The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The Algorithm Pattern Sequence based Forecasting (PSF) was first proposed by Martinez Alvarez, et al., 2008 and then modified and suggested improvement by Martinez Alvarez, et al., 2011. The technical detailes are mentioned in referenced articles. PSF algorithm consists of various statistical operations like:
This section discusses about the examples to introduce the use of the PSF package and to compare it with auto.arima() and ets() functions, which are well accepted functions in the R community working over time series forecasting techniques. The data used in this example are ’nottem’ and ’sunspots’ which are the standard time series dataset available in R. The ’nottem’ dataset is the average air temperatures at Nottingham Castle in degrees Fahrenheit, collected for 20 years, on monthly basis.
Similarly, ’sunspots’ dataset is mean relative sunspot numbers from 1749 to 1983, measured on monthly basis. First of all, the psf() function from PSF package is used to forecast the future values. For both datasets, all the recorded values except for the final year are considered as training data, and the last year is used for testing purposes. The predicted values for final year with psf() function for both datasets are now discussed.
Download the Package and install with instruction:
library(PSF)
<- psf(nottem)
nottem_model nottem_model
## $original_series
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1920 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8
## 1921 44.2 39.8 45.1 47.0 54.1 58.7 66.3 59.9 57.0 54.2 39.7 42.8
## 1922 37.5 38.7 39.5 42.1 55.7 57.8 56.8 54.3 54.3 47.1 41.8 41.7
## 1923 41.8 40.1 42.9 45.8 49.2 52.7 64.2 59.6 54.4 49.2 36.3 37.6
## 1924 39.3 37.5 38.3 45.5 53.2 57.7 60.8 58.2 56.4 49.8 44.4 43.6
## 1925 40.0 40.5 40.8 45.1 53.8 59.4 63.5 61.0 53.0 50.0 38.1 36.3
## 1926 39.2 43.4 43.4 48.9 50.6 56.8 62.5 62.0 57.5 46.7 41.6 39.8
## 1927 39.4 38.5 45.3 47.1 51.7 55.0 60.4 60.5 54.7 50.3 42.3 35.2
## 1928 40.8 41.1 42.8 47.3 50.9 56.4 62.2 60.5 55.4 50.2 43.0 37.3
## 1929 34.8 31.3 41.0 43.9 53.1 56.9 62.5 60.3 59.8 49.2 42.9 41.9
## 1930 41.6 37.1 41.2 46.9 51.2 60.4 60.1 61.6 57.0 50.9 43.0 38.8
## 1931 37.1 38.4 38.4 46.5 53.5 58.4 60.6 58.2 53.8 46.6 45.5 40.6
## 1932 42.4 38.4 40.3 44.6 50.9 57.0 62.1 63.5 56.3 47.3 43.6 41.8
## 1933 36.2 39.3 44.5 48.7 54.2 60.8 65.5 64.9 60.1 50.2 42.1 35.8
## 1934 39.4 38.2 40.4 46.9 53.4 59.6 66.5 60.4 59.2 51.2 42.8 45.8
## 1935 40.0 42.6 43.5 47.1 50.0 60.5 64.6 64.0 56.8 48.6 44.2 36.4
## 1936 37.3 35.0 44.0 43.9 52.7 58.6 60.0 61.1 58.1 49.6 41.6 41.3
## 1937 40.8 41.0 38.4 47.4 54.1 58.6 61.4 61.8 56.3 50.9 41.4 37.1
## 1938 42.1 41.2 47.3 46.6 52.4 59.0 59.6 60.4 57.0 50.7 47.8 39.2
## 1939 39.4 40.9 42.4 47.8 52.4 58.0 60.7 61.8 58.2 46.7 46.6 37.8
##
## $train_data
## V1 V2 V3 V4 V5 V6 V7
## 1: 0.26420455 0.2698864 0.3721591 0.4375000 0.6477273 0.7727273 0.7500000
## 2: 0.36647727 0.2414773 0.3920455 0.4460227 0.6477273 0.7784091 0.9943182
## 3: 0.17613636 0.2102273 0.2329545 0.3068182 0.6931818 0.7528409 0.7244318
## 4: 0.29829545 0.2500000 0.3295455 0.4119318 0.5085227 0.6079545 0.9346591
## 5: 0.22727273 0.1761364 0.1988636 0.4034091 0.6221591 0.7500000 0.8380682
## 6: 0.24715909 0.2613636 0.2698864 0.3920455 0.6392045 