The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Network inference and analysis of CLL data

Frédéric Bertrand and Myriam Maumy-Bertrand

Université de Strasbourg et CNRS,IRMA, labex IRMIA
frederic.bertrand@utt.fr

2024-05-04

Data preparation

Retrieve the full CLL dataset.

#> Loading required package: Patterns
#> 
require(Patterns)
CLLfile <- "https://github.com/fbertran/Patterns/raw/master/add_data/CLL.RData"
repmis::source_data(CLLfile)
#> Downloading data from: https://github.com/fbertran/Patterns/raw/master/add_data/CLL.RData
#> SHA-1 hash of the downloaded data file is:
#> 8dca428b86d460cd2018745029f03bc12aa8be65
#> [1] "CLL"

CLL[1:10,1:5]
#>     probeset             nom
#> 1  1007_s_at DDR1 or MIR4640
#> 2    1053_at            RFC2
#> 3     117_at           HSPA6
#> 4     121_at            PAX8
#> 5  1255_g_at          GUCA1A
#> 6    1294_at UBA7 or MIR5193
#> 7    1316_at            THRA
#> 8    1320_at          PTPN21
#> 9  1405_i_at            CCL5
#> 10   1431_at          CYP2E1
#>    Healthy.B.cell..subject.N1_unstimulated.cells_at.60min
#> 1                                                  560.69
#> 2                                                  220.58
#> 3                                                  269.54
#> 4                                                  677.51
#> 5                                                  142.21
#> 6                                                  393.85
#> 7                                                  345.01
#> 8                                                  173.09
#> 9                                                  145.81
#> 10                                                 203.18
#>    Healthy.B.cell..subject.N1_unstimulated.cells_at.90min
#> 1                                                  557.05
#> 2                                                  216.36
#> 3                                                  263.38
#> 4                                                  598.17
#> 5                                                  135.68
#> 6                                                  381.74
#> 7                                                  324.51
#> 8                                                  175.87
#> 9                                                  153.66
#> 10                                                 194.90
#>    Healthy.B.cell..subject.N1_unstimulated.cells_at.210min
#> 1                                                   560.79
#> 2                                                   228.93
#> 3                                                   244.14
#> 4                                                   617.53
#> 5                                                   145.23
#> 6                                                   365.96
#> 7                                                   334.87
#> 8                                                   153.67
#> 9                                                   141.80
#> 10                                                  187.53

Split the CLL dataset into healthy and aggressive stimulated and unstimulated dataset.

hea_US<-CLL[,which((1:48)%%8<5&(1:48)%%8>0)+2]
hea_S<-CLL[,which(!((1:48)%%8<5&(1:48)%%8>0))+2]

agg_US<-CLL[,which((1:40)%%8<5&(1:40)%%8>0)+98]
agg_S<-CLL[,which(!((1:40)%%8<5&(1:40)%%8>0))+98]

m_hea_US<-as.omics_array(hea_US,c(60,90,210,390),6,name=CLL[,1],gene_ID=CLL[,2])
m_hea_S<- as.omics_array(hea_S,c(60,90,210,390),6,name=CLL[,1],gene_ID=CLL[,2])
  
m_agg_US<-as.omics_array((agg_US),c(60,90,210,390),5,name=CLL[,1],gene_ID=CLL[,2])
m_agg_S<- as.omics_array((agg_S),c(60,90,210,390),5,name=CLL[,1],gene_ID=CLL[,2])

Focus on EGR1, run the code to get the graph of the expression values (pasted together for all the subjects) for all the probeset tagged as EGR1.

matplot(t(log(agg_S[which(CLL[,2] %in% "EGR1"),])),type="l",lty=1)

Selection genes according to their profiles.

selection1<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)),-1,alpha=0.1)
#> [1] "The selection is not empty"
#> [1] "This function returns the stimulated expression"
selection2<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+1),-1,alpha=0.1)
#> [1] "The selection is not empty"
#> [1] "This function returns the stimulated expression"
selection3<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+2),50,alpha=0.005)
#> [1] "The selection is not empty"
#> [1] "This function returns the stimulated expression"
selection4<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+3),50,alpha=0.005)
#> [1] "The selection is not empty"
#> [1] "This function returns the stimulated expression"

Merge the four selections into a single one.

