The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
varimp()
arguments.
sort
.scale
to vectors of logical.CForestModel
.drop1()
to compute model term-specific p-values for
CoxModel
, POLRModel
, and
SurvRegModel
as is done for GLMModel
and
LMModel
.VariableImportance
class.
method
and metric
to store the
computational method ("permute"
or "model"
)
and the performance metric used for computations.update()
method to add the new slots to objects
created with previous versions of the package.type = "default"
option in
predict()
and replace it with
type = "raw"
.SelectedInput.recipe()
.BootControl
, OOBControl
, and
SplitControl
.SplitControl
.MLModel
objects
without a na.rm
slot.role_binom()
, role_case()
, and
role_surv()
to remove the requirement that their variables
be present in newdata
supplied to
predict()
.na.rm
to MLModel()
for
construction of a model that automatically removes all cases with
missing values from model fitting and prediction, none, or only those
whose missing values are in the response variable. Set the
na.rm
values in supplied MLModels
to
automatically remove cases with missing values if not supported by their
model fitting and prediction functions.prob.model
to
SVMModel()
.verbose
to fit()
and
predict()
.Error in as.data.frame(x) : object 'x' not found
issue when fitting a BARTMachineModel
that started
occurring with bartMachine
package version 1.2.7.ModeledInput
and
rpp()
.na.rm
to MLModel
.method
to r2()
for
calculation of Pearson or Spearman correlation.predict()
S4 method for
MLModelFit
.MLModelFunction()
.as.MLInput()
methods for MLModelFit
and ModelSpecification
.as.MLModel()
method for
ModelSpecification
.SelectedInput
terms.StackedModel
and
SuperModel
..MachineShop
list attribute to
MLModelFit
.mlmodel
in MLModelFit
to
model
in .MachineShop
.input
in MLModel
to
.MachineShop
..MachineShop
to the predict
and
varimp
slot functions of MLModel
.TypeError
in dependence()
with numeric
dummy variables from recipes.ModelRecipe
with retain = TRUE
for
recipe steps that are skipped, for example, when test datasets are
created.auc()
,
pr_auc()
, and roc_auc()
for multiclass factor
responses.select
to rfe()
.perf_stats
not found in
optim()
.conf
to
set_optim_bayes()
.StackedModel
and SuperModel
in ModelSpecification()
.SelectedModelSpecification
.ModeledInput
,
ModeledFrame
, and ModeledRecipe
.TunedModeledRecipe
.fixed
from
TunedModel()
.Grid()
.rpp()
to ppr()
.ModeledInput()
with
ModelSpecification()
.NNetModel
model-specific
variable importance.SurvRegModelFit
summary()
errorCVControl
when
stratification or grouping size leads to construction of fewer than
requested folds for cross-validation resampling.type
with options "glance"
and "tidy"
to summary.MLModelFit()
.print.Resample()
.ModelSpecification
.set_monitor()
: monitoring of resampling and
optimizationset_optim_bayes()
: Bayesian optimization with a
Gaussian process modelset_optim_bfgs()
: low-memory quasi-Newton BFGS
optimizationset_optim_grid()
: exhaustive and random grid
searchesset_optim_method()
: user-defined optimization
functionsset_optim_pso()
: particle swarm optimizationset_optim_sann()
: simulated annealingperformance()
method for MLModel
to
replicate the previous behavior of summary.MLModel()
.performance()
, plot()
, and
summary()
methods for TrainingStep
.Resample
performances.type
of predict()
.