0.7982955 0.9147727
## 7: 0.22443182 0.3437500 0.3437500 0.5000000 0.5482955 0.7244318 0.8863636
## 8: 0.23011364 0.2045455 0.3977273 0.4488636 0.5795455 0.6732955 0.8267045
## 9: 0.26988636 0.2784091 0.3267045 0.4545455 0.5568182 0.7130682 0.8778409
## 10: 0.09943182 0.0000000 0.2755682 0.3579545 0.6193182 0.7272727 0.8863636
## 11: 0.29261364 0.1647727 0.2812500 0.4431818 0.5653409 0.8267045 0.8181818
## 12: 0.16477273 0.2017045 0.2017045 0.4318182 0.6306818 0.7698864 0.8323864
## 13: 0.31534091 0.2017045 0.2556818 0.3778409 0.5568182 0.7301136 0.8750000
## 14: 0.13920455 0.2272727 0.3750000 0.4943182 0.6505682 0.8380682 0.9715909
## 15: 0.23011364 0.1960227 0.2585227 0.4431818 0.6278409 0.8039773 1.0000000
## 16: 0.24715909 0.3210227 0.3465909 0.4488636 0.5312500 0.8295455 0.9460227
## 17: 0.17045455 0.1051136 0.3607955 0.3579545 0.6079545 0.7755682 0.8153409
## 18: 0.26988636 0.2755682 0.2017045 0.4573864 0.6477273 0.7755682 0.8551136
## 19: 0.30681818 0.2812500 0.4545455 0.4346591 0.5994318 0.7869318 0.8039773
## 20: 0.23011364 0.2727273 0.3153409 0.4687500 0.5994318 0.7585227 0.8352273
## V8 V9 V10 V11 V12
## 1: 0.7130682 0.6534091 0.5454545 0.3295455 0.2414773
## 2: 0.8125000 0.7301136 0.6505682 0.2386364 0.3267045
## 3: 0.6534091 0.6534091 0.4488636 0.2982955 0.2954545
## 4: 0.8039773 0.6562500 0.5085227 0.1420455 0.1789773
## 5: 0.7642045 0.7130682 0.5255682 0.3721591 0.3494318
## 6: 0.8437500 0.6164773 0.5312500 0.1931818 0.1420455
## 7: 0.8721591 0.7443182 0.4375000 0.2926136 0.2414773
## 8: 0.8295455 0.6647727 0.5397727 0.3125000 0.1107955
## 9: 0.8295455 0.6846591 0.5369318 0.3323864 0.1704545
## 10: 0.8238636 0.8096591 0.5085227 0.3295455 0.3011364
## 11: 0.8607955 0.7301136 0.5568182 0.3323864 0.2130682
## 12: 0.7642045 0.6392045 0.4346591 0.4034091 0.2642045
## 13: 0.9147727 0.7102273 0.4545455 0.3494318 0.2982955
## 14: 0.9545455 0.8181818 0.5369318 0.3068182 0.1278409
## 15: 0.8267045 0.7926136 0.5653409 0.3267045 0.4119318
## 16: 0.9289773 0.7244318 0.4914773 0.3664773 0.1448864
## 17: 0.8465909 0.7613636 0.5198864 0.2926136 0.2840909
## 18: 0.8664773 0.7102273 0.5568182 0.2869318 0.1647727
## 19: 0.8267045 0.7301136 0.5511364 0.4687500 0.2244318
## 20: 0.8664773 0.7642045 0.4375000 0.4346591 0.1846591
##
## $k
## [1] 3
##
## $w
## [1] 1
##
## $cycle
## [1] 12
##
## $dmin
## [1] 31.3
##
## $dmax
## [1] 66.5
##
## attr(,"class")
## [1] "psf"
<- psf(sunspots)
sunspots_model sunspots_model
## $original_series
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1749 58.0 62.6 70.0 55.7 85.0 83.5 94.8 66.3 75.9 75.5 158.6 85.2
## 1750 73.3 75.9 89.2 88.3 90.0 100.0 85.4 103.0 91.2 65.7 63.3 75.4
## 1751 70.0 43.5 45.3 56.4 60.7 50.7 66.3 59.8 23.5 23.2 28.5 44.0
## 1752 35.0 50.0 71.0 59.3 59.7 39.6 78.4 29.3 27.1 46.6 37.6 40.0
## 1753 44.0 32.0 45.7 38.0 36.0 31.7 22.2 39.0 28.0 25.0 20.0 6.7
## 1754 0.0 3.0 1.7 13.7 20.7 26.7 18.8 12.3 8.2 24.1 13.2 4.2
## 1755 10.2 11.2 6.8 6.5 0.0 0.0 8.6 3.2 17.8 23.7 6.8 20.0
## 1756 12.5 7.1 5.4 9.4 12.5 12.9 3.6 6.4 11.8 14.3 17.0 9.4
## 1757 14.1 21.2 26.2 30.0 38.1 12.8 25.0 51.3 39.7 32.5 64.7 33.5
## 1758 37.6 52.0 49.0 72.3 46.4 45.0 44.0 38.7 62.5 37.7 43.0 43.0
## 1759 48.3 44.0 46.8 47.0 49.0 50.0 51.0 71.3 77.2 59.7 46.3 57.0
## 1760 67.3 59.5 74.7 58.3 72.0 48.3 66.0 75.6 61.3 50.6 59.7 61.0
## 1761 