The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
OutliersLearn is an R package designed to teach and demonstrate different outlier detection algorithms. The algorithms are programmed to provide informative messages while executing on real data, helping users understand the inner workings of each algorithm.
Will be available to download/install from CRAN To install from GitHub execute this commands in your R session:
install.packages("devtools")
library(devtools)
install_github("MissiegoBeats/OutliersLearn")
library(OutliersLearn)
To install from CRAN:
install.packages("OutliersLearn")
library(OutliersLearn)
In case you want to install the R package using a specific CRAN Mirror:
install.packages("OutliersLearn", repos="<CRAN Mirror URL>")
library(OutliersLearn)
Box & whiskers
boxandwhiskers()
Standard Deviation Method
sd_method()
K neighbors
knn()
Local Outlier Factor (Simplified Version)
lof()
DBSCAN
DBSCAN_method()
Mahalanobis Distance Method
mahalanobis_method()
manhattan distance function
manhattan_dist()
euclidean distance function
euclidean_distance()
quantile function
quantile_outliersLearn()
transform to vector function
transform_to_vector()
Mean of a vector
mean_outliersLearn()
Standard deviation of a vector
sd_outliersLearn()
Mahalanobis distance
mahalanobis_distance()
See more about them using the command help()
Check the corresponding “LICENSE” file to see the whole license information
If there is any question, feel free to open a new issue with the “question” label. If needed, i’ll add a Q&A section in the repository issues
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.