selection<-Patterns::unionOmics(list(selection1,selection2,selection3,selection4))
summary(selection)
#>  CLL.B.cell..patient.M2_stimulated.cells_at.60min_.agg.
#>  Min.   : 6.776                                        
#>  1st Qu.: 7.789                                        
#>  Median : 8.177                                        
#>  Mean   : 8.552                                        
#>  3rd Qu.: 8.932                                        
#>  Max.   :12.620                                        
#>  CLL.B.cell..patient.M2_stimulated.cells_at.90min_.agg.
#>  Min.   : 6.429                                        
#>  1st Qu.: 7.741                                        
#>  Median : 8.340                                        
#>  Mean   : 8.832                                        
#>  3rd Qu.: 9.461                                        
#>  Max.   :13.371                                        
#>  CLL.B.cell..patient.M2_stimulated.cells_at.210min_.agg.
#>  Min.   : 6.408                                         
#>  1st Qu.: 8.005                                         
#>  Median : 8.932                                         
#>  Mean   : 9.288                                         
#>  3rd Qu.:10.355                                         
#>  Max.   :13.958                                         
#>  CLL.B.cell..patient.M2_stimulated.cells_at.390min_.agg.
#>  Min.   : 6.613                                         
#>  1st Qu.: 8.033                                         
#>  Median : 8.986                                         
#>  Mean   : 9.131                                         
#>  3rd Qu.: 9.990                                         
#>  Max.   :14.166                                         
#>  CLL.B.cell..patient.UM1_stimulated.cells_at.60min_.agg.
#>  Min.   : 6.855                                         
#>  1st Qu.: 7.649                                         
#>  Median : 8.151                                         
#>  Mean   : 8.469                                         
#>  3rd Qu.: 9.083                                         
#>  Max.   :12.256                                         
#>  CLL.B.cell..patient.UM1_stimulated.cells_at.90min_.agg.
#>  Min.   : 6.860                                         
#>  1st Qu.: 7.748                                         
#>  Median : 8.224                                         
#>  Mean   : 8.585                                         
#>  3rd Qu.: 9.026                                         
#>  Max.   :12.673                                         
#>  CLL.B.cell..patient.UM1_stimulated.cells_at.210min_.agg.
#>  Min.   : 6.634                                          
#>  1st Qu.: 8.199                                          
#>  Median : 9.079                                          
#>  Mean   : 9.257                                          
#>  3rd Qu.:10.269                                          
#>  Max.   :12.598                                          
#>  CLL.B.cell..patient.UM1_stimulated.cells_at.390min_.agg.
#>  Min.   : 6.716                                          
#>  1st Qu.: 8.043                                          
#>  Median : 9.073                                          
#>  Mean   : 9.151                                          
#>  3rd Qu.:10.125                                          
#>  Max.   :12.915                                          
#>  CLL.B.cell..patient.UM2_stimulated.cells_at.60min_.agg.
#>  Min.   : 6.794                                         
#>  1st Qu.: 7.657                                         
#>  Median : 8.182                                         
#>  Mean   : 8.419                                         
#>  3rd Qu.: 8.926                                         
#>  Max.   :11.797                                         
#>  CLL.B.cell..patient.UM2_stimulated.cells_at.90min_.agg.
#>  Min.   : 6.553                                         
#>  1st Qu.: 7.868                                         
#>  Median : 8.420                                         
#>  Mean   : 8.838                                         
#>  3rd Qu.: 9.232                                         
#>  Max.   :13.391                                         
#>  CLL.B.cell..patient.UM2_stimulated.cells_at.210min_.agg.
#>  Min.   : 6.770                                          
#>  1st Qu.: 8.213                                          
#>  Median : 9.027                                          
#>  Mean   : 9.242                                          
#>  3rd Qu.:10.144                                          
#>  Max.   :13.459                                          
#>  CLL.B.cell..patient.UM2_stimulated.cells_at.390min_.agg.
#>  Min.   : 6.767                                          
#>  1st Qu.: 8.047                                          
#>  Median : 8.613                                          
#>  Mean   : 8.774                                          
#>  3rd Qu.: 9.381                                          
#>  Max.   :12.201                                          
#>  CLL.B.cell..patient.UM3_stimulated.cells_at.60min_.agg.
#>  Min.   : 6.670                                         
#>  1st Qu.: 7.665                                         
#>  Median : 8.049                                         
#>  Mean   : 8.245                                         
#>  3rd Qu.: 8.580                                         
#>  Max.   :11.190                                         
#>  CLL.B.cell..patient.UM3_stimulated.cells_at.90min_.agg.
#>  Min.   : 6.978                                         
#>  1st Qu.: 7.764                                         
#>  Median : 8.287                                         
#>  Mean   : 8.574                                         
#>  3rd Qu.: 9.056                                         
#>  Max.   :12.449                                         
#>  CLL.B.cell..patient.UM3_stimulated.cells_at.210min_.agg.
#>  Min.   : 6.605                                          
#>  1st Qu.: 8.053                                          
#>  Median : 8.779                                          
#>  Mean   : 9.131                                          
#>  3rd Qu.: 9.937                                          
#>  Max.   :12.544                                          
#>  CLL.B.cell..patient.UM3_stimulated.cells_at.390min_.agg.
#>  Min.   : 6.653                                          
#>  1st Qu.: 7.909                                          
#>  Median : 8.877                                          
#>  Mean   : 9.007                                          
#>  3rd Qu.: 9.821                                          
#>  Max.   :12.848                                          
#>  CLL.B.cell..patient.UM4_stimulated.cells_at.60min_.agg.
#>  Min.   : 6.802                                         
#>  1st Qu.: 7.678                                         
#>  Median : 8.318                                         
#>  Mean   : 8.745                                         
#>  3rd Qu.: 9.186                                         
#>  Max.   :13.437                                         
#>  CLL.B.cell..patient.UM4_stimulated.cells_at.90min_.agg.
#>  Min.   : 6.604                                         
#>  1st Qu.: 7.840                                         
#>  Median : 8.542                                         
#>  Mean   : 9.026                                         
#>  3rd Qu.: 9.980                                         
#>  Max.   :13.173                                         
#>  CLL.B.cell..patient.UM4_stimulated.cells_at.210min_.agg.
#>  Min.   : 6.592                                          
#>  1st Qu.: 8.190                                          
#>  Median : 9.185                                          
#>  Mean   : 9.361                                          
#>  3rd Qu.:10.454                                          
#>  Max.   :13.772                                          
#>  CLL.B.cell..patient.UM4_stimulated.cells_at.390min_.agg.
#>  Min.   : 6.758                                          
#>  1st Qu.: 7.955                                          
#>  Median : 9.150                                          
#>  Mean   : 9.150                                          
#>  3rd Qu.:10.053                                          
#>  Max.   :13.818