70.0 91.0 80.7 71.7 107.2 99.3 94.1 91.1 100.7 88.7 89.7 46.0
## 1762 43.8 72.8 45.7 60.2 39.9 77.1 33.8 67.7 68.5 69.3 77.8 77.2
## 1763 56.5 31.9 34.2 32.9 32.7 35.8 54.2 26.5 68.1 46.3 60.9 61.4
## 1764 59.7 59.7 40.2 34.4 44.3 30.0 30.0 30.0 28.2 28.0 26.0 25.7
## 1765 24.0 26.0 25.0 22.0 20.2 20.0 27.0 29.7 16.0 14.0 14.0 13.0
## 1766 12.0 11.0 36.6 6.0 26.8 3.0 3.3 4.0 4.3 5.0 5.7 19.2
## 1767 27.4 30.0 43.0 32.9 29.8 33.3 21.9 40.8 42.7 44.1 54.7 53.3
## 1768 53.5 66.1 46.3 42.7 77.7 77.4 52.6 66.8 74.8 77.8 90.6 111.8
## 1769 73.9 64.2 64.3 96.7 73.6 94.4 118.6 120.3 148.8 158.2 148.1 112.0
## 1770 104.0 142.5 80.1 51.0 70.1 83.3 109.8 126.3 104.4 103.6 132.2 102.3
## 1771 36.0 46.2 46.7 64.9 152.7 119.5 67.7 58.5 101.4 90.0 99.7 95.7
## 1772 100.9 90.8 31.1 92.2 38.0 57.0 77.3 56.2 50.5 78.6 61.3 64.0
## 1773 54.6 29.0 51.2 32.9 41.1 28.4 27.7 12.7 29.3 26.3 40.9 43.2
## 1774 46.8 65.4 55.7 43.8 51.3 28.5 17.5 6.6 7.9 14.0 17.7 12.2
## 1775 4.4 0.0 11.6 11.2 3.9 12.3 1.0 7.9 3.2 5.6 15.1 7.9
## 1776 21.7 11.6 6.3 21.8 11.2 19.0 1.0 24.2 16.0 30.0 35.0 40.0
## 1777 45.0 36.5 39.0 95.5 80.3 80.7 95.0 112.0 116.2 106.5 146.0 157.3
## 1778 177.3 109.3 134.0 145.0 238.9 171.6 153.0 140.0 171.7 156.3 150.3 105.0
## 1779 114.7 165.7 118.0 145.0 140.0 113.7 143.0 112.0 111.0 124.0 114.0 110.0
## 1780 70.0 98.0 98.0 95.0 107.2 88.0 86.0 86.0 93.7 77.0 60.0 58.7
## 1781 98.7 74.7 53.0 68.3 104.7 97.7 73.5 66.0 51.0 27.3 67.0 35.2
## 1782 54.0 37.5 37.0 41.0 54.3 38.0 37.0 44.0 34.0 23.2 31.5 30.0
## 1783 28.0 38.7 26.7 28.3 23.0 25.2 32.2 20.0 18.0 8.0 15.0 10.5
## 1784 13.0 8.0 11.0 10.0 6.0 9.0 6.0 10.0 10.0 8.0 17.0 14.0
## 1785 6.5 8.0 9.0 15.7 20.7 26.3 36.3 20.0 32.0 47.2 40.2 27.3
## 1786 37.2 47.6 47.7 85.4 92.3 59.0 83.0 89.7 111.5 112.3 116.0 112.7
## 1787 134.7 106.0 87.4 127.2 134.8 99.2 128.0 137.2 157.3 157.0 141.5 174.0
## 1788 138.0 129.2 143.3 108.5 113.0 154.2 141.5 136.0 141.0 142.0 94.7 129.5
## 1789 114.0 125.3 120.0 123.3 123.5 120.0 117.0 103.0 112.0 89.7 134.0 135.5
## 1790 103.0 127.5 96.3 94.0 93.0 91.0 69.3 87.0 77.3 84.3 82.0 74.0
## 1791 72.7 62.0 74.0 77.2 73.7 64.2 71.0 43.0 66.5 61.7 67.0 66.0
## 1792 58.0 64.0 63.0 75.7 62.0 61.0 45.8 60.0 59.0 59.0 57.0 56.0
## 1793 56.0 55.0 55.5 53.0 52.3 51.0 50.0 29.3 24.0 47.0 44.0 45.7
## 1794 45.0 44.0 38.0 28.4 55.7 41.5 41.0 40.0 11.1 28.5 67.4 51.4
## 1795 21.4 39.9 12.6 18.6 31.0 17.1 12.9 25.7 13.5 19.5 25.0 18.0
## 1796 22.0 23.8 15.7 31.7 21.0 6.7 26.9 1.5 18.4 11.0 8.4 5.1
## 1797 14.4 4.2 4.0 4.0 7.3 11.1 4.3 6.0 5.7 6.9 5.8 3.0
## 1798 2.0 4.0 12.4 1.1 0.0 0.0 0.0 3.0 2.4 1.5 12.5 9.9
## 1799 1.6 12.6 21.7 8.4 8.2 10.6 2.1 0.0 0.0 4.6 2.7 8.6
## 1800 6.9 9.3 13.9 0.0 5.0 23.7 21.0 19.5 11.5 12.3 10.5 40.1
## 1801 27.0 29.0 30.0 31.0 32.0 31.2 35.0 38.7 33.5 32.6 39.8 48.2
## 1802 47.8 47.0 40.8 42.0 44.0 46.0 48.0 50.0 51.8 38.5 34.5 50.0
## 1803 50.0 50.8 29.5 25.0 44.3 36.0 48.3 34.1 45.3 54.3 51.0 48.0
## 1804 45.3 48.3 48.0 50.6 33.4 34.8 29.8 43.1 53.0 62.3 61.0 60.0
## 1805 61.0 44.1 51.4 37.5 39.0 40.5 37.6 42.7 44.4 29.4 41.0 38.3
## 1806 39.0 29.6 32.7 27.7 26.4 25.6 30.0 26.3 24.0 27.0 25.0 24.0
## 1807 12.0 12.2 9.6 23.8 10.0 12.0 12.7 12.0 5.7 8.0 2.6 0.0
## 1808 0.0 4.5 0.0 12.3 13.5 13.5 6.7 8.0 11.7 4.7 10.5 12.3
## 1809 7.2 9.2 0.9 2.5 2.0 7.7 0.3 0.2 0.4 0.0 0.0 0.0