"default"
for model-specific default
predictions."numeric"
for numeric predictions."prob"
to be for probabilities between 0
and 1.confusion()
default behavior to convert factor
probabilities to levels.control
to object
in set
functions.f
to fun
in
roc_index()
.ListOf
training step summaries from
summary.MLModel()
.TrainingStep
object from
rfe()
.expand_params()
.EnsembleModel
.MLOptimization
, GridSearch
,
NullOptimization
, RandomGridSearch
, and
SequentialOptimization
.NullControl
.control
to PerformanceCurve
.method
to TrainingStep
.optim
to TrainingParams
.params
to MLInput
.SelectedModel
from
EnsembleModel
.StackedModel
from
EnsembleModel
.SuperModel
from
StackedModel
.case_comps
to vars
in
Resample
.grid
to log
in
TrainingStep
.GLMModel
print.TrainingStep()
TunedModel()
terms.formula()
.distr
and method
to
dependence()
.ParsnipModel()
for model specifications
(model_spec
) from the parsnip
package.rfe()
for recursive feature
elimination.as.MLModel()
for model_spec
and
ModeledInput
.as.MLModel()
method.metric
of
auc()
.method
default from
"model"
to "permute"
in
varimp()
.ModelFrame
to an S4 class; generally
requires explicit conversion to a data frame with
as.data.frame()
in MLModel
fit
and predict
functions.stat.Trained
to
stat.TrainingParams
.stats.VarImp
.ParsnipModel
.SurvTimes
.TrainingParams
.Grid
.Params
.name
, selected
, and
metrics
to slot grid
of
TrainingStep
class.grid
to TunedInput
.id
to MLInput
and
MLModel
classes.id
and name
to
TrainingStep
class.models
to SelectedModel
.name
from MLControl
classes.selected
, values
, and
metric
from TrainingStep
class.shift
from VariableImportance
class.Grid
to TuningGrid
.Resamples
to Resample
.TrainStep
to
TrainingStep
.VarImp
to
VariableImportance
.MLControl
.
MLBootControl
→ BootControl
MLBootOptimismControl
→
BootOptimismControl
MLCVControl
→ CVControl
MLCVOptimismControl
→
CVOptimismControl
MLOOBControl
→ OOBControl
MLSplitControl
→ SplitControl
MLTrainControl
→ TrainControl
Input
and Model
to
params
in slot grid
of
TrainingStep
class.Resample
to Iteration
in
Resample
classx
to input
in
MLModel
class.XGBModel
nrounds
from 1 to 100.nrounds
and max_depth
in automated
grids for XGBDARTModel
and XGBTreeModel
.nrounds
, lambda
, and
alpha
in automated grid for
XGBLinearModel
.survival:aft
prediction.survival:cox
to
survival:aft
.TrainingStep
objects and output.varimp()
.model
→ object
in
TunedModel()
x
→ object
in
expand_model()
x
→
formula
/input
/model
in
expand_modelgrid()
, fit()
,
ModelFrame()
, resample()
, rfe()
methodsx
→
formula
/object
/model
in
ModeledInput()
methodsx
→ object
in ParameterGrid()
methodsx
→ control
in set_monitor()
,
set_predict()
, set_strata()
x
→ object
in
TunedInput()
Grid()
to
TuningGrid()
.ModelFrame()
.MLModel
params
slots.na.rm
to dependence()
.stats.VarImp
for summary statistics
to compute on permutation-based variable importance.varimp()
.t.test.PerformanceDiff()
.metric
to type
in
varimp()
functions for BartMachineModel
,
C50Model
, EarthModel
, RFSRCModel
,
and XGBModel
.type
default to "nsubsets"
in
EarthModel
varimp()
.cross_entropy()
numeric
method.f
in roc_index()
Surv
method.weights
to MLModel
classes.LMModel
for all response
types.breaks
in
calibration()
.max = Inf
arguments to
print.default()
.ModelFrame()
arguments strata
and
weights
in data
environment.Weight
of case weights to
Resamples
data frame.values
column to get_values
in
MLModel
gridinfo
slot.resample_progress
and
resample_verbose
to set_monitor()
arguments
progress
and verbose
.MLControl()
arguments strata_breaks
,
strata_nunique
, strata_prop
, and
strata_size
to set_strata()
arguments
breaks
, nunique
, prop
, and
size
.MLControl()
arguments times
,
distr
, and method
to
set_predict()
.%>%
operator.Resamples
objects.regular
to default
in
MLModel
gridinfo slot.size
and random
arguments of
ParameterGrid()
to match those of Grid()
.coeflearn
values in their defined order instead
of at random in AdaBoostModel
