The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This package is an R interface to PRIMME, a high-performance C library for computing a few eigenvalues/eigenvectors, and singular values/vectors. PRIMME is especially optimized for large, difficult problems. Real symmetric and complex Hermitian problems, standard Ax = λx and generalized *Ax = λB**x*, are supported. It can find largest, smallest, or interior singular/eigenvalues, and can use preconditioning to accelerate convergence.
The main contributors to PRIMME are James R. McCombs, Eloy Romero Alcalde, Andreas Stathopoulos and Lingfei Wu.
Use the following two references to cite this package:
A. Stathopoulos and J. R. McCombs PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description, ACM Transaction on Mathematical Software Vol. 37, No. 2, (2010), 21:1-21:30.
L. Wu, E. Romero and A. Stathopoulos, PRIMME_SVDS: A High-Performance Preconditioned SVD Solver for Accurate Large-Scale Computations, J. Sci. Comput., Vol. 39, No. 5, (2017), S248–S271.
The latest release of PRIMME is available on CRAN:
install.packages("PRIMME")
To install the developer version:
library(devtools)
install_github("primme/primme", subdir="R")
Load the package as usual:
library(PRIMME)
The next example computes the three largest eigenvalues of the matrix
A
, which in this case is a dense diagonal matrix. It shows
all the eigenvalues values
, the eigenvectors
vectors
, the residual norms rnorms
and some
stats, such as the time stats$elapsedTime
and the number of
matrix vector multiplications performed
stats$numMatvecs
:
<- diag(1:10)
A <- eigs_sym(A, 3);
r
r#> $values
#> [1] 10 9 8
#>
#> $vectors
#> [,1] [,2] [,3]
#> [1,] -1.371868e-16 2.381771e-16 -2.252380e-16
#> [2,] 6.980780e-17 2.866614e-17 1.292433e-16
#> [3,] -2.299606e-16 1.269985e-16 -5.609795e-17
#> [4,] -1.960802e-16 2.701925e-17 -2.503660e-17
#> [5,] -4.857749e-17 2.462784e-16 -1.267024e-16
#> [6,] -2.577747e-16 -2.079437e-16 -1.676989e-16
#> [7,] -8.486805e-17 -7.529381e-16 -2.007853e-15
#> [8,] -1.120694e-15 -2.065498e-15 -1.000000e+00
#> [9,] -6.414024e-16 -1.000000e+00 1.560476e-15
#> [10,] 1.000000e+00 -2.987345e-16 -1.484140e-15
#>
#> $rnorms
#> [1] 5.155287e-15 4.440892e-15 4.740049e-15
#>
#> $stats
#> $stats$numMatvecs
#> [1] 10
#>
#> $stats$numPreconds
#> [1] 0
#>
#> $stats$elapsedTime
#> [1] 0.0006821156
#>
#> $stats$estimateMinEval
#> [1] 1
#>
#> $stats$estimateMaxEval
#> [1] 10
#>
#> $stats$estimateANorm
#> [1] 10
#>
#> $stats$timeMatvec
#> [1] 0.0003759861
#>
#> $stats$timePrecond
#> [1] 0
The next examples show how to compute eigenvalues in other parts of the spectrum:
<- diag(1:10)
A
<- eigs_sym(A, 3, 'SA'); # compute the three smallest values
r $values
r#> [1] 1 2 3
<- eigs_sym(A, 3, 5.1); # compute the three closest values to 5.1
r $values
r#> [1] 5 6 4
In some cases, a larger convergence tolerance may suffice:
<- diag(1:5000)
A
<- eigs_sym(A, 10, 'SA');
r $stats$numMatvecs
r#> [1] 1201
<- eigs_sym(A, 10, 'SA', tol=1e-3);
r $stats$numMatvecs
r#> [1] 414
Preconditioners, if available can reduce the time/matrix-vector multiplications significantly (see TODO):
# A is a tridiagonal
<- diag(1:5000)
A for(i in 1:4999) {A[i,i+1]<-1; A[i+1,i]<-1}
<- eigs_sym(A, 10, 'SA');
r $stats$numMatvecs
r#> [1] 1323
$stats$elapsedTime
r#> [1] 6.180366
# Jacobi preconditioner
= diag(A);
P <- eigs_sym(A, 10, 'SA', prec=function(x)x/P);
r $stats$numMatvecs
r#> [1] 51
$stats$elapsedTime
r#> [1] 0.2492089
Dense matrices, sparse matrices, and functions that return the
matrix-vector product can be passed as the matrix problem
A
:
<- eigs_sym(diag(1:10), 1); # dense matrix
r library(Matrix)
<- eigs_sym(Matrix(diag(1:10), sparse=TRUE), 1); # sparse matrix
r = function(x) matrix(1:10)*x; # function that does diag(1:10) %*% x
Afun <- eigs_sym(Afun, 1, n=10); # n is the matrix dimension corresponding to Afun r
The next benchmark function extends rbenchmark
to return
besides the time, the number of matrix-vector multiplications and the
maximum residual norm among all returned eigenpairs.
