Type: | Package |
Title: | Population Fisher Information Matrix |
Version: | 7.0 |
Date: | 2025-07-02 |
Maintainer: | Romain Leroux <romainlerouxPFIM@gmail.com> |
NeedsCompilation: | no |
Description: | Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) <doi:10.1093/biomet/84.2.429>, Retout S, Comets E, Samson A, Mentré F (2007) <doi:10.1002/sim.2910>, Bazzoli C, Retout S, Mentré F (2009) <doi:10.1002/sim.3573>, Le Nagard H, Chao L, Tenaillon O (2011) <doi:10.1186/1471-2148-11-326>, Combes FP, Retout S, Frey N, Mentré F (2013) <doi:10.1007/s11095-013-1079-3> and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) <doi:10.1016/j.cmpb.2021.106126>. |
URL: | http://www.pfim.biostat.fr/, https://github.com/packagePFIM |
BugReports: | https://github.com/packagePFIM/PFIM/issues |
Depends: | R (≥ 4.0.0) |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
VignetteBuilder: | knitr |
Imports: | utils, inline, Deriv, methods, deSolve, purrr, stringr, S7, Matrix, ggplot2, Rcpp, RcppArmadillo, pracma, kableExtra, tibble, scales, knitr |
Collate: | 'Administration.R' 'AdministrationConstraints.R' 'Fim.R' 'PFIMProject.R' 'Optimization.R' 'PGBOAlgorithm.R' 'PSOAlgorithm.R' 'SimplexAlgorithm.R' 'FedorovWynnAlgorithm.R' 'MultiplicativeAlgorithm.R' 'Model.R' 'Arm.R' 'BayesianFim.R' 'ModelError.R' 'Combined1.R' 'Constant.R' 'Design.R' 'Distribution.R' 'Evaluation.R' 'IndividualFim.R' 'LibraryOfModels.R' 'LibraryOfPDModels.R' 'LibraryOfPKModels.R' 'LogNormal.R' 'ModelODE.R' 'ModelAnalytic.R' 'ModelInfusion.R' 'ModelAnalyticInfusion.R' 'ModelAnalyticInfusionSteadyState.R' 'ModelAnalyticSteadyState.R' 'ModelODEBolus.R' 'ModelODEDoseInEquations.R' 'ModelODEDoseNotInEquations.R' 'ModelODEInfusion.R' 'ModelODEInfusionDoseInEquation.R' 'ModelParameter.R' 'Normal.R' 'PFIM-package.R' 'PopulationFim.R' 'Proportional.R' 'SamplingTimeConstraints.R' 'SamplingTimes.R' 'zzz.R' |
RoxygenNote: | 7.3.2 |
Suggests: | rmarkdown, testthat (≥ 3.0.0) |
Packaged: | 2025-07-02 10:19:20 UTC; MrLer |
Author: | Romain Leroux |
Repository: | CRAN |
Date/Publication: | 2025-07-02 12:10:05 UTC |
Fisher Information matrix for design evaluation/optimization for nonlinear mixed effects models.
Description
Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) doi:10.1093/biomet/84.2.429, Retout S, Comets E, Samson A, Mentré F (2007) doi:10.1002/sim.2910, Bazzoli C, Retout S, Mentré F (2009) doi:10.1002/sim.3573, Le Nagard H, Chao L, Tenaillon O (2011) doi:10.1186/1471-2148-11-326, Combes FP, Retout S, Frey N, Mentré F (2013) doi:10.1007/s11095-013-1079-3 and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) doi:10.1016/j.cmpb.2021.106126.
Description
Nonlinear mixed effects models (NLMEM) are widely used in model-based drug development and use to analyze longitudinal data. The use of the "population" Fisher Information Matrix (FIM) is a good alternative to clinical trial simulation to optimize the design of these studies. The present version, **PFIM 7.0**, is an R package that uses the S4 object system for evaluating and/or optimizing population designs based on FIM in NLMEMs.
This version of **PFIM** now includes a library of models implemented also using the object oriented system S4 of R. This library contains two libraries of pharmacokinetic (PK) and/or pharmacodynamic (PD) models. The PK library includes model with different administration routes (bolus, infusion, first-order absorption), different number of compartments (from 1 to 3), and different types of eliminations (linear or Michaelis-Menten). The PD model library, contains direct immediate models (e.g. Emax and Imax) with various baseline models, and turnover response models. The PK/PD models are obtained with combination of the models from the PK and PD model libraries. **PFIM** handles both analytical and ODE models and offers the possibility to the user to define his/her own model(s). In **PFIM 7.0**, the FIM is evaluated by first order linearization of the model assuming a block diagonal FIM as in Mentré et al. (1997). The Bayesian FIM is also available to give shrinkage predictions (Combes et al., 2013). **PFIM 7.0** includes several algorithms to conduct design optimization based on the D-criterion, given design constraints: the simplex algorithm (Nelder-Mead) (Nelder & Mead, 1965), the multiplicative algorithm (Seurat et al., 2021), the Fedorov-Wynn algorithm (Fedorov, 1972), PSO (*Particle Swarm Optimization*) and PGBO (*Population Genetics Based Optimizer*) (Le Nagard et al., 2011).
Documentation
Documentation and user guide are available at http://www.pfim.biostat.fr/
Validation
**PFIM 7.0** also provides quality control with tests and validation using the evaluated FIM to assess the validity of the new version and its new features. Finally, **PFIM 7.0** displays all the results with both clear graphical form and a data summary, while ensuring their easy manipulation in R. The standard data visualization package ggplot2 for R is used to display all the results with clear graphical form (Wickham, 2016). A quality control using the D-criterion is also provided.
Organization of the source files in the '/R' folder
**PFIM 7.0** contains a hierarchy of S4 classes with corresponding methods and functions serving as constructors. All of the source code related to the specification of a certain class is contained in a file named '[Name_of_the_class]-Class.R'. These classes include:
1. all roxygen '@include' to insure the correctly generated collate for the DESCRIPTION file, 2. a description of purpose and slots of the class, 3. specification of an initialize method, 4. all getter and setter, respectively returning attributes of the object and associated objects.
Author(s)
Maintainer: Romain Leroux romainlerouxPFIM@gmail.com (ORCID)
Authors:
France Mentré france.mentre@inserm.fr (ORCID)
Other contributors:
Jérémy Seurat jeremy.seurat@inserm.fr (ORCID) [contributor]
References
Dumont C, Lestini G, Le Nagard H, Mentré F, Comets E, Nguyen TT, et al. PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models. Comput Methods Programs Biomed. 2018;156:217-29.
Chambers JM. Object-Oriented Programming, Functional Programming and R. Stat Sci. 2014;29:167-80.
Mentré F, Mallet A, Baccar D. Optimal Design in Random-Effects Regression Models. Biometrika. 1997;84:429-42.
Combes FP, Retout S, Frey N, Mentré F. Prediction of shrinkage of individual parameters using the Bayesian information matrix in nonlinear mixed effect models with evaluation in pharmacokinetics. Pharm Res. 2013;30:2355-67.
Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308-13.
Seurat J, Tang Y, Mentré F, Nguyen, TT. Finding optimal design in nonlinear mixed effect models using multiplicative algorithms. Computer Methods and Programs in Biomedicine, 2021.
Fedorov VV. Theory of Optimal Experiments. Academic Press, New York, 1972.
Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proc. of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, 4-6 October 1995, 39-43.
Le Nagard H, Chao L, Tenaillon O. The emergence of complexity and restricted pleiotropy in adapting networks. BMC Evol Biol. 2011;11:326.
Wickham H. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, 2016.
See Also
Useful links:
Report bugs at https://github.com/packagePFIM/PFIM/issues
Administration
Description
The class Administration
represents the administration and
stores information concerning the administration for the dosage regimen.
Usage
Administration(
outcome = character(0),
timeDose = numeric(0),
dose = numeric(0),
Tinf = numeric(0),
tau = 0
)
Arguments
outcome |
A string giving the outcome for the administration. |
timeDose |
A vector of double giving the time doses. |
dose |
A vector of double giving the doses. |
Tinf |
A vector of double giving the time for infusion Tinf. |
tau |
An integer giving the tau value for repeated dose or steady state. |
AdministrationConstraints
Description
The class AdministrationConstraints
represents the constraint of an input to the system.