## 1810 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
## 1811 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 2.4 6.1 0.8 1.1
## 1812 11.3 1.9 0.7 0.0 1.0 1.3 0.5 15.6 5.2 3.9 7.9 10.1
## 1813 0.0 10.3 1.9 16.6 5.5 11.2 18.3 8.4 15.3 27.8 16.7 14.3
## 1814 22.2 12.0 5.7 23.8 5.8 14.9 18.5 2.3 8.1 19.3 14.5 20.1
## 1815 19.2 32.2 26.2 31.6 9.8 55.9 35.5 47.2 31.5 33.5 37.2 65.0
## 1816 26.3 68.8 73.7 58.8 44.3 43.6 38.8 23.2 47.8 56.4 38.1 29.9
## 1817 36.4 57.9 96.2 26.4 21.2 40.0 50.0 45.0 36.7 25.6 28.9 28.4
## 1818 34.9 22.4 25.4 34.5 53.1 36.4 28.0 31.5 26.1 31.7 10.9 25.8
## 1819 32.5 20.7 3.7 20.2 19.6 35.0 31.4 26.1 14.9 27.5 25.1 30.6
## 1820 19.2 26.6 4.5 19.4 29.3 10.8 20.6 25.9 5.2 9.0 7.9 9.7
## 1821 21.5 4.3 5.7 9.2 1.7 1.8 2.5 4.8 4.4 18.8 4.4 0.0
## 1822 0.0 0.9 16.1 13.5 1.5 5.6 7.9 2.1 0.0 0.4 0.0 0.0
## 1823 0.0 0.0 0.6 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 20.4
## 1824 21.6 10.8 0.0 19.4 2.8 0.0 0.0 1.4 20.5 25.2 0.0 0.8
## 1825 5.0 15.5 22.4 3.8 15.4 15.4 30.9 25.4 15.7 15.6 11.7 22.0
## 1826 17.7 18.2 36.7 24.0 32.4 37.1 52.5 39.6 18.9 50.6 39.5 68.1
## 1827 34.6 47.4 57.8 46.0 56.3 56.7 42.9 53.7 49.6 57.2 48.2 46.1
## 1828 52.8 64.4 65.0 61.1 89.1 98.0 54.3 76.4 50.4 54.7 57.0 46.6
## 1829 43.0 49.4 72.3 95.0 67.5 73.9 90.8 78.3 52.8 57.2 67.6 56.5
## 1830 52.2 72.1 84.6 107.1 66.3 65.1 43.9 50.7 62.1 84.4 81.2 82.1
## 1831 47.5 50.1 93.4 54.6 38.1 33.4 45.2 54.9 37.9 46.2 43.5 28.9
## 1832 30.9 55.5 55.1 26.9 41.3 26.7 13.9 8.9 8.2 21.1 14.3 27.5
## 1833 11.3 14.9 11.8 2.8 12.9 1.0 7.0 5.7 11.6 7.5 5.9 9.9
## 1834 4.9 18.1 3.9 1.4 8.8 7.8 8.7 4.0 11.5 24.8 30.5 34.5
## 1835 7.5 24.5 19.7 61.5 43.6 33.2 59.8 59.0 100.8 95.2 100.0 77.5
## 1836 88.6 107.6 98.1 142.9 111.4 124.7 116.7 107.8 95.1 137.4 120.9 206.2
## 1837 188.0 175.6 134.6 138.2 111.3 158.0 162.8 134.0 96.3 123.7 107.0 129.8
## 1838 144.9 84.8 140.8 126.6 137.6 94.5 108.2 78.8 73.6 90.8 77.4 79.8
## 1839 107.6 102.5 77.7 61.8 53.8 54.6 84.7 131.2 132.7 90.8 68.8 63.6
## 1840 81.2 87.7 55.5 65.9 69.2 48.5 60.7 57.8 74.0 49.8 54.3 53.7
## 1841 24.0 29.9 29.7 42.6 67.4 55.7 30.8 39.3 35.1 28.5 19.8 38.8
## 1842 20.4 22.1 21.7 26.9 24.9 20.5 12.6 26.5 18.5 38.1 40.5 17.6
## 1843 13.3 3.5 8.3 8.8 21.1 10.5 9.5 11.8 4.2 5.3 19.1 12.7
## 1844 9.4 14.7 13.6 20.8 12.0 3.7 21.2 23.9 6.9 21.5 10.7 21.6
## 1845 25.7 43.6 43.3 56.9 47.8 31.1 30.6 32.3 29.6 40.7 39.4 59.7
## 1846 38.7 51.0 63.9 69.2 59.9 65.1 46.5 54.8 107.1 55.9 60.4 65.5
## 1847 62.6 44.9 85.7 44.7 75.4 85.3 52.2 140.6 161.2 180.4 138.9 109.6
## 1848 159.1 111.8 108.9 107.1 102.2 123.8 139.2 132.5 100.3 132.4 114.6 159.9
## 1849 156.7 131.7 96.5 102.5 80.6 81.2 78.0 61.3 93.7 71.5 99.7 97.0
## 1850 78.0 89.4 82.6 44.1 61.6 70.0 39.1 61.6 86.2 71.0 54.8 60.0
## 1851 75.5 105.4 64.6 56.5 62.6 63.2 36.1 57.4 67.9 62.5 50.9 71.4
## 1852 68.4 67.5 61.2 65.4 54.9 46.9 42.0 39.7 37.5 67.3 54.3 45.4
## 1853 41.1 42.9 37.7 47.6 34.7 40.0 45.9 50.4 33.5 42.3 28.8 23.4
## 1854 15.4 20.0 20.7 26.4 24.0 21.1 18.7 15.8 22.4 12.7 28.2 21.4
## 1855 12.3 11.4 17.4 4.4 9.1 5.3 0.4 3.1 0.0 9.7 4.3 3.1
## 1856 0.5 4.9 0.4 6.5 0.0 5.0 4.6 5.9 4.4 4.5 7.7 7.2
## 1857 13.7 7.4 5.2 11.1 29.2 16.0 22.2 16.9 42.4 40.6 31.4 37.2
## 1858 39.0 34.9 57.5 38.3 41.4 44.5 56.7 55.3 80.1 91.2 51.9 66.9
## 1859 83.7 87.6 90.3 