The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

PCDimension: Finding the Number of Significant Principal Components

Implements methods to automate the Auer-Gervini graphical Bayesian approach for determining the number of significant principal components. Automation uses clustering, change points, or simple statistical models to distinguish "long" from "short" steps in a graph showing the posterior number of components as a function of a prior parameter. See <doi:10.1101/237883>.

Version: 1.1.13
Depends: R (≥ 3.1), ClassDiscovery
Imports: methods, stats, graphics, oompaBase, kernlab, changepoint, cpm
Suggests: MASS, nFactors
Published: 2022-06-30
DOI: 10.32614/CRAN.package.PCDimension
Author: Kevin R. Coombes, Min Wang
Maintainer: Kevin R. Coombes <krc at silicovore.com>
License: Apache License (== 2.0)
URL: http://oompa.r-forge.r-project.org/
NeedsCompilation: no
Materials: NEWS
CRAN checks: PCDimension results

Documentation:

Reference manual: PCDimension.pdf
Vignettes: PCDimension

Downloads:

Package source: PCDimension_1.1.13.tar.gz
Windows binaries: r-devel: PCDimension_1.1.13.zip, r-release: PCDimension_1.1.13.zip, r-oldrel: PCDimension_1.1.13.zip
macOS binaries: r-release (arm64): PCDimension_1.1.13.tgz, r-oldrel (arm64): PCDimension_1.1.13.tgz, r-release (x86_64): PCDimension_1.1.13.tgz, r-oldrel (x86_64): PCDimension_1.1.13.tgz
Old sources: PCDimension archive

Reverse dependencies:

Reverse depends: Thresher
Reverse suggests: parameters, RPointCloud

Linking:

Please use the canonical form https://CRAN.R-project.org/package=PCDimension to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.