The class stores information concerning the constraints for the dosage regimen.
Usage
AdministrationConstraints(outcome = character(0), doses = list())
Arguments
outcome |
A string giving the outcome for the administration. |
doses |
A vector of double giving the doses. |
Arm
Description
The class Arm
represents an arm and stores information concerning an arm.
Usage
Arm(
name = character(0),
size = numeric(0),
administrations = list(),
initialConditions = list(),
samplingTimes = list(),
administrationsConstraints = list(),
samplingTimesConstraints = list(),
evaluationModel = list(),
evaluationGradients = list(),
evaluationVariance = list(),
evaluationFim = Fim()
)
Arguments
name |
A string giving the name of the arm. |
size |
A integer giving the size of the arm. |
administrations |
A list giving the objects of class |
initialConditions |
A list giving the initial conditions for the ode model where the names are string that define the variable and their value are giving by double |
samplingTimes |
A list giving the objects of class |
administrationsConstraints |
A list giving the objects of class |
samplingTimesConstraints |
A list giving the objects of class |
evaluationModel |
A list giving the evaluation of the responses of the arm. |
evaluationGradients |
A list giving the evaluation of the responses gradient of the arm. |
evaluationVariance |
A list giving the evaluation of the variance. |
evaluationFim |
A object of class |
BayesianFim
Description
The class BayesianFim
represents and stores information for the Bayesian Fim.
Usage
BayesianFim(
fisherMatrix = numeric(0),
fixedEffects = numeric(0),
varianceEffects = numeric(0),
SEAndRSE = list(),
condNumberFixedEffects = 0,
condNumberVarianceEffects = 0,
shrinkage = numeric(0)
)
Arguments
fisherMatrix |
A matrix giving the numerical values of the Fim. |
fixedEffects |
A matrix giving the numerical values of the fixedEffects of the Fim. |
varianceEffects |
A matrix giving the numerical values of varianceEffects of the Fim. |
SEAndRSE |
A data frame giving the value of the SE and RSE. |
condNumberFixedEffects |
The conditional number of the fixedEffects of the Fim. |
condNumberVarianceEffects |
The conditional number of the varianceEffects of the Fim. |
shrinkage |
A vector giving the shrinkage values. |
Combined1
Description
The class Combined1
represents and stores information for the error model Combined1.
Usage
Combined1(
output = character(0),
equation = expression(sigmaInter + sigmaSlope * output),
derivatives = list(),
sigmaInter = 0,
sigmaSlope = 0,
sigmaInterFixed = FALSE,
sigmaSlopeFixed = FALSE,
cError = 1
)
Arguments
output |
A string giving the model error output. |
equation |
A expression giving the model error equation. |
derivatives |
A list giving the derivatives of the model error equation. |
sigmaInter |
A double giving the sigma inter. |
sigmaSlope |
A double giving the sigma slope |
sigmaInterFixed |
A Boolean giving if the sigma inter is fixed or not. - not in the v7.0 |
sigmaSlopeFixed |
A Boolean giving if the sigma slope is fixed or not. - not in the v7.0 |
cError |
A integer giving the power parameter. |
Constant
Description
The class Constant
represents and stores information for the error model Constant.
Usage
Constant(
output = character(0),
equation = expression(sigmaInter),
derivatives = list(),
sigmaInter = 0,
sigmaSlope = 0,
sigmaInterFixed = FALSE,
sigmaSlopeFixed = FALSE,
cError = 1
)
Arguments
output |
A string giving the model error output. |
equation |
A expression giving the model error equation. |
derivatives |
A list giving the derivatives of the model error equation. |
sigmaInter |
A double giving the sigma inter. |
sigmaSlope |
A double giving the sigma slope |
sigmaInterFixed |
A boolean giving if the sigma inter is fixed or not. |
sigmaSlopeFixed |
A boolean giving if the sigma slope is fixed or not. |
cError |
A integer giving the power parameter. |
Dcriterion: get the D-criterion of the Fim.
Description
Dcriterion: get the D-criterion of the Fim.
Arguments
Fim |
A object |
Value
A double giving the D-criterion of the Fim.
Design
Description
The class Design
represents and stores information for the Design.
Usage
Design(
name = character(0),
size = 0,
arms = list(),
evaluationArms = list(),
numberOfArms = 0,
fim = Fim()
)
Arguments
name |
A string giving the name of the design. |
size |
A integer giving the size of the design. |
arms |
A list giving the arms of the design. |
evaluationArms |
A list giving the valuation of the arms of the design. |
numberOfArms |
A integer giving the number of arms. |
fim |
A object |
Details
Design
Distribution
Description
The class Distribution
represents and stores information for the parameter distribution.
Usage
Distribution(name = character(0), mu = 0, omega = 0)
Arguments
name |
A string giving the name of the distribution. |
mu |
A double giving the mean mu. |
omega |
A double giving omega. |
Evaluation
Description
The class Evaluation
represents and stores information for the evaluation of a design
Usage
Evaluation(
evaluationDesign = list(),
name = character(0),
modelParameters = list(),
modelEquations = list(),
modelFromLibrary = list(),
modelError = list(),
designs = list(),
outputs = list(),
fimType = character(0),
odeSolverParameters = list()
)
Arguments
evaluationDesign |
A list giving the evaluation of the design. |
name |
A string giving the name of the design evaluation. |
modelParameters |
A list giving the model parameters. |
modelEquations |
A list giving the model equations. |
modelFromLibrary |
A list giving the model equations from the library of model. |
modelError |
A list giving the model error. |
designs |
A list giving the designs to be evaluated. |
outputs |
A list giving the model outputs. |
fimType |
A string giving the type of Fim being evaluated. |
odeSolverParameters |
A list giving the atol and rtol parameters for the ode solver. |
FedorovWynnAlgorithm
Description
The class FedorovWynnAlgorithm
implements the FedorovWynn algorithm.
Usage
FedorovWynnAlgorithm(
name = character(0),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(0),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),
fim = Fim(),
odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
elementaryProtocols = list(),
numberOfSubjects = 0,
proportionsOfSubjects = 0,
showProcess = FALSE,
FedorovWynnAlgorithmOutputs = list()
)
Arguments
name |
A string giving the name of the design evaluation. |
modelEquations |
A list giving the model equations. |
modelFromLibrary |
A list giving the model equations from the library of model. |
modelParameters |
A list giving the model parameters. |
modelError |
A list giving the model error. |
optimizer |
A string giving the name of the optimization algorithm being used. |
optimizerParameters |
A list giving the parameters of the optimization algorithm. |
outputs |
A list giving the model outputs. |
designs |
A list giving the designs to be evaluated. |
fimType |
A string giving the type of Fim being evaluated. |
fim |
A object |
odeSolverParameters |
A list giving the atol and rtol parameters for the ode solver. |
optimisationDesign |
A list giving the evaluation of initial and optimal design. |
optimisationAlgorithmOutputs |
A list giving the outputs of the optimization process. |
elementaryProtocols |
List of elementary protocols |
numberOfSubjects |
Numeric vector specifying number of subjects |
proportionsOfSubjects |
Numeric vector of subject proportions |
showProcess |
Logical indicating whether to show process |
FedorovWynnAlgorithmOutputs |
A list giving the output of the optimization algorithm. |
Fedorov-Wynn algorithm in Rcpp.
Description
Run the FedorovWynnAlgorithm in Rcpp
Usage
FedorovWynnAlgorithm_Rcpp(
protocols_input,
ndimen_input,
nbprot_input,
numprot_input,
freq_input,
nbdata_input,
vectps_input,
fisher_input,
nok_input,
protdep_input,
freqdep_input
)
Arguments
protocols_input |
parameter protocols_input |
ndimen_input |
parameter ndimen_input |
nbprot_input |
parameter nbprot_input |
numprot_input |
parameter numprot_input |
freq_input |
parameter freq_input |
nbdata_input |
parameter nbdata_input |
vectps_input |
parameter vectps_input |
fisher_input |
parameter fisher_input |
nok_input |
parameter nok_input |
protdep_input |
parameter protdep_input |
freqdep_input |
parameter freqdep_input |
Value
A list giving the results of the outputs of the FedorovWynn algorithm.