library(knitr)
<- function(..., A, environment=parent.frame()) {
bench_eigs = match.call()[-1]
arguments if (!is.null(names(arguments)))
= arguments[!names(arguments) %in% c("A", "environment")]
arguments <- function(s,v)
testRes sapply(1:ncol(v), function(i)
::norm(A%*%v[,i]-v[,i]*s[i],"2"));
base<- (if (!is.null(names(arguments))) names else as.character)(arguments)
labels data.frame(row.names=NULL, test=labels, t(mapply(function(test) {
<- system.time(r <- eval(test, environment));
r_t if (!"values" %in% names(r)) r$values <- r$d;
if (!"vectors" %in% names(r)) r$vectors <- r$u;
<- max(testRes(r$values, r$vectors))
resNorm <- if ("mprod" %in% names(r)) r$mprod
matvecs else if ("nops" %in% names(r)) r$nops
else if ("stats" %in% names(r)) r$stats$numMatvecs
else "--";
list(time=r_t[3], matvecs=matvecs, rnorm=resNorm)
}, arguments))) }
PRIMME eigs_sym is based on Davidson-type methods and they may be faster than Lanczos/Arnoldi based method (e.g., svd, RSpectra and irlba) in difficult problems that eigenpairs take many iterations to convergence or an efficient preconditioner is available.
library(RSpectra, warn.conflicts=FALSE, pos=5)
library(irlba, pos=5)
library(svd, pos=5)
<- diag(1:12000);
Ad for(i in 1:11999) {Ad[i,i+1]<-1; Ad[i+1,i]<-1}
set.seed(1)
<- bench_eigs(
r PRIMME=PRIMME::eigs_sym(Ad,2,tol=1e-5),
irlba=partial_eigen(Ad,2,tol=1e-5),
RSpectra=RSpectra::eigs_sym(Ad,2,tol=1e-5),
trlan=svd::trlan.eigen(Ad,2,opts=list(tol=1e-5)),
A=Ad
)kable(r, digits=2, caption="2 largest eigenvalues on dense matrix")
test | time | matvecs | rnorm |
---|---|---|---|
PRIMME | 15.502 | 550 | 0.1129294 |
irlba | 93.184 | – | 0.04308973 |
RSpectra | 62.717 | 2192 | 9.512001e-07 |
trlan | 355.859 | – | 0.1197901 |
<- diag(1:6000);
Ad for(i in 1:5999) {Ad[i,i+1]<-1; Ad[i+1,i]<-1}
<- diag(Ad);
P set.seed(1)
<- bench_eigs(
r PRIMME=PRIMME::eigs_sym(Ad,5,'SM',tol=1e-7),
"PRIMME Prec"=PRIMME::eigs_sym(Ad,5,'SM',tol=1e-7,prec=function(x)x/P),
RSpectra=RSpectra::eigs_sym(Ad,5,'SM',tol=1e-7),
A=Ad
)kable(r, digits=2, caption="5 eigenvalues closest to zero on dense matrix")
test | time | matvecs | rnorm |
---|---|---|---|
PRIMME | 4.742 | 655 | 0.0005940415 |
PRIMME Prec | 0.363 | 49 | 0.0003416209 |
RSpectra | 9.903 | 1433 | 4.884529e-08 |
By default PRIMME tries to guess the best configuration, but a little
hint can help sometimes. The next example sets the preset method
'PRIMME_DEFAULT_MIN_TIME'
that takes advantage of very
light matrix-vector products.