85.7 91.0 87.1 95.2 106.8 105.8 114.6 97.2 81.0
## 1860 81.5 88.0 98.9 71.4 107.1 108.6 116.7 100.3 92.2 90.1 97.9 95.6
## 1861 62.3 77.8 101.0 98.5 56.8 87.8 78.0 82.5 79.9 67.2 53.7 80.5
## 1862 63.1 64.5 43.6 53.7 64.4 84.0 73.4 62.5 66.6 42.0 50.6 40.9
## 1863 48.3 56.7 66.4 40.6 53.8 40.8 32.7 48.1 22.0 39.9 37.7 41.2
## 1864 57.7 47.1 66.3 35.8 40.6 57.8 54.7 54.8 28.5 33.9 57.6 28.6
## 1865 48.7 39.3 39.5 29.4 34.5 33.6 26.8 37.8 21.6 17.1 24.6 12.8
## 1866 31.6 38.4 24.6 17.6 12.9 16.5 9.3 12.7 7.3 14.1 9.0 1.5
## 1867 0.0 0.7 9.2 5.1 2.9 1.5 5.0 4.9 9.8 13.5 9.3 25.2
## 1868 15.6 15.8 26.5 36.6 26.7 31.1 28.6 34.4 43.8 61.7 59.1 67.6
## 1869 60.9 59.3 52.7 41.0 104.0 108.4 59.2 79.6 80.6 59.4 77.4 104.3
## 1870 77.3 114.9 159.4 160.0 176.0 135.6 132.4 153.8 136.0 146.4 147.5 130.0
## 1871 88.3 125.3 143.2 162.4 145.5 91.7 103.0 110.0 80.3 89.0 105.4 90.3
## 1872 79.5 120.1 88.4 102.1 107.6 109.9 105.5 92.9 114.6 103.5 112.0 83.9
## 1873 86.7 107.0 98.3 76.2 47.9 44.8 66.9 68.2 47.5 47.4 55.4 49.2
## 1874 60.8 64.2 46.4 32.0 44.6 38.2 67.8 61.3 28.0 34.3 28.9 29.3
## 1875 14.6 22.2 33.8 29.1 11.5 23.9 12.5 14.6 2.4 12.7 17.7 9.9
## 1876 14.3 15.0 31.2 2.3 5.1 1.6 15.2 8.8 9.9 14.3 9.9 8.2
## 1877 24.4 8.7 11.7 15.8 21.2 13.4 5.9 6.3 16.4 6.7 14.5 2.3
## 1878 3.3 6.0 7.8 0.1 5.8 6.4 0.1 0.0 5.3 1.1 4.1 0.5
## 1879 0.8 0.6 0.0 6.2 2.4 4.8 7.5 10.7 6.1 12.3 12.9 7.2
## 1880 24.0 27.5 19.5 19.3 23.5 34.1 21.9 48.1 66.0 43.0 30.7 29.6
## 1881 36.4 53.2 51.5 51.7 43.5 60.5 76.9 58.0 53.2 64.0 54.8 47.3
## 1882 45.0 69.3 67.5 95.8 64.1 45.2 45.4 40.4 57.7 59.2 84.4 41.8
## 1883 60.6 46.9 42.8 82.1 32.1 76.5 80.6 46.0 52.6 83.8 84.5 75.9
## 1884 91.5 86.9 86.8 76.1 66.5 51.2 53.1 55.8 61.9 47.8 36.6 47.2
## 1885 42.8 71.8 49.8 55.0 73.0 83.7 66.5 50.0 39.6 38.7 33.3 21.7
## 1886 29.9 25.9 57.3 43.7 30.7 27.1 30.3 16.9 21.4 8.6 0.3 12.4
## 1887 10.3 13.2 4.2 6.9 20.0 15.7 23.3 21.4 7.4 6.6 6.9 20.7
## 1888 12.7 7.1 7.8 5.1 7.0 7.1 3.1 2.8 8.8 2.1 10.7 6.7
## 1889 0.8 8.5 7.0 4.3 2.4 6.4 9.7 20.6 6.5 2.1 0.2 6.7
## 1890 5.3 0.6 5.1 1.6 4.8 1.3 11.6 8.5 17.2 11.2 9.6 7.8
## 1891 13.5 22.2 10.4 20.5 41.1 48.3 58.8 33.2 53.8 51.5 41.9 32.3
## 1892 69.1 75.6 49.9 69.6 79.6 76.3 76.8 101.4 62.8 70.5 65.4 78.6
## 1893 75.0 73.0 65.7 88.1 84.7 88.2 88.8 129.2 77.9 79.7 75.1 93.8
## 1894 83.2 84.6 52.3 81.6 101.2 98.9 106.0 70.3 65.9 75.5 56.6 60.0
## 1895 63.3 67.2 61.0 76.9 67.5 71.5 47.8 68.9 57.7 67.9 47.2 70.7
## 1896 29.0 57.4 52.0 43.8 27.7 49.0 45.0 27.2 61.3 28.4 38.0 42.6
## 1897 40.6 29.4 29.1 31.0 20.0 11.3 27.6 21.8 48.1 14.3 8.4 33.3
## 1898 30.2 36.4 38.3 14.5 25.8 22.3 9.0 31.4 34.8 34.4 30.9 12.6
## 1899 19.5 9.2 18.1 14.2 7.7 20.5 13.5 2.9 8.4 13.0 7.8 10.5
## 1900 9.4 13.6 8.6 16.0 15.2 12.1 8.3 4.3 8.3 12.9 4.5 0.3
## 1901 0.2 2.4 4.5 0.0 10.2 5.8 0.7 1.0 0.6 3.7 3.8 0.0
## 1902 5.2 0.0 12.4 0.0 2.8 1.4 0.9 2.3 7.6 16.3 10.3 1.1
## 1903 8.3 17.0 13.5 26.1 14.6 16.3 27.9 28.8 11.1 38.9 44.5 45.6
## 1904 31.6 24.5 37.2 43.0 39.5 41.9 50.6 58.2 30.1 54.2 38.0 54.6
## 1905 54.8 85.8 56.5 39.3 48.0 49.0 73.0 58.8 55.0 78.7 107.2 55.5
## 1906 45.5 31.3 64.5 55.3 57.7 63.2 103.6 47.7 56.1 17.8 38.9 64.7
## 1907 76.4 108.2 60.7 52.6 42.9 40.4 49.7 54.3 85.0 65.4 61.5 47.3
## 1908 39.2 33.9 28.7 57.6 40.8 48.1 39.5 90.5 86.9 32.3 45.5 39.5
## 1909 56.7 46.6 66.3 