Fim
Description
The class Fim
represents and stores information for the Fim.
Usage
Fim(
fisherMatrix = numeric(0),
fixedEffects = numeric(0),
varianceEffects = numeric(0),
SEAndRSE = list(),
condNumberFixedEffects = 0,
condNumberVarianceEffects = 0,
shrinkage = numeric(0)
)
Arguments
fisherMatrix |
A matrix giving the numerical values of the Fim. |
fixedEffects |
A matrix giving the numerical values of the fixedEffects of the Fim. |
varianceEffects |
A matrix giving the numerical values of varianceEffects of the Fim. |
SEAndRSE |
A data frame giving the value of the SE and RSE. |
condNumberFixedEffects |
The conditional number of the fixedEffects of the Fim. |
condNumberVarianceEffects |
The conditional number of the varianceEffects of the Fim. |
shrinkage |
A vector giving the shrinkage values. |
IndividualFim
Description
The class IndividualFim
represents and stores information for the IndividualFim.
Usage
IndividualFim(
fisherMatrix = numeric(0),
fixedEffects = numeric(0),
varianceEffects = numeric(0),
SEAndRSE = list(),
condNumberFixedEffects = 0,
condNumberVarianceEffects = 0,
shrinkage = numeric(0)
)
Arguments
fisherMatrix |
A matrix giving the numerical values of the Fim. |
fixedEffects |
A matrix giving the numerical values of the fixedEffects of the Fim. |
varianceEffects |
A matrix giving the numerical values of varianceEffects of the Fim. |
SEAndRSE |
A data frame giving the value of the SE and RSE. |
condNumberFixedEffects |
The conditional number of the fixedEffects of the Fim. |
condNumberVarianceEffects |
The conditional number of the varianceEffects of the Fim. |
shrinkage |
A vector giving the shrinkage values. |
LibraryOfModels
Description
The class LibraryOfModels
represents and stores information for the LibraryOfModels.
Usage
LibraryOfModels(models = list())
Arguments
models |
A list giving all the PK and PD models. |
LibraryOfPDModels
Description
The class LibraryOfPDModels
represents and stores information for the LibraryOfPDModels.
Usage
LibraryOfPDModels
Format
An object of class PFIM::LibraryOfPDModels
(inherits from PFIM::LibraryOfModels
, S7_object
) of length 1.
LibraryOfPKModels
Description
The class LibraryOfPKModels
represents and stores information for the LibraryOfPKModels.
Usage
LibraryOfPKModels
Format
An object of class PFIM::LibraryOfPKModels
(inherits from PFIM::LibraryOfModels
, S7_object
) of length 1.
Model Linear2BolusSingleDose_ClQV1V2
Description
Model Linear2BolusSingleDose_ClQV1V2
Usage
Linear2BolusSingleDose_ClQV1V2()
Model Linear2BolusSingleDose_kk12k21V
Description
Model Linear2BolusSingleDose_kk12k21V
Usage
Linear2BolusSingleDose_kk12k21V()
Model Linear2BolusSteadyState_ClQV1V2tau
Description
Model Linear2BolusSteadyState_ClQV1V2tau
Usage
Linear2BolusSteadyState_ClQV1V2tau()
Model Linear2BolusSteadyState_kk12k21Vtau
Description
Model Linear2BolusSteadyState_kk12k21Vtau
Usage
Linear2BolusSteadyState_kk12k21Vtau()
Model Linear2FirstOrderSingleDose_kaClQV1V2
Description
Model Linear2FirstOrderSingleDose_kaClQV1V2
Usage
Linear2FirstOrderSingleDose_kaClQV1V2()
Model Linear2FirstOrderSingleDose_kakk12k21V
Description
Model Linear2FirstOrderSingleDose_kakk12k21V
Usage
Linear2FirstOrderSingleDose_kakk12k21V()
Model Linear2FirstOrderSteadyState_kaClQV1V2tau
Description
Model Linear2FirstOrderSteadyState_kaClQV1V2tau
Usage
Linear2FirstOrderSteadyState_kaClQV1V2tau()
Model Linear2FirstOrderSteadyState_kakk12k21Vtau
Description
Model Linear2FirstOrderSteadyState_kakk12k21Vtau
Usage
Linear2FirstOrderSteadyState_kakk12k21Vtau()
Model Linear2InfusionSingleDose_ClQV1V2
Description
Model Linear2InfusionSingleDose_ClQV1V2
Usage
Linear2InfusionSingleDose_ClQV1V2()
Model Linear2InfusionSingleDose_kk12k21V
Description
Model Linear2InfusionSingleDose_kk12k21V
Usage
Linear2InfusionSingleDose_kk12k21V()
Model Linear2InfusionSteadyState_ClQV1V2tau
Description
Model Linear2InfusionSteadyState_ClQV1V2tau
Usage
Linear2InfusionSteadyState_ClQV1V2tau()
Model Linear2InfusionSteadyState_kk12k21Vtau
Description
Model Linear2InfusionSteadyState_kk12k21Vtau
Usage
Linear2InfusionSteadyState_kk12k21Vtau()
LogNormal
Description
The class LogNormal
implements the LogNormal distribution.
Usage
LogNormal(name = character(0), mu = 0, omega = 0)
Arguments
name |
A string giving the name of the distribution. |
mu |
A double giving the mean mu. |
omega |
A double giving omega. |
Model
Description
The class Model
represents and stores information for a model.
Usage
Model(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
ModelAnalytic
Description
The class ModelAnalytic
is used to defined an analytic model.
Usage
ModelAnalytic(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list(),
wrapperModelAnalytic = list(),
functionArgumentsModelAnalytic = list(),
functionArgumentsSymbolModelAnalytic = list(),
solverInputs = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
wrapperModelAnalytic |
Wrapper for the ode solver. |
functionArgumentsModelAnalytic |
A list giving the functionArguments of the wrapper for the analytic model. |
functionArgumentsSymbolModelAnalytic |
A list giving the functionArgumentsSymbol of the wrapper for the analytic model |
solverInputs |
A list giving the solver inputs. |
ModelAnalyticInfusion
Description
The class ModelAnalyticInfusion
is used to defined an analytic model in infusion.
Usage
ModelAnalyticInfusion(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list(),
wrapperModelAnalyticInfusion = list(),
functionArgumentsModelAnalyticInfusion = list(),
functionArgumentsSymbolModelAnalyticInfusion = list(),
solverInputs = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
wrapperModelAnalyticInfusion |
Wrapper for the ode solver. |
functionArgumentsModelAnalyticInfusion |
A list giving the functionArguments of the wrapper for the analytic model in infusion. |
functionArgumentsSymbolModelAnalyticInfusion |
A list giving the functionArgumentsSymbol of the wrapper for the analytic model in infusion. |
solverInputs |
A list giving the solver inputs. |
ModelAnalyticInfusionSteadyState
Description
The class ModelAnalyticInfusionSteadyState
is used to defined an analytic model in infusion steady state.
Usage
ModelAnalyticInfusionSteadyState(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list(),
wrapperModelAnalyticInfusion = list(),
functionArgumentsModelAnalyticInfusion = list(),
functionArgumentsSymbolModelAnalyticInfusion = list(),
solverInputs = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
wrapperModelAnalyticInfusion |
Wrapper for the ode solver. |
functionArgumentsModelAnalyticInfusion |
A list giving the functionArguments of the wrapper for the analytic model in infusion. |
functionArgumentsSymbolModelAnalyticInfusion |
A list giving the functionArgumentsSymbol of the wrapper for the analytic model in infusion. |
solverInputs |
A list giving the solver inputs. |
Details
ModelAnalyticInfusionSteadyState
ModelAnalyticSteadyState
Description
The class ModelAnalyticSteadyState
is used to defined an analytic model in steady state.