.kernels
values in their defined order instead of
at random in KNNModel
.splitrule
methods in
RangerModel
.splitrule
values in their defined order instead
of at random in RangerModel
.max.print
to print_max
.progress.resample
to
resample_progress
.stat.train
to stat.Trained
.dist.Surv
to distr.SurvMeans
.dist.SurvProbs
to
distr.SurvProbs
.strata_breaks
, strata_nunique
,
strata_prop
and strata_size
arguments to
MLControl()
constructor.strata_breaks
if numeric quantile bins are below
strata_prop
and strata_size
.strata_prop
and
strata_size
iteratively.strata_prop
and strata_size
iteratively.length
arguments from
Grid()
and ParameterGrid()
.gridinfo
functions
in MLModel()
.brier()
metric."fleming-harrington"
as a choice for the
method
argument of predict()
and for the
method.EmpiricalSurv
global setting, because it is a
special case of the existing (default) "efron"
choice and
thus not needed."rayleigh"
choice for the distr.Surv
and distr.SurvProbs
global settings.dist
argument to distr
in
calibration()
, MLControl()
,
predict()
, and r2()
.distr
argument to SurvEvents()
and
SurvProbs()
.SurvMeans
class.SurvMeans
object.calibration()
and r2()
."terms"
predictor_encoding to
"model.frame"
in MLModel
class.performance()
response
type-specific methods to metrics
supplied as a single
MLMetric
function.get_grid()
with
expand_modelgrid()
.GLMNetModel
.MLModel
.traininfo
slot to train_steps
in
MLModel
classes.retain
argument in
prep()
.fixed
argument default NULL
to
list()
in TunedModel()
.length
argument to size
in
Grid()
and ParameterGrid()
.ParameterGrid()
.grid
slot with gridinfo
in
MLModel
classes.Grid()
.get_grid()
function to extract model-defined tuning
grids.trainbits
slot to traininfo
in
MLModel
classes.RPartModel
cp
grid points from
cptable
according to smallest cross-validation error (mean
plus one standard deviation).Performance
diff()
method.RFSRCModel
.unMLModelFit()
function to revert an
MLModelFit
object to its original class.options
argument to step_lincomp()
and
step_sbf()
.step_sbf()
function for variable selection
by filtering.step_kmedoids
objects from
step_sbf
, and refactor methods.
tidy()
column medoids
to
selected
.tidy()
column names
to
name
.tidy()
non-selected variable names to
NA
.step_lincomp()
function for linear
components variable reduction.step_kmeans
objects from
step_lincomp
, and refactor methods.
tidy()
column names
to
name
.step_spca
objects from
step_lincomp
, and refactor methods.
tidy()
column value
to
weight
.tidy()
column component
to
name
.GBMModel
distribution to bernoulli, instead of
multinomial, for binary responses.RHS.formula
for listing of operators
and functions allowed on right-hand side of traditional formulas.step_kmedoids()
.XGBModel
, XGBDARTModel
,
XGBLinearModel
, and XGBTreeModel
.NNetModel
linout
argument
automatically according to the response variable type (numeric:
TRUE
, other: FALSE
). Previously,
linout
had a default value of FALSE
as defined
in the nnet
package.NNetModel
fit()
method.resample()
methods.BARTMachineModel
to predict highest binary response
level.BARTMachineModel
nu
parameter
for numeric responses only.ModeledInput()
to
SelectedModelFrame
, SelectedModelRecipe
, and
TunedModelRecipe
.TunedInput()
.StackedModel
and SuperModel
training
information.TreeModel
.ModeledInput()
and SelectedInput()
objects
constructed with formulas and matrices.fit()
methods to ensure that
unprepped recipes are passed to models, like TunedModed
,
StackedModel
, SelectedModel
and
SuperModel
, needing to replicate preprocessing steps in
their resampling routines.GLMModel
to factor and matrix responses.fun
instead of deprecated fun.y
in
ggplot2 functions.metricinfo()
results for factor
responses.SplitControl()
to train on the split sample
instead of the full dataset.fit()
formula and matrix methods are called with meta-models.print()
argument n
to data frame
and matrix columns for more concise display of large data