<- as(sparseMatrix(i=1:50000,j=1:50000,x=1:50000),"dgCMatrix");
As for(i in 1:49999) {As[i,i+1]<-1; As[i+1,i]<-1}
= 1:50000; # Jacobi preconditioner of As
P set.seed(1)
<- bench_eigs(
r "PRIMME defaults"=PRIMME::eigs_sym(As,40,'SM',tol=1e-10),
"PRIMME min time"=PRIMME::eigs_sym(As,40,'SM',tol=1e-10,method='PRIMME_DEFAULT_MIN_TIME'),
"PRIMME Prec"=PRIMME::eigs_sym(As,40,'SM',tol=1e-10,prec=function(x)x/P),
RSpectra=RSpectra::eigs_sym(As,40,'SM',tol=1e-10,opts=list(maxitr=9999)),
A=As
)kable(r, digits=2, caption="40 eigenvalues closest to zero on dense matrix")
test | time | matvecs | rnorm |
---|---|---|---|
PRIMME defaults | 13.597 | 18315 | 4.993289e-06 |
PRIMME min time | 8.444 | 18945 | 4.935499e-06 |
PRIMME Prec | 2.224 | 770 | 4.290923e-06 |
RSpectra | 14.751 | 4343 | 4.224989e-09 |
For SVD problems, the package provides a similar interface:
<- diag(1:10, 20,10) # rectangular matrix of dimension 20x10
A <- svds(A, 3); # compute the three largest singular values
r
r#> $d
#> [1] 10 9 8
#>
#> $u
#> [,1] [,2] [,3]
#> [1,] -1.005532e-17 -2.363039e-17 -2.054460e-18
#> [2,] -1.258396e-17 -8.675434e-18 3.439066e-17
#> [3,] -7.359263e-18 -3.292225e-17 -8.656467e-18
#> [4,] 3.835071e-17 4.091713e-17 6.938004e-18
#> [5,] -1.440351e-17 -2.958001e-17 4.547859e-19
#> [6,] 7.167005e-17 1.429539e-16 8.137773e-20
#> [7,] -5.629758e-17 1.196127e-17 3.508478e-16
#> [8,] -2.642821e-17 -1.260746e-16 -1.000000e+00
#> [9,] 5.819616e-16 -1.000000e+00 1.740527e-16
#> [10,] 1.000000e+00 1.131234e-15 -4.132377e-17
#> [11,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [12,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [13,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [14,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [15,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [16,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [17,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [18,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [19,] 0.000000e+00 0.000000e+00 0.000000e+00
#> [20,] 0.000000e+00 0.000000e+00 0.000000e+00
#>
#> $v
#> [,1] [,2] [,3]
#> [1,] -1.005532e-16 -2.126735e-16 -1.643568e-17
#> [2,] -6.291981e-17 -3.903946e-17 1.375627e-16
#> [3,] -2.453088e-17 -9.876675e-17 -2.308391e-17
#> [4,] 9.587679e-17 9.206354e-17 1.387601e-17
#> [5,] -2.880701e-17 -5.324401e-17 7.276574e-19
#> [6,] 1.194501e-16 2.144308e-16 1.085036e-19
#> [7,] -8.042512e-17 1.537878e-17 4.009689e-16
#> [8,] -3.303526e-17 -1.418340e-16 -1.000000e+00
#> [9,] 6.466240e-16 -1.000000e+00 1.547135e-16
#> [10,] 1.000000e+00 1.018111e-15 -3.305902e-17
#>
#> $rnorms
#> [1] 6.280370e-15 6.978189e-15 7.850462e-15
#>
#> $stats
#> $stats$numMatvecs
#> [1] 20
#>
#> $stats$numPreconds
#> [1] 0
#>
#> $stats$elapsedTime
#> [1] 0.0001609325
#>
#> $stats$estimateANorm
#> [1] 10
#>
#> $stats$timeMatvec
#> [1] 5.960464e-06
#>
#> $stats$timePrecond
#> [1] 9.536743e-07
The next examples show how to compute the smallest singular values and how to specify some tolerance:
<- diag(1:100, 500,100)
A
<- svds(A, 3, 'S'); # compute the three smallest values
r $d
r#> [1] 1 2 3
<- svds(A, 3, 'S', tol=1e-5);
r $rnorms # this is should be smaller than ||A||*tol
r#> [1] 0.0007164257 0.0014383196 0.0012264714
The next example shows the use of a diagonal preconditioner based on A*A (see TODO):
<- rbind(rep(1,n=100), diag(1:100, 500,100))
A <- svds(A, 3, 'S');
r $stats$numMatvecs
r#> [1] 662
<- colSums(A^2); # Jacobi preconditioner of Conj(t(A))%*%A
P <- svds(A, 3, 'S', prec=list(AHA=function(x)x/P));
r $stats$numMatvecs
r#> [1] 44
The next benchmark function extends rbenchmark
to return
besides the time, the number of matrix-vector multiplications and the
maximum residual norm of the returned triplets.