Usage
ModelAnalyticSteadyState(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list(),
wrapperModelAnalytic = list(),
functionArgumentsModelAnalytic = list(),
functionArgumentsSymbolModelAnalytic = list(),
solverInputs = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
wrapperModelAnalytic |
Wrapper for the ode solver. |
functionArgumentsModelAnalytic |
A list giving the functionArguments of the wrapper for the analytic model in steady state. |
functionArgumentsSymbolModelAnalytic |
A list giving the functionArgumentsSymbol of the wrapper for the analytic model in steady state. |
solverInputs |
A list giving the solver inputs. |
Details
ModelAnalyticSteadyState
ModelError
Description
The class ModelError
is used to defined a model error.
Usage
ModelError(
output = "output",
equation = expression(),
derivatives = list(),
sigmaInter = 0.1,
sigmaSlope = 0,
sigmaInterFixed = FALSE,
sigmaSlopeFixed = FALSE,
cError = 1
)
Arguments
output |
A string giving the model error output. |
equation |
A expression giving the model error equation. |
derivatives |
A list giving the derivatives of the model error equation. |
sigmaInter |
A double giving the sigma inter. |
sigmaSlope |
A double giving the sigma slope |
sigmaInterFixed |
A boolean giving if the sigma inter is fixed or not. - not in the v7.0 |
sigmaSlopeFixed |
A boolean giving if the sigma slope is fixed or not. - not in the v7.0 |
cError |
A integer giving the power parameter. |
Details
ModelError
ModelInfusion
Description
The class ModelInfusion
is used to defined a model in infusion.
Usage
ModelInfusion(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
ModelODE
Description
The class ModelODE
is used to defined a ode model.
Usage
ModelODE(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
ModelODEBolus
Description
The class ModelODEBolus
is used to defined a model ode admin bolus.
Usage
ModelODEBolus(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list(),
modelODE = function() NULL,
doseEvent = list(),
solverInputs = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
modelODE |
An object |
doseEvent |
A dataframge given the doseEvent for the ode solver. |
solverInputs |
A list giving the solver inputs. |
ModelODEDoseNotInEquations
Description
The class ModelODEDoseNotInEquations
is used to defined a ModelODEDoseNotInEquations
Usage
ModelODEDoseInEquations(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list(),
modelODEDoseInEquations = function() NULL,
solverInputs = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
modelODEDoseInEquations |
An object |
solverInputs |
A list giving the solver inputs. |
ModelODEDoseNotInEquations
Description
The class ModelODEDoseNotInEquations
is used to defined a ModelODEDoseNotInEquations
Usage
ModelODEDoseNotInEquations(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list(),
modelODE = function() NULL,
doseEvent = list(),
solverInputs = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
modelODE |
An object |
doseEvent |
A dataframge given the doseEvent for the ode solver. |
solverInputs |
A list giving the solver inputs. |
ModelODEInfusion
Description
The class ModelODEInfusion
is used to defined a model ModelODEInfusion.
Usage
ModelODEInfusion(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
ModelODEInfusionDoseInEquation
Description
The class ModelODEInfusionDoseInEquation
is used to defined a ModelODEInfusionDoseInEquation
Usage
ModelODEInfusionDoseInEquation(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(0),
functionArguments = character(0),
functionArgumentsSymbol = list(),
modelODE = function() NULL,
wrapperModelInfusion = list(),
solverInputs = list()
)
Arguments
name |
Character vector specifying the model name |
modelParameters |
List of model parameters |
samplings |
Numeric vector of sampling times |
modelEquations |
List containing the model equations |
wrapper |
Function wrapper for the model (default: function () NULL) |
outputFormula |
List of output formulas |
outputNames |
Character vector of output names |
variableNames |
Character vector of variable names |
outcomesWithAdministration |
Character vector of outcomes with administration |
outcomesWithNoAdministration |
Character vector of outcomes without administration |
modelError |
List defining the error model |
odeSolverParameters |
List of ODE solver parameters |
parametersForComputingGradient |
List of parameters for gradient computation |
initialConditions |
Numeric vector of initial conditions |
functionArguments |
Character vector of function arguments |
functionArgumentsSymbol |
List of function argument symbols |
modelODE |
An object |
wrapperModelInfusion |
Wrapper for solver. |
solverInputs |
A list giving the solver inputs. |
ModelParameter
Description
The class ModelParameter
is used to defined the model parameters.
Usage
ModelParameter(
name = character(0),
distribution = Distribution(),
fixedMu = FALSE,
fixedOmega = FALSE
)
Arguments
name |
A string giving the name of the parameter. |
distribution |
A string giving the distribution of the parameter. |
fixedMu |
A Boolean setting TRUE/FALSE if the mu is estimated or not. |
fixedOmega |
A Boolean setting TRUE/FALSE if the omega is estimated or not. |
Details
ModelParameter
MultiplicativeAlgorithm
Description
The class MultiplicativeAlgorithm
implements the multiplicative algorithm.
Usage
MultiplicativeAlgorithm(
name = character(0),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(0),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),
fim = Fim(),
odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
lambda = 0,
delta = 0,
numberOfIterations = 0,
weightThreshold = 0,
showProcess = FALSE,
multiplicativeAlgorithmOutputs = list()
)
Arguments
name |
A string giving the name of the design evaluation. |
modelEquations |
A list giving the model equations. |
modelFromLibrary |
A list giving the model equations from the library of model. |
modelParameters |
A list giving the model parameters. |
modelError |
A list giving the model error. |
optimizer |
A string giving the name of the optimization algorithm being used. |
optimizerParameters |
A list giving the parameters of the optimization algorithm. |
outputs |
A list giving the model outputs. |
designs |
A list giving the designs to be evaluated. |
fimType |
A string giving the type of Fim being evaluated. |
fim |
A object |
odeSolverParameters |
A list giving the atol and rtol parameters for the ode solver. |
optimisationDesign |
A list giving the evaluation of initial and optimal design. |
optimisationAlgorithmOutputs |
A list giving the outputs of the optimization process. |
lambda |
A numeric giving the parameter lambda. |
delta |
A numeric giving the parameter delta |
numberOfIterations |
A numeric giving the number of iterations. |
weightThreshold |
A numeric giving the weight threshold. |
showProcess |
A Boolean for displaying the process or not. |
multiplicativeAlgorithmOutputs |
A list giving the output of the optimization algorithm. |
Function MultiplicativeAlgorithm_Rcpp
Description
Run the MultiplicativeAlgorithm_Rcpp in Rcpp.
Usage
MultiplicativeAlgorithm_Rcpp(
fisherMatrices_input,
numberOfFisherMatrices_input,
weights_input,
numberOfParameters_input,
dim_input,
lambda_input,
delta_input,
iterationInit_input
)
Arguments
fisherMatrices_input |
The parameter fotfisherMatrices_input. |
numberOfFisherMatrices_input |
The parameter numberOfFisherMatrices_input. |
weights_input |
The parameter weights_input. |
numberOfParameters_input |
The parameter numberOfParameters_input. |
dim_input |
The parameter dim_input. |
lambda_input |
The parameter lambda_input. |
delta_input |
The parameter delta_input. |
iterationInit_input |
The parameter iterationInit_input. |
Value
The list output with the outputs of the MultiplicativeAlgorithm_Rcpp.
Normal
Description
The class Normal
implements the Normal distribution.
Usage
Normal(name = character(0), mu = 0, omega = 0)
Arguments
name |
A string giving the name of the distribution. |
mu |
A double giving the mean mu. |
omega |
A double giving omega. |
Optimization
Description
The class Optimization
implements the Optimization.
Usage
Optimization(
name = character(0),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(0),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),
fim = Fim(),
odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list()
)
Arguments
name |
A string giving the name of the design evaluation. |
modelEquations |
A list giving the model equations. |
modelFromLibrary |
A list giving the model equations from the library of model. |
modelParameters |
A list giving the model parameters. |
modelError |
A list giving the model error. |
optimizer |
A string giving the name of the optimization algorithm being used. |
optimizerParameters |
A list giving the parameters of the optimization algorithm. |
outputs |
A list giving the model outputs. |
designs |
A list giving the designs to be evaluated. |
fimType |
A string giving the type of Fim being evaluated. |
fim |
A object |
odeSolverParameters |
A list giving the atol and rtol parameters for the ode solver. |
optimisationDesign |
A list giving the evaluation of initial and optimal design. |
optimisationAlgorithmOutputs |
A list giving the outputs of the optimization process. |
PFIMProject
Description
The class PFIMProject
implements the PFIM project.