32.3 36.0 22.6 35.8 23.1 38.8 58.4 55.8 54.2
## 1910 26.4 31.5 21.4 8.4 22.2 12.3 14.1 11.5 26.2 38.3 4.9 5.8
## 1911 3.4 9.0 7.8 16.5 9.0 2.2 3.5 4.0 4.0 2.6 4.2 2.2
## 1912 0.3 0.0 4.9 4.5 4.4 4.1 3.0 0.3 9.5 4.6 1.1 6.4
## 1913 2.3 2.9 0.5 0.9 0.0 0.0 1.7 0.2 1.2 3.1 0.7 3.8
## 1914 2.8 2.6 3.1 17.3 5.2 11.4 5.4 7.7 12.7 8.2 16.4 22.3
## 1915 23.0 42.3 38.8 41.3 33.0 68.8 71.6 69.6 49.5 53.5 42.5 34.5
## 1916 45.3 55.4 67.0 71.8 74.5 67.7 53.5 35.2 45.1 50.7 65.6 53.0
## 1917 74.7 71.9 94.8 74.7 114.1 114.9 119.8 154.5 129.4 72.2 96.4 129.3
## 1918 96.0 65.3 72.2 80.5 76.7 59.4 107.6 101.7 79.9 85.0 83.4 59.2
## 1919 48.1 79.5 66.5 51.8 88.1 111.2 64.7 69.0 54.7 52.8 42.0 34.9
## 1920 51.1 53.9 70.2 14.8 33.3 38.7 27.5 19.2 36.3 49.6 27.2 29.9
## 1921 31.5 28.3 26.7 32.4 22.2 33.7 41.9 22.8 17.8 18.2 17.8 20.3
## 1922 11.8 26.4 54.7 11.0 8.0 5.8 10.9 6.5 4.7 6.2 7.4 17.5
## 1923 4.5 1.5 3.3 6.1 3.2 9.1 3.5 0.5 13.2 11.6 10.0 2.8
## 1924 0.5 5.1 1.8 11.3 20.8 24.0 28.1 19.3 25.1 25.6 22.5 16.5
## 1925 5.5 23.2 18.0 31.7 42.8 47.5 38.5 37.9 60.2 69.2 58.6 98.6
## 1926 71.8 70.0 62.5 38.5 64.3 73.5 52.3 61.6 60.8 71.5 60.5 79.4
## 1927 81.6 93.0 69.6 93.5 79.1 59.1 54.9 53.8 68.4 63.1 67.2 45.2
## 1928 83.5 73.5 85.4 80.6 76.9 91.4 98.0 83.8 89.7 61.4 50.3 59.0
## 1929 68.9 64.1 50.2 52.8 58.2 71.9 70.2 65.8 34.4 54.0 81.1 108.0
## 1930 65.3 49.2 35.0 38.2 36.8 28.8 21.9 24.9 32.1 34.4 35.6 25.8
## 1931 14.6 43.1 30.0 31.2 24.6 15.3 17.4 13.0 19.0 10.0 18.7 17.8
## 1932 12.1 10.6 11.2 11.2 17.9 22.2 9.6 6.8 4.0 8.9 8.2 11.0
## 1933 12.3 22.2 10.1 2.9 3.2 5.2 2.8 0.2 5.1 3.0 0.6 0.3
## 1934 3.4 7.8 4.3 11.3 19.7 6.7 9.3 8.3 4.0 5.7 8.7 15.4
## 1935 18.9 20.5 23.1 12.2 27.3 45.7 33.9 30.1 42.1 53.2 64.2 61.5
## 1936 62.8 74.3 77.1 74.9 54.6 70.0 52.3 87.0 76.0 89.0 115.4 123.4
## 1937 132.5 128.5 83.9 109.3 116.7 130.3 145.1 137.7 100.7 124.9 74.4 88.8
## 1938 98.4 119.2 86.5 101.0 127.4 97.5 165.3 115.7 89.6 99.1 122.2 92.7
## 1939 80.3 77.4 64.6 109.1 118.3 101.0 97.6 105.8 112.6 88.1 68.1 42.1
## 1940 50.5 59.4 83.3 60.7 54.4 83.9 67.5 105.5 66.5 55.0 58.4 68.3
## 1941 45.6 44.5 46.4 32.8 29.5 59.8 66.9 60.0 65.9 46.3 38.3 33.7
## 1942 35.6 52.8 54.2 60.7 25.0 11.4 17.7 20.2 17.2 19.2 30.7 22.5
## 1943 12.4 28.9 27.4 26.1 14.1 7.6 13.2 19.4 10.0 7.8 10.2 18.8
## 1944 3.7 0.5 11.0 0.3 2.5 5.0 5.0 16.7 14.3 16.9 10.8 28.4
## 1945 18.5 12.7 21.5 32.0 30.6 36.2 42.6 25.9 34.9 68.8 46.0 27.4
## 1946 47.6 86.2 76.6 75.7 84.9 73.5 116.2 107.2 94.4 102.3 123.8 121.7
## 1947 115.7 113.4 129.8 149.8 201.3 163.9 157.9 188.8 169.4 163.6 128.0 116.5
## 1948 108.5 86.1 94.8 189.7 174.0 167.8 142.2 157.9 143.3 136.3 95.8 138.0
## 1949 119.1 182.3 157.5 147.0 106.2 121.7 125.8 123.8 145.3 131.6 143.5 117.6
## 1950 101.6 94.8 109.7 113.4 106.2 83.6 91.0 85.2 51.3 61.4 54.8 54.1
## 1951 59.9 59.9 59.9 92.9 108.5 100.6 61.5 61.0 83.1 51.6 52.4 45.8
## 1952 40.7 22.7 22.0 29.1 23.4 36.4 39.3 54.9 28.2 23.8 22.1 34.3
## 1953 26.5 3.9 10.0 27.8 12.5 21.8 8.6 23.5 19.3 8.2 1.6 2.5
## 1954 0.2 0.5 10.9 1.8 0.8 0.2 4.8 8.4 1.5 7.0 9.2 7.6
## 1955 23.1 20.8 4.9 11.3 28.9 31.7 26.7 40.7 42.7 58.5 89.2 76.9
## 1956 73.6 124.0 118.4 110.7 136.6 116.6 129.1 169.6 173.2 155.3 201.3 192.1
## 1957 165.0 130.2 157.4 175.2 164.6 200.7 187.2 158.0 235.8 253.8 210.9 239.4
## 1958 202.5 164.9 190.7 