. K., Subak, L., and Segal, M. R. (1997). Radiological evaluation of lymph node metastases in patients with cervical cancer. A meta-analysis. JAMA 278: 1096-1101.

Reitsma, J. B., Glas, A. S., Rutjes, A. W., Scholten, R. J., Bossuyt, P. M., and Zwinderman, A. H. (2005). Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology 58: 982-990. doi:10.1016/j.jclinepi.2005.02.022


Transforming contingency table data to summary statistics in diagnostic studies

Description

Transforming contingency table data to summary statistics in diagnostic studies.

Usage

edta(TP,FN,TN,FP)

Arguments

TP

A vector of the number of true positives (TP)

FP

A vector of the number of false positives (FP)

FN

A vector of the number of false negatives (FN)

TN

A vector of the number of true negatives (TN)

Value

Summary statistics for meta-analysis are generated.

Examples

data(cervical)
LAG <- cervical[cervical$method==2,]

attach(LAG)

dta1 <- edta(TP,FN,TN,FP)

Transforming diagnostic measures to summary statistics for meta-analysis of diagnostic studies

Description

Transforming diagnostic measures to summary statistics for meta-analysis of diagnostic studies.

Usage

sdta(Se,Fp,Secl,Secu,Fpcl,Fpcu)

Arguments

Se

A vector of the sensitivity estimates

Fp

A vector of the false positive rate estimates

Secl

A vector of the lower confidence limits of sensitivities

Secu

A vector of the upper confidence limits of sensitivities

Fpcl

A vector of the lower confidence limits of false positive rates

Fpcu

A vector of the upper confidence limits of false positive rates

Value

Summary statistics for meta-analysis are generated.

Examples

library("mada")

MRI <- cervical[cervical$method==3,]

MRIa <- MRI[,5:8]
MRIad <- madad(MRIa)

sdta(Se=MRIad$sens$sens,Fp=MRIad$fpr$fpr,
 Secl=MRIad$sens$sens.ci[,1],Fpcl=MRIad$fpr$fpr.ci[,1])
 
sdta(Se=MRIad$sens$sens,Fp=MRIad$fpr$fpr,
 Secu=MRIad$sens$sens.ci[,2],Fpcu=MRIad$fpr$fpr.ci[,2])

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.