structures.step_kmeans()
,
step_kmedoids()
, and step_spca()
.MLModel
slot y
.ModelFrame
and ModelRecipe
columns
(casenames)
to (names)
.ModelFrame
inheritance from
data.frame
.Terms
S4 classes for ModelFrame
slot terms
.ModeledInput
, SelectedInput
and
TunedInput
classes and methods.SelectedFormula()
,
SelectedMatrix()
, SelectedModelFrame()
,
SelectedRecipe()
, and TunedRecipe()
.tune()
.stat.Curves
to
stat.Curve
.stat.Train
to
stat.train
.SelectedModel
,
StackedModel
, SuperModel
, and
TunedModel
.SelectedRecipe
and TunedRecipe
.MLModel
trainbits
slot.stat.Tune
to
stat.Train
.SelectedFormula()
, SelectedMatrix()
, and
SelectedModelFrame()
.BinomialMatrix
→
BinomialVariate
, DiscreteVector
→
DiscreteVariate
, NegBinomialVector
→
NegBinomialVariate
, and PoissonVector
→
PoissonVariate
.require
for user-specified packages
to load during parallel execution of resampling algorithms.case_strata
to
case_stratum
.object
argument to data
in
ConfusionMatrix()
, SurvEvents()
, and
SurvProbs()
.c
methods for BinomialVariate
,
DiscreteVariate
, ListOf
, and
SurvMatrix
.role_binom()
, role_case()
,
role_surv()
, and role_term()
to set recipe
roles.base
argument to varimp()
for
log-transformed p-values.ParamSet
to ParameterGrid
.reset
global settings individually.as.data.frame
methods for Performance
,
Performance
summary, PerformanceDiff
,
PerformanceDiffTest
, and Resamples
.DiscreteVector
class and subclasses
BinomialVector
, NegBinomialVector
, and
PoissonVector
for discrete response variables.DiscreteVector
classes as
follows.
DiscreteVector
: all models applicable to numeric
responses.BinomialVector
/NegBinomialVector
/PoissonVector
:
BlackBoostModel
, GAMBoostModel
,
GLMBoostModel
, GLMModel
, and
GLMStepAICModel
.BinomialVector
/PoissonVector
:
GLMNetModel
.PoissonVector
: GBMModel
and
XGBModel
MLModel
.Calibration()
, Confusion()
,
Curves()
, Lift()
, and Resamples()
with c
methods.Confusion
S3 class as
ConfusionList
S4 class.metricinfo()
and
modelinfo()
.expand.model()
.tune()
.metricinfo()
and
modelinfo()
.ParamSet()
.as.MLModel()
for coercing MLModelFit
to MLModel
.tune()
; call fit()
with a
SelectedModel
or TunedModel
instead.CVOptimismControl
).BootOptimismControl
error with 2D responses.max.print
for the number of models
and data frame rows to show with print methods.SelectedRecipe()
.tune()
methods.MLModelFit
element fitbits
(MLFitBits
object) with mlmodel
(MLModel
object).VarImp
slot center
to
shift
.expand_model()
,
expand_params()
, and expand_steps()
.TunedRecipe()
.expand_model()
for model expansion over tuning
parameters.expand_params()
for model parameters
expansion.expand_steps()
for recipe step parameters
expansion.MLModelFunction
and MLModelList
classes.MLModel
,
MLModelFunction
, and MLModelList
.NNetModel
fit error with binary and factor
responses.modelinfo()
function not found error.tune()
resampling
failures.types
and design
arguments from MLModel()
.metricinfo()
and
modelinfo()
.SelectedModel
.maximize
argument from tune()
and
TunedModel
.StackedModel()
and
SuperModel
.expand.model()
.KNNModel
tuning grid.TunedModel
.na.action
argument from
ModelFrame
methods.MLModel()
argument types
to
response_types
.MLModel()
argument design
to
predictor_encoding
.expand.model()
to
expand_model()
.BootOptimismControl
).ModelFrame
and
ModelRecipe
and save to Resamples
.BinaryConfusionMatrix
and
OrderedConfusionMatrix
classes.ConfusionMatrix
constructor.metricinfo()
to confusion matrices.Resamples
.ModelFrame
formulas.ModelFrame
response in first column.response
formula method.ICHomes
dataset.center
and scale
slot to
VarImp
.ModelFrame
formulas.response
function argument from
data
to newdata
.fit
, resample
, and tune
methods for design matrices.ModelFrame()
argument na.action
to
na.rm
."exponential"
,
"rayleigh"
, "weibull"
) estimation of baseline
survival functions."weibull"
as the default distribution for survival
mean estimation.Resamples
.na.rm
argument to calibration()