196.0 175.3 171.5 191.4 200.2 201.2 181.5 152.3 187.6
## 1959 217.4 143.1 185.7 163.3 172.0 168.7 149.6 199.6 145.2 111.4 124.0 125.0
## 1960 146.3 106.0 102.2 122.0 119.6 110.2 121.7 134.1 127.2 82.8 89.6 85.6
## 1961 57.9 46.1 53.0 61.4 51.0 77.4 70.2 55.9 63.6 37.7 32.6 40.0
## 1962 38.7 50.3 45.6 46.4 43.7 42.0 21.8 21.8 51.3 39.5 26.9 23.2
## 1963 19.8 24.4 17.1 29.3 43.0 35.9 19.6 33.2 38.8 35.3 23.4 14.9
## 1964 15.3 17.7 16.5 8.6 9.5 9.1 3.1 9.3 4.7 6.1 7.4 15.1
## 1965 17.5 14.2 11.7 6.8 24.1 15.9 11.9 8.9 16.8 20.1 15.8 17.0
## 1966 28.2 24.4 25.3 48.7 45.3 47.7 56.7 51.2 50.2 57.2 57.2 70.4
## 1967 110.9 93.6 111.8 69.5 86.5 67.3 91.5 107.2 76.8 88.2 94.3 126.4
## 1968 121.8 111.9 92.2 81.2 127.2 110.3 96.1 109.3 117.2 107.7 86.0 109.8
## 1969 104.4 120.5 135.8 106.8 120.0 106.0 96.8 98.0 91.3 95.7 93.5 97.9
## 1970 111.5 127.8 102.9 109.5 127.5 106.8 112.5 93.0 99.5 86.6 95.2 83.5
## 1971 91.3 79.0 60.7 71.8 57.5 49.8 81.0 61.4 50.2 51.7 63.2 82.2
## 1972 61.5 88.4 80.1 63.2 80.5 88.0 76.5 76.8 64.0 61.3 41.6 45.3
## 1973 43.4 42.9 46.0 57.7 42.4 39.5 23.1 25.6 59.3 30.7 23.9 23.3
## 1974 27.6 26.0 21.3 40.3 39.5 36.0 55.8 33.6 40.2 47.1 25.0 20.5
## 1975 18.9 11.5 11.5 5.1 9.0 11.4 28.2 39.7 13.9 9.1 19.4 7.8
## 1976 8.1 4.3 21.9 18.8 12.4 12.2 1.9 16.4 13.5 20.6 5.2 15.3
## 1977 16.4 23.1 8.7 12.9 18.6 38.5 21.4 30.1 44.0 43.8 29.1 43.2
## 1978 51.9 93.6 76.5 99.7 82.7 95.1 70.4 58.1 138.2 125.1 97.9 122.7
## 1979 166.6 137.5 138.0 101.5 134.4 149.5 159.4 142.2 188.4 186.2 183.3 176.3
## 1980 159.6 155.0 126.2 164.1 179.9 157.3 136.3 135.4 155.0 164.7 147.9 174.4
## 1981 114.0 141.3 135.5 156.4 127.5 90.0 143.8 158.7 167.3 162.4 137.5 150.1
## 1982 111.2 163.6 153.8 122.0 82.2 110.4 106.1 107.6 118.8 94.7 98.1 127.0
## 1983 84.3 51.0 66.5 80.7 99.2 91.1 82.2 71.8 50.3 55.8 33.3 33.4
##
## $train_data
## V1 V2 V3 V4 V5 V6 V7
## 1: 0.2285264 0.2466509 0.2758077 0.2194641 0.3349094 0.3289992 0.37352246
## 2: 0.2888101 0.2990544 0.3514578 0.3479117 0.3546099 0.3940110 0.33648542
## 3: 0.2758077 0.1713948 0.1784870 0.2222222 0.2391647 0.1997636 0.26122931
## 4: 0.1379039 0.1970055 0.2797478 0.2336485 0.2352246 0.1560284 0.30890465
## 5: 0.1733649 0.1260835 0.1800630 0.1497242 0.1418440 0.1249015 0.08747045
## ---
## 231: 0.6564224 0.5417652 0.5437352 0.3999212 0.5295508 0.5890465 0.62805359
## 232: 0.6288416 0.6107171 0.4972419 0.6465721 0.7088258 0.6197794 0.53703704
## 233: 0.4491726 0.5567376 0.5338849 0.6162333 0.5023641 0.3546099 0.56658786
## 234: 0.4381403 0.6446020 0.6059890 0.4806935 0.3238771 0.4349882 0.41804571
## 235: 0.3321513 0.2009456 0.2620173 0.3179669 0.3908589 0.3589441 0.32387707
## V8 V9 V10 V11 V12
## 1: 0.2612293 0.29905437 0.29747833 0.62490150 0.33569740
## 2: 0.4058314 0.35933806 0.25886525 0.24940898 0.29708432
## 3: 0.2356186 0.09259259 0.09141056 0.11229314 0.17336485
## 4: 0.1154452 0.10677699 0.18360914 0.14814815 0.15760441
## 5: 0.1536643 0.11032309 0.09850276 0.07880221 0.02639874
## ---
## 231: 0.5602837 0.74231678 0.73364854 0.72222222 0.69464145
## 232: 0.5334909 0.61071710 0.64893617 0.58274232 0.68715524
## 233: 0.6252955 0.65918046 0.63987392 0.54176517 0.59141056
## 234: 0.4239559 0.46808511 0.37312845 0.38652482 0.50039401
## 235: 0.2828999 0.19818755 0.21985816 0.13120567 0.13159968
##
## $k
## [1] 2
##
## $w
## [1] 5
##
## $cycle
## [1] 12
##
## $dmin
## [1] 0
##
## $dmax
## [1] 253.8
##
## attr(,"class")
## [1] "psf"
<- predict(nottem_model, n.ahead = 12)