<- function(..., A, environment=parent.frame()) {
bench_svds = match.call()[-1]
arguments if (!is.null(names(arguments)))
= arguments[!names(arguments) %in% c("A", "environment")]
arguments <- function(u,s,v)
testRes sapply(1:ncol(u), function(i)
::norm(rbind(A%*%v[,i]-u[,i]*s[i], Conj(t(as.matrix(Conj(t(u[,i]))%*%A)))-v[,i]*s[i]),"2"));
base<- (if (!is.null(names(arguments))) names else as.character)(arguments)
labels data.frame(row.names=NULL, test=labels, t(mapply(function(test) {
<- system.time(r <- eval(test, environment));
r_t if (is.null(r$v)) r$v <- sapply(1:ncol(r$u), function(i) crossprod(A,r$u[,i])/base::norm(crossprod(A,r$u[,i]),"2"));
<- max(testRes(r$u, r$d, r$v))
resNorm <- if ("mprod" %in% names(r)) r$mprod
matvecs else if ("nops" %in% names(r)) r$nops
else if ("stats" %in% names(r)) r$stats$numMatvecs
else "--";
list(time=r_t[3], matvecs=matvecs, rnorm=resNorm)
}, arguments))) }
PRIMME svds may perform as good as similar methods in the packages svd, RSpectra and irlba in solving few singular values.
<- matrix(rnorm(6000*6000),6000)
Ad set.seed(1)
<- bench_svds(
r PRIMME=PRIMME::svds(Ad,2,tol=1e-5),
irlba=irlba(Ad,2,tol=1e-5),
RSpectra=RSpectra::svds(Ad,2,tol=1e-5),
trlan=trlan.svd(Ad,2,opts=list(tol=1e-5)),
propack=propack.svd(Ad,2,opts=list(tol=1e-5,maxiter=99999)),
A=Ad
)kable(r, digits=2, caption="2 largest singular values on dense matrix")
test | time | matvecs | rnorm |
---|---|---|---|
PRIMME | 3.857 | 280 | 0.001440893 |
irlba | 4.563 | 342 | 0.001719602 |
RSpectra | 9.825 | 636 | 2.995926e-09 |
trlan | 6.614 | – | 0.001331501 |
propack | 3.328 | – | 0.001757105 |
PRIMME can take advantage of a light matrix-vector product:
<- as(sparseMatrix(i=1:50000,j=1:50000,x=1:50000),"dgCMatrix");
As <- bench_svds(
r PRIMME=PRIMME::svds(As,40,tol=1e-5),
irlba=irlba(As,40,tol=1e-5,maxit=5000,work=100),
RSpectra=RSpectra::svds(As,40,tol=1e-5),
A=As
)kable(r, digits=2, caption="40 largest singular values on sparse matrix")
test | time | matvecs | rnorm |
---|---|---|---|
PRIMME | 3.718 | 12216 | 0.4924661 |
irlba | 13.804 | 4244 | 1.708491 |
RSpectra | 14.16 | 4236 | 5.444241e-06 |
And for now it is the only package that supports computing the smallest singular values:
# Get LargeReFile from UF matrix collection
<- tempfile();
tf download.file('https://sparse.tamu.edu/MM/Stevenson/LargeRegFile.tar.gz',tf);
<- tempdir();
td untar(tf, exdir=td);
<- as(readMM(paste(td,'LargeRegFile/LargeRegFile.mtx',sep='/')), "dgCMatrix");
As unlink(tf)
unlink(td, recursive=TRUE)
<- colSums(As^2); # Jacobi preconditioner of Conj(t(A))%*%A
P <- bench_svds(
r PRIMME=PRIMME::svds(As,5,'S',tol=1e-10),
"PRIMME Prec"=PRIMME::svds(As,5,'S',tol=1e-10,prec=list(AHA=function(x)x/P)),
A=As
)kable(r, digits=2, caption="5 smallest singular values on sparse matrix")
test | time | matvecs | rnorm |
---|---|---|---|
PRIMME | 554.16 | 26810 | 2.225024e-07 |
PRIMME Prec | 22.046 | 1022 | 2.782366e-07 |
# A is a tridiagonal
<- diag(1:1000)
A for(i in 1:999) {A[i,i+1]<-1; A[i+1,i]<-1}
<- eigs_sym(A, 10, 'SA');
r $stats$numMatvecs
r#> [1] 698
$stats$elapsedTime
r#> [1] 0.067518
# Jacobi preconditioner
= diag(diag(A));
P <- eigs_sym(A, 10, 'SA', prec=P);
r $stats$numMatvecs
r#> [1] 58
$stats$elapsedTime
r#> [1] 1.062686
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.