Usage
PFIMProject(
name = character(0),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(0),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),
fim = Fim(),
odeSolverParameters = list()
)
Arguments
name |
A string giving the name of the design evaluation. |
modelEquations |
A list giving the model equations. |
modelFromLibrary |
A list giving the model equations from the library of model. |
modelParameters |
A list giving the model parameters. |
modelError |
A list giving the model error. |
optimizer |
A string giving the name of the optimization algorithm being used. |
optimizerParameters |
A list giving the parameters of the optimization algorithm. |
outputs |
A list giving the model outputs. |
designs |
A list giving the designs to be evaluated. |
fimType |
A string giving the type of Fim being evaluated. |
fim |
A object |
odeSolverParameters |
A list giving the atol and rtol parameters for the ode solver. |
PGBOAlgorithm
Description
The class PGBOAlgorithm
implements the PGBO algorithm.
Usage
PGBOAlgorithm(
name = character(0),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(0),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),
fim = Fim(),
odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
N = numeric(0),
muteEffect = numeric(0),
maxIteration = numeric(0),
purgeIteration = numeric(0),
seed = numeric(0),
showProcess = FALSE
)
Arguments
name |
A string giving the name of the design evaluation. |
modelEquations |
A list giving the model equations. |
modelFromLibrary |
A list giving the model equations from the library of model. |
modelParameters |
A list giving the model parameters. |
modelError |
A list giving the model error. |
optimizer |
A string giving the name of the optimization algorithm being used. |
optimizerParameters |
A list giving the parameters of the optimization algorithm. |
outputs |
A list giving the model outputs. |
designs |
A list giving the designs to be evaluated. |
fimType |
A string giving the type of Fim being evaluated. |
fim |
A object |
odeSolverParameters |
A list giving the atol and rtol parameters for the ode solver. |
optimisationDesign |
A list giving the evaluation of initial and optimal design. |
optimisationAlgorithmOutputs |
A list giving the outputs of the optimization process. |
N |
A numeric giving the parameter N. |
muteEffect |
A numeric giving the parameter muteEffect. |
maxIteration |
A numeric giving the parameter maxIteration. |
purgeIteration |
A numeric giving the parameter purgeIteration. |
seed |
A numeric giving the parameter seed. |
showProcess |
A Boolean giving showProcess. |
PSOAlgorithm
Description
The class PSOAlgorithm
implements the PSO algorithm.
Usage
PSOAlgorithm(
name = character(0),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(0),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),
fim = Fim(),
odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
maxIteration = numeric(0),
populationSize = numeric(0),
seed = numeric(0),
personalLearningCoefficient = numeric(0),
globalLearningCoefficient = numeric(0),
showProcess = FALSE
)
Arguments
name |
A string giving the name of the design evaluation. |
modelEquations |
A list giving the model equations. |
modelFromLibrary |
A list giving the model equations from the library of model. |
modelParameters |
A list giving the model parameters. |
modelError |
A list giving the model error. |
optimizer |
A string giving the name of the optimization algorithm being used. |
optimizerParameters |
A list giving the parameters of the optimization algorithm. |
outputs |
A list giving the model outputs. |
designs |
A list giving the designs to be evaluated. |
fimType |
A string giving the type of Fim being evaluated. |
fim |
A object |
odeSolverParameters |
A list giving the atol and rtol parameters for the ode solver. |
optimisationDesign |
A list giving the evaluation of initial and optimal design. |
optimisationAlgorithmOutputs |
A list giving the outputs of the optimization process. |
maxIteration |
A numeric giving the maxIteration. |
populationSize |
A numeric giving the populationSize. |
seed |
A numeric giving the seed. |
personalLearningCoefficient |
A numeric giving the personalLearningCoefficient. |
globalLearningCoefficient |
A numeric giving the globalLearningCoefficient. |
showProcess |
A Boolean giving the showProcess. |
PopulationFim
Description
The class PopulationFim
represents and stores information for the PopulationFim.
Usage
PopulationFim(
fisherMatrix = numeric(0),
fixedEffects = numeric(0),
varianceEffects = numeric(0),
SEAndRSE = list(),
condNumberFixedEffects = 0,
condNumberVarianceEffects = 0,
shrinkage = numeric(0)
)
Arguments
fisherMatrix |
A matrix giving the numerical values of the Fim. |
fixedEffects |
A matrix giving the numerical values of the fixedEffects of the Fim. |
varianceEffects |
A matrix giving the numerical values of varianceEffects of the Fim. |
SEAndRSE |
A data frame giving the value of the SE and RSE. |
condNumberFixedEffects |
The conditional number of the fixedEffects of the Fim. |
condNumberVarianceEffects |
The conditional number of the varianceEffects of the Fim. |
shrinkage |
A vector giving the shrinkage values. |
Proportional
Description
The class Proportional
is used to defined a model error.
Usage
Proportional(
output = character(0),
equation = expression(sigmaSlope),
derivatives = list(),
sigmaInter = 0,
sigmaSlope = 0,
sigmaInterFixed = FALSE,
sigmaSlopeFixed = FALSE,
cError = 1
)
Arguments
output |
A string giving the model error output. |
equation |
A expression giving the model error equation. |
derivatives |
A list giving the derivatives of the model error equation. |
sigmaInter |
A double giving the sigma inter. |
sigmaSlope |
A double giving the sigma slope |
sigmaInterFixed |
A Boolean giving if the sigma inter is fixed or not. - not in the v7.0 |
sigmaSlopeFixed |
A Boolean giving if the sigma slope is fixed or not. - not in the v7.0 |
cError |
A integer giving the power parameter. |
Generate optimization report
Description
Generate optimization report
Report: generate the report.
Arguments
optimization |
An |
pfimproject |
A object |
outputPath |
A string giving the path where the output are saved. |
outputFile |
A string giving the name of the output file. |
plotOptions |
A list giving the plot options. |
Value
Generated report.
The html report of the design evaluation or optimization.
SamplingTimeConstraints
Description
The class "SamplingTimeConstraints" implements the constraints for the sampling times.
Usage
SamplingTimeConstraints(
outcome = character(0),
initialSamplings = 0,
fixedTimes = 0,
numberOfsamplingsOptimisable = 0,
samplingsWindows = list(),
numberOfTimesByWindows = 0,
minSampling = 0
)
Arguments
outcome |
A string giving the outcome. |
initialSamplings |
A vector of numeric giving the initialSamplings. |
fixedTimes |
A vector of numeric giving the fixedTimes. |
numberOfsamplingsOptimisable |
A vector of numeric giving the numberOfsamplingsOptimisable. |
samplingsWindows |
A vector of numeric giving the samplingsWindows. |
numberOfTimesByWindows |
A vector of numeric giving the numberOfTimesByWindows. |
minSampling |
A vector of numeric giving the minSampling. |
SamplingTimes
Description
The class SamplingTimes
is used to defined SamplingTimes.
Usage
SamplingTimes(outcome = character(0), samplings = numeric(0))
Arguments
outcome |
A string giving the outcome. |
samplings |
A vector of numeric giving the samplings. |
SimplexAlgorithm
Description
The class SimplexAlgorithm
implements the Simplex algorithm.