,
confusion()
, performance()
, and
performance_curve()
.span
argument to
calibration()
.SurvMatrix
from S4 to S3 class.method
option to predict()
for
Breslow, Efron (default), or Fleming-Harrington estimation of survival
curves for Cox proportional hazards-based models.dist
option to predict()
for
exponential or Weibull approximation to estimated survival curves.dist
option to calibration()
for
distributional estimation of observed mean survival.dist
option to r2()
for distributional
estimation of the total sum of squares mean.metricinfo()
and
modelinfo()
.auc
, fnr
,
fpr
, rpp
, tnr
,
tpr
.SurvMatrix
classes for predicted survival
events and probabilities to eliminate need for separate
times
arguments in calibration, confusion, metrics, and
performance functions.MLControl
argument surv_times
to
times
.case_weight
and
case_strata
variables.BARTModel
.accuracy
,
f_score
, kappa2
, npv
,
ppv
, pr_auc
, precision
,
recall
, roc_index
, sensitivity
,
specificity
cindex
,
gini
, mae
, mse
,
msle
, r2
, rmse
,
rmsle
.performance
and metric methods for
ConfusionMatrix
.MLModel
slot and constructor argument
nvars
with design
.BARTMachineModel
,
LARSModel
.gini
, multi-class
pr_auc
and roc_auc
, multivariate
rmse
, msle
, rmsle
.MLMetric
class for performance metrics.as.data.frame
method for
ModelFrame
.expand.model
function.label
slot to MLModel
.metricinfo/modelinfo
support for mixed argument
types.calibration
argument n
to
breaks
.modelmetrics
function to
performance
.ModelMetrics/Diff
classes to
Performance/Diff
.MLModelTune
slot resamples
to
performance
.AdaBagModel
,
AdaBoostModel
, BlackBoostModel
,
EarthModel
, FDAModel
,
GAMBoostModel
, GLMBoostModel
,
MDAModel
, NaiveBayesModel
,
PDAModel
, RangerModel
,
RPartModel
, TreeModel
modelmetrics
function.accuracy
, brier
,
cindex
, cross_entropy
, f_score
,
kappa2
, mae
, mse
,
npv
, ppv
, pr_auc
,
precision
, r2
, recall
,
roc_auc
, roc_index
, sensitivity
,
specificity
, weighted_kappa2
.cutoff
argument to confusion
function.modelinfo
and metricinfo
functions.modelmetrics
method for
Resamples
.ModelMetrics
class with print
and
summary
methods.response
method for recipe
.Calibration
constructor.Confusion
constructor.Lift
constructor.calibration
arguments to observed and predicted
responses.confusion
arguments to observed and predicted
responses.lift
arguments to observed and predicted
responses.metrics
and stats
function
arguments to accept function names.Resamples
to arguments with multiple
models.CoxModel
, GLMModel
, and
SurvRegModel
constructor definitions so that model control
parameters are specified directly instead of with a separate
control
argument/structure.predict(..., times = numeric())
function calls
to survival model fits to return predicted values in the same direction
as survival times.predict(..., times = numeric())
function calls
to CForestModel
fits to return predicted means instead of
medians.tune
function argument metrics
to
be defined in terms of a user-specified metric or metrics.cutoff
,
cutoff_index
, na.rm
, and
summary
.LMModel
), linear discriminant
analysis (LDAModel
), and quadratic discriminant analysis
(QDAModel
).strata
argument of ModelFrame
or the role
of "case_strata"
for recipe variables."case_weight"
for recipe variables.prepper
due to its relocation
from rsample
to recipes
.KNNModel
), stacked
regression models (StackedModel
), super learner models
(SuperModel
), and extreme gradient boosting
(XGBModel
).TrainControl
) and split training and test sets
(SplitControl
).ModelFrame
class for general model formula
and dataset specification.modelmetrics()
.predict()
to automatically preprocess recipes
and to use training data as the newdata
default.tune()
to lists of models.summary()
argument stats
to
functions.GBMModel
and
GLMNetModel
.MLControl
argument na.rm
default
from FALSE
to TRUE
.na.rm
argument from
modelmetrics()
.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.