Number of genes in the merged selection.

length(selection@gene_ID)
#> [1] 169

Translate the probesets’ names for the selection.

require(biomaRt)

affyids=c("202763_at","209310_s_at","207500_at")
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")
infos<-getBM(attributes=c("affy_hg_u133_plus_2","ensembl_gene_id","hgnc_symbol","chromosome_name","start_position","end_position","band"), filters = "affy_hg_u133_plus_2", values = CLL[CLL[,1] %in% selection@name,1] , mart = ensembl,uniqueRows=TRUE, checkFilters = TRUE)
selection@gene_ID <- lapply(selection@name,function(x) {unique(infos[infos$affy_hg_u133_plus_2==x,"hgnc_symbol"])})

Network inference

Add groupping information according to the pre-merge selection membership to perform network inference.

selection@group <- rep(NA, length(selection@name))
names(selection@group) <- selection@name
selection@group[selection@name %in% selection4@name] <- 4
selection@group[selection@name %in% selection3@name] <- 3
selection@group[selection@name %in% selection2@name] <- 2
selection@group[selection@name %in% selection1@name] <- 1
plot(selection)

Check the length of the group slot of the selection object.

length(selection@group)
#> [1] 169

Performs a lasso based inference of the network. Then prints the network pbject.

network<-inference(selection,fitfun="LASSO2",Finit=CascadeFinit(4,4),Fshape=CascadeFshape(4,4))
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2...............................................................................
#>  3.............................................
#>  4.......................................
#> The convergence of the network is (L1 norm) : 0.00571
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2...............................................................................
#>  3.............................................
#>  4.......................................
#> The convergence of the network is (L1 norm) : 0.00122
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2...............................................................................
#>  3.............................................
#>  4.......................................
#> The convergence of the network is (L1 norm) : 0.00069
str(network)
#> Formal class 'omics_network' [package "Patterns"] with 6 slots
#>   ..@ omics_network: num [1:169, 1:169] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..@ name         : chr [1:169] "201694_s_at" "227404_s_at" "237009_at" "201693_s_at" ...
#>   ..@ F            : num [1:4, 1:4, 1:16] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..@ convF        : num [1:16, 1:4] 0.141 0.141 0.141 0.141 0.141 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : NULL
#>   .. .. ..$ : chr [1:4] "convF" "cc" "cc" "cc"
#>   ..@ convO        : num [1:4] 8.08e+01 5.71e-03 1.22e-03 6.92e-04
#>   ..@ time_pt      : num [1:4] 60 90 210 390

Plot the inferred F matrix.

plotF(network@F, choice='F')

Save results.

save(list=c("selection"),file="selection.RData")
save(list=c("infos"),file="infos.RData")

Focus on transcription factors.

Retrieve human transcription factors from HumanTFDB, extracted from AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Hui Hu, Ya-Ru Miao, Long-Hao Jia, Qing-Yang Yu, Qiong Zhang and An-Yuan Guo. Nucl. Acids Res. (2018).

doc <- read.delim("http://bioinfo.life.hust.edu.cn/static/AnimalTFDB3/download/Homo_sapiens_TF",encoding = "UTF-8", header=TRUE)
TF<-as.character(doc[,"Symbol"])
TF<-TF[order(TF)]

The TF object holds the list of human transcription factors geneID. We retrieve those that are in the selection object.

infos_selection <- infos[infos$affy_hg_u133_plus_2 %in% selection@name,]
tfs<-which(infos_selection[,"hgnc_symbol"] %in% TF)

Some plots of the TF found in the selection.

matplot(t(selection@omicsarray[tfs,]),type="l",lty=1)

kk<-kmeans((selection@omicsarray[tfs,]),10)
matplot(t(kk$centers),type="l",lty=1)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.