Usage
SimplexAlgorithm(
name = character(0),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(0),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),
fim = Fim(),
odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
pctInitialSimplexBuilding = numeric(0),
maxIteration = numeric(0),
seed = numeric(0),
tolerance = numeric(0),
showProcess = FALSE
)
Arguments
name |
A string giving the name of the design evaluation. |
modelEquations |
A list giving the model equations. |
modelFromLibrary |
A list giving the model equations from the library of model. |
modelParameters |
A list giving the model parameters. |
modelError |
A list giving the model error. |
optimizer |
A string giving the name of the optimization algorithm being used. |
optimizerParameters |
A list giving the parameters of the optimization algorithm. |
outputs |
A list giving the model outputs. |
designs |
A list giving the designs to be evaluated. |
fimType |
A string giving the type of Fim being evaluated. |
fim |
A object |
odeSolverParameters |
A list giving the atol and rtol parameters for the ode solver. |
optimisationDesign |
A list giving the evaluation of initial and optimal design. |
optimisationAlgorithmOutputs |
A list giving the outputs of the optimization process. |
pctInitialSimplexBuilding |
A numeric giving the pctInitialSimplexBuilding. |
maxIteration |
A numeric giving the maxIteration. |
seed |
A numeric giving the seed. |
tolerance |
A numeric giving the tolerance. |
showProcess |
A Boolean giving the showProcess. |
adjustGradient: adjust the gradient for the log normal distribution.
Description
adjustGradient: adjust the gradient for the log normal distribution.
Arguments
distribution |
An object |
gradient |
The gradient of the model responses. |
Value
The adjusted gradient of the model responses.
getArmAdministration: get the administration parameters of an arm.
Description
getArmAdministration: get the administration parameters of an arm.
Arguments
arm |
A object of class |
Value
A list giving the administration parameters of an arm.
checkSamplingTimeConstraintsForMetaheuristic
Description
checkSamplingTimeConstraintsForMetaheuristic
Arguments
samplingTimesConstraints |
An object |
arm |
An object |
newSamplings |
A vector of numeric for the new samplings. |
outcome |
A string giving the outcome. |
Value
A boolean TRUE/FALSE, with a message error if FALSE.
checkValiditySamplingConstraint: check if the constraints used for the design optimization are valid.
Description
checkValiditySamplingConstraint: check if the constraints used for the design optimization are valid.
Arguments
design |
An object |
Value
A boolean TRUE / FALSE, if FALSE it also gives an error message.
computeVMat
Description
computeVMat
Usage
computeVMat(varParam1, varParam2, invCholV)
Arguments
varParam1 |
varParam1 |
varParam2 |
varParam2 |
invCholV |
invCholV |
Value
VMat
constraintsTableForReport: table of the PGBOAlgorithm constraints for the report.
Description
constraintsTableForReport: table of the PGBOAlgorithm constraints for the report.
constraintsTableForReport: table of the PSOAlgorithm constraints for the report.
constraintsTableForReport: table of the SimplexAlgorithm constraints for the report.
constraintsTableForReport
constraintsTableForReport: table of the MultiplicativeAlgorithm constraints for the report.
Arguments
optimizationAlgorithm |
A object |
arms |
List of the arms. |
Value
The table for the constraints in the arms.
The table for the constraints in the arms.
The table for the constraints in the arms.
armsConstraintsTable
The table for the constraints in the arms.
convertPKModelAnalyticToPKModelODE: conversion from analytic to ode
Description
convertPKModelAnalyticToPKModelODE: conversion from analytic to ode
convertPKModelAnalyticToPKModelODE: conversion from analytic to ode
convertPKModelAnalyticToPKModelODE: conversion from analytic infusion to ode
Arguments
pkModel |
An object of class |
define the type of Fisher information matrix: population, individual or Bayesian
Description
define the type of Fisher information matrix: population, individual or Bayesian
Arguments
pfimproject |
An object |
Value
An object Fim
.
defineModelAdministration: define the administration
Description
defineModelAdministration: define the administration
defineModelAdministration: define the administration
defineModelAdministration: define the administration
defineModelAdministration: define the administration
defineModelAdministration: define the administration
defineModelAdministration: define the administration
defineModelAdministration: define the administration
Arguments
model |
An object of class |
arm |
An object of class |
Value
The model with samplings, solverInputs
The model with samplings, solverInputs
The model with samplings, solverInputs
The model with updated slots.
The model with samplings, solverInputs
The model with samplings, solverInputs
The model with updated slots.
defineModelEquationsFromLibraryOfModel: define the model equations giving the models in the library of models.
Description
defineModelEquationsFromLibraryOfModel: define the model equations giving the models in the library of models.
Arguments
pfimproject |
An object |
Value
A list giving the model equations.
defineModelType: define the class of the model to be evaluated.
Description
defineModelType: define the class of the model to be evaluated.
Arguments
pfimproject |
An object |
Value
An object Model
giving the model to be evaluated with its modelParameters, odeSolverParameters, modelError, modelEquations.
defineModelWrapper: define the model wrapper for the ode solver
Description
defineModelWrapper: define the model wrapper for the ode solver
defineModelWrapper: define the model wrapper for the ode solver
defineModelWrapper: define the model wrapper for the ode solver
defineModelWrapper: define the model wrapper for the ode solver
defineModelWrapper: define the model wrapper for the ode solver
defineModelWrapper: define the model wrapper for the ode solver
defineModelWrapper: define the model wrapper for the ode solver
defineModelWrapper: define the model wrapper for the ode solver
Arguments
model |
An object of class |
evaluation |
An object of class Evaluation that defines the evaluation |
Value
The model with wrapperModelAnalytic, functionArgumentsModelAnalytic, functionArgumentsSymbolModelAnalytic, outputNames, outcomesWithAdministration
The model with wrapperModelAnalyticInfusion, functionArgumentsModelAnalyticInfusion, functionArgumentsSymbolModelAnalyticInfusion, outputNames, outcomesWithAdministration
The model with wrapperModelAnalyticInfusion, functionArgumentsModelAnalyticInfusion, functionArgumentsSymbolModelAnalyticInfusion, outputNames, outcomesWithAdministration
The model with wrapperModelAnalytic, functionArgumentsModelAnalytic, functionArgumentsSymbolModelAnalytic, outputNames, outcomesWithAdministration
The model with updated slots.
The model with the updated slots.
The model with the updated slots.
The model with updated slots.
Define optimization algorithm
Description
Define optimization algorithm
Arguments
optimization |
An |
Value
An optimization algorithm.
definePKModel: define a PK model from library of model
Description
definePKModel: define a PK model from library of model
definePKModel ModelAnalyticInfusion
definePKModel
definePKModel
definePKModel: define PK model ode bolus
definePKModel: define a PK model from library of model
definePKModel: define a PK model from library of model
definePKModel: define PK model ode bolus
Arguments
pkModel |
An object of class |
pfimproject |
An object of class |
definePKPDModel: define a PKPD model from library of model
Description
definePKPDModel: define a PKPD model from library of model
definePKPDModel: define a PKPD model from library of model
definePKPDModel ModelAnalyticInfusion, ModelAnalytic
definePKPDModel ModelAnalyticInfusion, ModelODE
definePKPDModel
definePKPDModel
definePKPDModel
definePKPDModel: define a PKPD model from library of model
Arguments
pkModel |
An object of class |
pfimproject |
An object of class |
evaluateArm: evaluation of the model with the arm parameters.
Description
evaluateArm: evaluation of the model with the arm parameters.
Arguments
arm |
A object of class |
model |
A object of class |
fim |
A object of class |
Value
The object arm with the slots evaluationModel, evaluationGradients, evaluationVariance and evaluationFim.
evaluateDesign: evaluation of a design.
Description
evaluateDesign: evaluation of a design.
Arguments
design |
An object |
model |
An object |
fim |
An object |
Value
The object Design
with its evaluation results.
evaluateErrorModelDerivatives; evaluate the derivatives of the model error.
Description
evaluateErrorModelDerivatives; evaluate the derivatives of the model error.
Arguments
modelError |
An object |
evaluationModel |
A dataframe giving the outputs for the model evaluation. |
Value
The matrices sigmaDerivatives and errorVariance.
evaluateFim: evaluation of the Fim
Description
evaluateFim: evaluation of the Fim
evaluateFim: evaluation of the Fim
evaluateFim: evaluation of the Fim
Arguments
fim |
An object |
model |
An object |
arm |
An object |
Value
The object Fim
with the fisherMatrix and the shrinkage.
The object IndividualFim
with the fisherMatrix and the shrinkage.
The object IndividualFim
with the fisherMatrix and the shrinkage.
evaluateInitialConditions: evaluate the initial conditions.
