The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Type: Package
Title: Improved Methods for Constructing Prediction Intervals for Network Meta-Analysis
Version: 1.1-2
Date: 2023-05-21
Maintainer: Hisashi Noma <noma@ism.ac.jp>
Description: Improved methods to construct prediction intervals for network meta-analysis. The parametric bootstrap and Kenward-Roger-type adjustment by Noma et al. (2022) <forthcoming> are implementable.
Imports: stats, MASS, metafor
License: GPL-3
Encoding: UTF-8
LazyData: true
NeedsCompilation: no
Packaged: 2023-05-22 01:01:14 UTC; Hisashi
Author: Hisashi Noma ORCID iD [aut, cre]
Depends: R (≥ 3.5.0)
Repository: CRAN
Date/Publication: 2023-05-22 04:10:02 UTC

The 'PINMA' package.

Description

Improved Methods for Constructing Prediction Intervals for Network Meta-Analysis.

References

Noma, H., Hamura, Y., Sugasawa, S. and Furukawa, T. A. (2022+). Improved methods to construct prediction intervals for network meta-analysis. Forthcoming.


Kenward-Roger-type adjustment for constructing prediction intervals of network meta-analysis

Description

Kenward-Roger-type adjustment for constructing prediction intervals of network meta-analysis.

Usage

KR(y, S)

Arguments

y

Contrast-based summary data of the outcome measure

S

Covariance estimates of y

Value

Results of the Kenward-Roger-type adjustment for inference of multivariate random-effects model and prediction intervals for network meta-analysis.

References

Noma, H., Hamura, Y., Sugasawa, S. and Furukawa, T. A. (2022+). Improved methods to construct prediction intervals for network meta-analysis. Forthcoming.

Examples

data(dstr)
attach(dstr)

# Transforming the arm-level data to the contrast-based summaryies
edat <- data.edit(study,trt,d,n)

y <- edat$y
S <- edat$S

KR(y,S)    # Results of the NMA analysis (log OR scale)

Parametric bootstrap procedure for constructing prediction intervals of network meta-analysis

Description

Parametric bootstrap procedure for constructing prediction intervals of network meta-analysis.

Usage

PBS(y, S, B=2000)

Arguments

y

Contrast-based summary data of the outcome measure

S

Covariance estimates of y

B

Number of bootstrap resampling (default: 2000).

Value

The parametric bootstrap prediction intervals for network meta-analysis.

References

Noma, H., Hamura, Y., Sugasawa, S. and Furukawa, T. A. (2022+). Improved methods to construct prediction intervals for network meta-analysis. Forthcoming.

Examples

data(dstr)
attach(dstr)

# Transforming the arm-level data to the contrast-based summaryies
edat <- data.edit(study,trt,d,n)

y <- edat$y
S <- edat$S

PBS(y,S,B=10)   # Results of the NMA analysis (log OR scale); B is recommended to be >= 1000.

Transforming arm-level data to contrast-based summary statistics

Description

Transforming arm-level data to contrast-based summary statistics.

Usage

data.edit(study,trt,d,n)

Arguments

study

Study ID

trt

Numbered treatment (=1,2,...)

d

Number of events

n

Sample size

Value

Contrast-based summary statistics are generated.

Examples

data(dstr)
attach(dstr)

edat <- data.edit(study,trt,d,n)

Siontis et al. (2018)'s network meta-analysis data

Description

Usage

data(dstr)

Format

A arm-based dataset with 29 rows and 5 variables

References

Siontis, G. C., Mavridis, D., Greenwood, J. P., et al. (2018). Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials. BMJ. 360: k504.


The ordinary t-approximation for constructing prediction intervals of network meta-analysis

Description

The ordinary t-approximation for constructing prediction intervals of network meta-analysis.

Usage

tPI(y, S)

Arguments

y

Contrast-based summary data of the outcome measure

S

Covariance estimates of y

Value

The ordinary t-approximation prediction intervals for network meta-analysis.

References

Cooper, H., Hedges, L. V., and Valentine, J. C. (2009). The Handbook of Research Synthesis and Meta-Analysis, 2nd edition. New York: Russell Sage Foundation.

Chaimani, A., and Salanti, G. (2015). Visualizing assumptions and results in network meta-analysis: the network graphs package. Stata Journal 15, 905-920.

Examples

data(dstr)
attach(dstr)

# Transforming the arm-level data to the contrast-based summaryies
edat <- data.edit(study,trt,d,n)

y <- edat$y
S <- edat$S

tPI(y,S)   # Results of the NMA analysis (log OR scale)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.