nottem_preds nottem_preds
## [1] 39.10000 38.71667 42.74167 46.67500 52.68333 57.99167 62.30000 60.68333
## [9] 57.26667 49.61667 43.35833 40.09167
<- predict(sunspots_model, n.ahead = 48)
sunspots_preds sunspots_preds
## [1] 57.42000 54.33333 53.40000 56.07333 59.67333 59.22667 51.86000 50.89333
## [9] 51.44667 44.66667 39.63333 42.39333 32.54167 37.65000 35.10833 38.84167
## [17] 30.25000 27.24167 26.63333 23.44167 24.95000 25.03333 22.91667 19.92500
## [25] 18.98750 19.82500 24.68750 15.41875 19.25625 17.51250 17.21250 20.61875
## [33] 14.03750 14.90625 21.43125 16.08125 14.47222 13.83333 13.66111 11.93889
## [41] 15.02222 14.21111 10.82778 13.93333 13.39444 18.74444 19.18889 18.83333
To represent the prediction performance in plot format, the plot() function is used as shown in the following code.
plot(nottem_model, nottem_preds)
plot(sunspots_model, sunspots_preds)
psf()
with auto.arima()
and
ets()
functions:Example below shows the comparisons for psf()
,
auto.arima()
and ets()
functions when using
the Root Mean Square Error (RMSE) parameter as metric, for ’sunspots’
dataset. In order to avail more accurate and robust comparison results,
error values are calculated for 5 times and the mean value of error
values for methods under comparison are also shown. These values clearly
state that ‘psf()’ function is able to outperform the comparative time
series prediction methods. Additionally, the reader might want to refer
to the results published in the original work Martinez Alvarez et
al. (2011), in which it was shown that PSF outperformed many different
methods when applied to electricity prices and demand forecasting.
library(PSF)
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
options(warn=-1)
## Consider data `sunspots` with removal of last years's readings
# Training Data
<- sunspots[1:2772]
train
# Test Data
<- sunspots[2773:2820]
test
<- NULL
PSF <- NULL
ARIMA <- NULL
ETS
for(i in 1:5)
{set.seed(i)
# for PSF
<- psf(train)
psf_model <- predict(psf_model, n.ahead = 48)
a
# for ARIMA
<- forecast(auto.arima(train), 48)$mean
b
# for ets
<- as.numeric(forecast(ets(train), 48)$mean)
c
## For Error Calculations
# Error for PSF
<- sqrt(mean((test - a)^2))
PSF[i] # Error for ARIMA
<- sqrt(mean((test - b)^2))
ARIMA[i] # Error for ETS
<- sqrt(mean((test - c)^2))
ETS[i]
}
## Error values for PSF
PSF
## [1] 61.08512 61.08512 61.08512 61.08512 61.08512
mean(PSF)
## [1] 61.08512
## Error values for ARIMA
ARIMA
## [1] 103.0719 103.0719 103.0719 103.0719 103.0719
mean(ARIMA)
## [1] 103.0719
## Error values for ETS
ETS
## [1] 70.66647 70.66647 70.66647 70.66647 70.66647
mean(ETS)
## [1] 70.66647
Martínez-Álvarez, F., Troncoso, A., Riquelme, J.C. and Ruiz, J.S.A., 2008, December. LBF: A labeled-based forecasting algorithm and its application to electricity price time series. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on (pp. 453-461). IEEE.
Martinez Alvarez, F., Troncoso, A., Riquelme, J.C. and Aguilar Ruiz, J.S., 2011. Energy time series forecasting based on pattern sequence similarity. Knowledge and Data Engineering, IEEE Transactions on, 23(8), pp.1230-1243.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.