Description
evaluateInitialConditions: evaluate the initial conditions.
evaluateInitialConditions: evaluate the initial conditions.
evaluateInitialConditions: evaluate the initial conditions.
Arguments
arm |
A object of class |
model |
A object of class |
doseEvent |
A data frame giving the dose event for the ode solver. |
Value
A list giving the evaluated initial conditions.
evaluateModel: evaluate the model
Description
evaluateModel: evaluate the model
evaluateModel: evaluate the ModelAnalyticInfusion
evaluateModel: evaluate the ModelAnalyticInfusion
evaluateModel: evaluate the ModelAnalyticInfusion
evaluateModel
evaluateModel
evaluateModel: evaluate the model
evaluateModel: evaluate the model
evaluateModel
Arguments
arm |
A object of class |
model |
A object of class |
Value
A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the evaluation of the model.
A data frame giving the output of the model evaluation.
A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the results for the evaluation of the model.
A data frame giving the output of the model evaluation.
evaluateModelGradient: evaluate the gradient of the model
Description
evaluateModelGradient: evaluate the gradient of the model
Arguments
model |
An object |
arm |
A object |
Value
A data frame that contains the gradient of the model.
evaluateModelVariance: evaluate the variance of the model
Description
evaluateModelVariance: evaluate the variance of the model
Arguments
model |
A object |
arm |
A object |
Value
A list giving errorVariance and sigmaDerivatives.
evaluateVarianceFIM: evaluate the variance
Description
evaluateVarianceFIM: evaluate the variance
evaluateVarianceFIM: evaluate the variance
evaluateVarianceFIM: evaluate the variance
Arguments
arm |
A object of class |
model |
A object of class |
fim |
A object of class |
Value
The matrices MFbeta and V.
The matrices MFbeta and V.
The matrices MFVar and V.
finiteDifferenceHessian: compute the Hessian
Description
finiteDifferenceHessian: compute the Hessian
Arguments
model |
A object |
Value
The model with the slots parametersForComputingGradient with XcolsInv, shifted, frac.
Compute the fisher.simplex
Description
Compute the fisher.simplex
Arguments
simplex |
A list giving the parameters of the simplex. |
optimizationObject |
An object |
outcomes |
A vector giving the outcomes of the arms. |
Value
A list giving the results of the optimization.
Compute the fun.amoeba
Description
Compute the fun.amoeba
Usage
fun.amoeba(p, y, ftol, itmax, funk, outcomes, data, showProcess)
Arguments
p |
parameter p |
y |
parameter y |
ftol |
parameter ftol |
itmax |
parameter itmax |
funk |
parameter funk |
outcomes |
The model outcomes. |
data |
parameter data |
showProcess |
Boolean. |
Value
fun.amoeba
generateDosesCombination: generate the combination for the doses.
Description
generateDosesCombination: generate the combination for the doses.
Arguments
design |
An object |
Value
dosesForFIMs, numberOfDoses used in the design optimization.
Generate FIMs from constraints
Description
Generate FIMs from constraints
Arguments
optimization |
An |
Value
A list containing FIMs from constraints.
generateReportEvaluation: generate the report for the model evaluation.
Description
generateReportEvaluation: generate the report for the model evaluation.
generateReportEvaluation: generate the report for the model evaluation.
generateReportEvaluation: generate the report for the model evaluation.
Arguments
fim |
An object |
tablesForReport |
The output list giving by the method tablesForReport. |
Value
The html report for the design evaluation.
The html report for the model evaluation.
The html report for the model evaluation.
generateReportOptimization: generate the report for the design optimization.
Description
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
generateReportOptimization: generate the report for the design optimization.
Arguments
fim |
An object |
optimizationAlgorithm |
An object |
tablesForReport |
The output list giving by the method tablesForReport. |
Value
The html report for the design optimization.
The html report for the design optimization.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
generateSamplingTimesCombination: generate the combination for the samplings.
Description
generateSamplingTimesCombination: generate the combination for the samplings.
Arguments
design |
An object |
Value
samplingTimesCombinations used in the design optimization.
generateSamplingsFromSamplingConstraints
Description
generateSamplingsFromSamplingConstraints
Arguments
samplingTimeConstraints |
An object |
Value
A list intervalsConstraints.
getArmConstraints: get the administration and sampling time constraints for the MultiplicativeAlgorithm.
Description
getArmConstraints: get the administration and sampling time constraints for the MultiplicativeAlgorithm.
getArmConstraints: get the administration and sampling time constraints for the FedorovWynnAlgorithm.
getArmConstraints: get the administration and sampling time constraints for the SimplexAlgorithm.
getArmConstraints: get the administration and sampling time constraints for the PSOAlgorithm.
getArmConstraints: get the administration and sampling time constraints for the PGBOAlgorithm.
Arguments
arm |
A object of class |
optimizationAlgorithm |
A object of class |
Value
A list giving the administration and sampling time constraints for the MultiplicativeAlgorithm.
A list giving the administration and sampling time constraints for the FedorovWynnAlgorithm.
A list giving the administration and sampling time constraints for the SimplexAlgorithm.
A list giving the administration and sampling time constraints for the PSOAlgorithm.
A list giving the administration and sampling time constraints for the PGBOAlgorithm.
getArmData: extract arm data for The Report
Description
getArmData: extract arm data for The Report
Arguments
arm |
A object of class |
Value
A list giving the name, Number of subjects, Outcome, Dose and Sampling times of the arm.
getCorrelationMatrix : get the correlation matrix
Description
getCorrelationMatrix : get the correlation matrix
getCorrelationMatrix : get the correlation matrix
Arguments
pfimproject |
A object |
Value
The correlation matrix
The Dcriterion
getDcriterion : get the Dcriterion
Description
getDcriterion : get the Dcriterion
getDcriterion : get the Dcriterion
Arguments
pfimproject |
A object |
Value
The Dcriterion of the FIM.
The Dcriterion
getDeterminant: get the determinant
Description
getDeterminant: get the determinant
getDeterminant: get the determinant
Arguments
pfimproject |
A object |
Value
The determinant of the FIM.
The determinant
getFim: get the Fisher matrix.
Description
getFim: get the Fisher matrix.
Arguments
evaluation |
An object |
Value
The matrices fisherMatrix, fixedEffects, varianceEffects.
getFisherMatrix: display the Fisher matrix components
Description
getFisherMatrix: display the Fisher matrix components
getFisherMatrix: display the Fisher matrix components
Arguments
evaluation |
An object |
Value
The matrices fisherMatrix, fixedEffects, varianceEffects.
The matrices fisherMatrix, fixedEffects, varianceEffects.
getListLastName: routine to get the names of last element of a nested list.
Description
getListLastName: routine to get the names of last element of a nested list.
Usage
getListLastName(list)
Arguments
list |
The list to be used. |
Value
The names of last element.
getModelErrorData: get the parameters sigma slope and sigma inter (used for the report).
Description
getModelErrorData: get the parameters sigma slope and sigma inter (used for the report).
Arguments
modelError |
An object |
Value
A list of dataframe with outcome, type of model error and sigma slope and inter.
getModelParametersData: get model parameters data for report.
Description
getModelParametersData: get model parameters data for report.
Arguments
modelParameter |
An object if class |
Value
A data frame with the data of all the parameters.
getRSE: get the RSE
Description
getRSE: get the RSE
getRSE: get the RSE
Arguments
pfimproject |
A object |
Value
The RSE of the parameters.
The RSE
getSE: get the SE
Description
getSE: get the SE
getSE: get the SE
Arguments
pfimproject |
A object |
Value
The SE of the parameters.
The SE.
getSamplingData: extract sampling times and max sampling time used for plot.
Description
getSamplingData: extract sampling times and max sampling time used for plot.
Arguments
arm |
A object of class |
Value
A list giving the samplingTimes
object, the vector samplings and the double samplingMax.
getShrinkage: get the shrinkage
Description
getShrinkage: get the shrinkage
getShrinkage: get the shrinkage
Arguments
pfimproject |
A object |
Value
The shrinkage of the FIM.
The shrinkage
Optimization PGBOAlgorithm
Description
Optimization PGBOAlgorithm
Optimization PSOAlgorithm
Optimization SimplexAlgorithm
Optimization FedorovWynnAlgorithm
Optimization MultiplicativeAlgorithm
Arguments
optimizationObject |
A object |
optimizationAlgorithm |
A object |
Value
The object optimizationObject
with the slots updated.
The object optimizationObject
with the slots updated.
The object optimizationObject
with the slots updated.
The object optimizationObject
with the slots updated.
The object optimizationObject
with the slots updated.
plotEvaluation: plots for the evaluation of the model responses.
Description
plotEvaluation: plots for the evaluation of the model responses.
Arguments
pfimproject |
A object |
plotOptions |
A list giving the plot options. |
Value
All the plots for the evaluation of the model responses.
plotEvaluationResults: process for the evaluation of the responses.
Description
plotEvaluationResults: process for the evaluation of the responses.
Arguments
arm |
A object of class |
evaluationModel |
A list giving the evaluation of the model. |
outputNames |
A list of string giving the output of the evaluation of the model. |
samplingData |
A list giving the sampling data from the method getSamplingData. |
unitXAxis |
A list giving the unit of the x-axis. |
unitYAxis |
A list giving the unit of the y-axis. |
designName |
A string giving the design name. |
Value
A list giving the plot of the evaluation of the model responses.
plotEvaluationSI: process for the evaluation of the gradient of the responses.
Description
plotEvaluationSI: process for the evaluation of the gradient of the responses.
Arguments
arm |
A object of class |
evaluationModelGradient |
A list giving the evaluation of the gradient of the model responses. |
parametersNames |
A vector of string giving the parameter names? |
outputNames |
A list of string giving the name of the outputs. |
samplingData |
A list giving the sampling data from the method getSamplingData. |
unitXAxis |
A list giving the unit of the x-axis. |
unitYAxis |
A list giving the unit of the y-axis. |
designName |
A string giving the design name. |
Value
A list giving the plot of the evaluation of gradient of the model responses.
Plot frequencies for the FedorovWynn algorithm
Description
Plot frequencies for the FedorovWynn algorithm
Arguments
optimization |
An |
Value
Graph of the optimal frequencies.
plotFrequenciesFedorovWynnAlgorithm
Description
plotFrequenciesFedorovWynnAlgorithm
Arguments
optimization |
optimization |
optimizationAlgorithm |
optimizationAlgorithm |
Value
plotFrequenciesFedorovWynnAlgorithm
Plot relative standard errors
Description
Plot relative standard errors
plotRSE: bar plot of the RSE.
Arguments
optimization |
An |
pfimproject |
A object |
Value
Graph of relative standard errors
The bar plot of the RSE.
plotRSEFIM: barplot for the RSE
Description
plotRSEFIM: barplot for the RSE
plotRSEFIM: barplot for the RSE
plotRSEFIM: barplot for the RSE
Arguments
fim |
An object |
evaluation |
An object |
Value
The bar plot of the RSE.
The bar plot of the RSE.
The bar plot of the RSE.
Plot standard errors
Description
Plot standard errors
plotSE: bar plot of the SE.
Arguments
optimization |
An |
pfimproject |
A object |
Value
Graph of standard errors
The bar plot of the SE.
plotSEFIM: barplot for the SE
Description
plotSEFIM: barplot for the SE
plotSEFIM: barplot for the SE
plotSEFIM: barplot for the SE
Arguments
fim |
An object |
evaluation |
An object |
Value
The bar plot of the SE.
The bar plot of the SE.
The bar plot of the SE.
Plot sensitivity indices.
Description
Plot sensitivity indices.
plotSensitivityIndices: plots for the evaluation of the gradient of the model responses.
Arguments
optimization |
An |
pfimproject |
A object |
plotOptions |
A list giving the plot options. |
Value
Graph of sensitivity indices.
All the plots for the evaluation of the gradient of the model responses.
plotShrinkage: plot the shrinkage values.
Description
plotShrinkage: plot the shrinkage values.
Arguments
fim |
An object |
evaluation |
An object |
Value
The bar plot of the shrinkage.
Plot weights for the multiplicative algorithm
Description
Plot weights for the multiplicative algorithm
Arguments
optimization |
An |
Value
Plot of weights
plotWeightsMultiplicativeAlgorithm: plot the optimal weight.
Description
plotWeightsMultiplicativeAlgorithm: plot the optimal weight.
Arguments
optimization |
A object |
optimizationAlgorithm |
A object |
Value
The graph plotWeight.
processArmEvaluationResults: process for the evaluation of an arm.
Description
processArmEvaluationResults: process for the evaluation of an arm.
Arguments
arm |
A object of class |
model |
A object of class |
fim |
A object of class |
designName |
A string giving the name of the design. |
plotOptions |
A list giving the plot options. |
Value
A list of ggplot object giving the plot of the responses ans the gradient responses of the the model.
processArmEvaluationSI: process for the evaluation of the gradient of the responses.
Description
processArmEvaluationSI: process for the evaluation of the gradient of the responses.
Arguments
arm |
A object of class |
model |
A object of class |
fim |
A object of class |
designName |
A string giving the name of the design. |
Value
A list giving the ggplot object of the plots of the gradient.
replaceVariablesLibraryOfModels: replace variable in the LibraryOfModels
Description
replaceVariablesLibraryOfModels: replace variable in the LibraryOfModels
Usage
replaceVariablesLibraryOfModels(text, old, new)
Arguments
text |
the text |
old |
old string |
new |
new string |
Value
text with new string
Run optimization
Description
Run optimization
run: run the evaluation of a design.
Arguments
optimization |
An |
pfimproject |
A object |
Value
The optimization design results.
The object Evaluation
giving the design evaluation.
setEvaluationFim: set the Fim results.
Description
setEvaluationFim: set the Fim results.
setEvaluationFim: set the Fim results.
setEvaluationFim: set the Fim results.
Arguments
fim |
An object |
evaluation |
An object |
Value
The object Fim
with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEffects, SEAndRSE.
The object IndividualFim
with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEffects, SEAndRSE.
The object PopulationFim
with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEffects, SEAndRSE.
setOptimalArms: set the optimal arms of an optimization algorithm.
Description
setOptimalArms: set the optimal arms of an optimization algorithm.
setOptimalArms: set the optimal arms of an optimization algorithm.
setOptimalArms: set the optimal arms of an optimization algorithm.
setOptimalArms: set the optimal arms of an optimization algorithm.
setOptimalArms: set the optimal arms of an optimization algorithm.
setOptimalArms: set the optimal arms of an optimization algorithm.
Arguments
fim |
An object |
optimizationAlgorithm |
An object |
Value
The optimal arms.
The optimal arms.
The list optimalArms.
The list optimalArms.
The list optimalArms.
The list optimalArms.
setSamplingConstraintForOptimization: set the sampling time constraints for an arm for the design optimization.
Description
setSamplingConstraintForOptimization: set the sampling time constraints for an arm for the design optimization.
Arguments
design |
An object |
Value
The arm with the sampling time constraint for the design optimization.
Show optimization results
Description
Show optimization results
show: show the evaluation in the R console.
Arguments
optimization |
An |
pfimproject |
A object |
Value
Prints results to console.
The show of the evaluation of the design.
showFIM: show the Fim in the R console.
Description
showFIM: show the Fim in the R console.
showFIM: show the Fim in the R console.
showFIM: show the Fim in the R console.
Arguments
fim |
An object |
Value
The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and Parameters estimation
The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and Parameters estimation
The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and Parameters estimation
tablesForReport: generate the table for the report.
Description
tablesForReport: generate the table for the report.
tablesForReport: generate the table for the report.
tablesForReport: generate the table for the report.
Arguments
fim |
An object |
evaluation |
An object |
Value
fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.
fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.
fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.
updateSamplingTimes: update sampling times for plotting used for plot
Description
updateSamplingTimes: update sampling times for plotting used for plot
Arguments
arm |
A object of class |
samplingData |
The list giving as output in the method getSamplingData. |
Value
The updated sampling times.