The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Retrieve the full CLL dataset.
#> Loading required package: Patterns
#>
require(Patterns)
CLLfile <- "https://github.com/fbertran/Patterns/raw/master/add_data/CLL.RData"
repmis::source_data(CLLfile)
#> Downloading data from: https://github.com/fbertran/Patterns/raw/master/add_data/CLL.RData
#> SHA-1 hash of the downloaded data file is:
#> 8dca428b86d460cd2018745029f03bc12aa8be65
#> [1] "CLL"
CLL[1:10,1:5]
#> probeset nom
#> 1 1007_s_at DDR1 or MIR4640
#> 2 1053_at RFC2
#> 3 117_at HSPA6
#> 4 121_at PAX8
#> 5 1255_g_at GUCA1A
#> 6 1294_at UBA7 or MIR5193
#> 7 1316_at THRA
#> 8 1320_at PTPN21
#> 9 1405_i_at CCL5
#> 10 1431_at CYP2E1
#> Healthy.B.cell..subject.N1_unstimulated.cells_at.60min
#> 1 560.69
#> 2 220.58
#> 3 269.54
#> 4 677.51
#> 5 142.21
#> 6 393.85
#> 7 345.01
#> 8 173.09
#> 9 145.81
#> 10 203.18
#> Healthy.B.cell..subject.N1_unstimulated.cells_at.90min
#> 1 557.05
#> 2 216.36
#> 3 263.38
#> 4 598.17
#> 5 135.68
#> 6 381.74
#> 7 324.51
#> 8 175.87
#> 9 153.66
#> 10 194.90
#> Healthy.B.cell..subject.N1_unstimulated.cells_at.210min
#> 1 560.79
#> 2 228.93
#> 3 244.14
#> 4 617.53
#> 5 145.23
#> 6 365.96
#> 7 334.87
#> 8 153.67
#> 9 141.80
#> 10 187.53
Split the CLL
dataset into healthy and aggressive
stimulated and unstimulated dataset.
hea_US<-CLL[,which((1:48)%%8<5&(1:48)%%8>0)+2]
hea_S<-CLL[,which(!((1:48)%%8<5&(1:48)%%8>0))+2]
agg_US<-CLL[,which((1:40)%%8<5&(1:40)%%8>0)+98]
agg_S<-CLL[,which(!((1:40)%%8<5&(1:40)%%8>0))+98]
m_hea_US<-as.omics_array(hea_US,c(60,90,210,390),6,name=CLL[,1],gene_ID=CLL[,2])
m_hea_S<- as.omics_array(hea_S,c(60,90,210,390),6,name=CLL[,1],gene_ID=CLL[,2])
m_agg_US<-as.omics_array((agg_US),c(60,90,210,390),5,name=CLL[,1],gene_ID=CLL[,2])
m_agg_S<- as.omics_array((agg_S),c(60,90,210,390),5,name=CLL[,1],gene_ID=CLL[,2])
Focus on EGR1, run the code to get the graph of the expression values (pasted together for all the subjects) for all the probeset tagged as EGR1.
selection1<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)),-1,alpha=0.1)
#> [1] "The selection is not empty"
#> [1] "This function returns the stimulated expression"
selection2<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+1),-1,alpha=0.1)
#> [1] "The selection is not empty"
#> [1] "This function returns the stimulated expression"
selection3<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+2),50,alpha=0.005)
#> [1] "The selection is not empty"
#> [1] "This function returns the stimulated expression"
selection4<-geneSelection(list(m_agg_US,m_agg_S),list("condition&time",c(1,2),c(1,1)+3),50,alpha=0.005)
#> [1] "The selection is not empty"
#> [1] "This function returns the stimulated expression"
Merge the four selections into a single one.
selection<-Patterns::unionOmics(list(selection1,selection2,selection3,selection4))
summary(selection)
#> CLL.B.cell..patient.M2_stimulated.cells_at.60min_.agg.
#> Min. : 6.776
#> 1st Qu.: 7.789
#> Median : 8.177
#> Mean : 8.552
#> 3rd Qu.: 8.932
#> Max. :12.620
#> CLL.B.cell..patient.M2_stimulated.cells_at.90min_.agg.
#> Min. : 6.429
#> 1st Qu.: 7.741
#> Median : 8.340
#> Mean : 8.832
#> 3rd Qu.: 9.461
#> Max. :13.371
#> CLL.B.cell..patient.M2_stimulated.cells_at.210min_.agg.
#> Min. : 6.408
#> 1st Qu.: 8.005
#> Median : 8.932
#> Mean : 9.288
#> 3rd Qu.:10.355
#> Max. :13.958
#> CLL.B.cell..patient.M2_stimulated.cells_at.390min_.agg.
#> Min. : 6.613
#> 1st Qu.: 8.033
#> Median : 8.986
#> Mean : 9.131
#> 3rd Qu.: 9.990
#> Max. :14.166
#> CLL.B.cell..patient.UM1_stimulated.cells_at.60min_.agg.
#> Min. : 6.855
#> 1st Qu.: 7.649
#> Median : 8.151
#> Mean : 8.469
#> 3rd Qu.: 9.083
#> Max. :12.256
#> CLL.B.cell..patient.UM1_stimulated.cells_at.90min_.agg.
#> Min. : 6.860
#> 1st Qu.: 7.748
#> Median : 8.224
#> Mean : 8.585
#> 3rd Qu.: 9.026
#> Max. :12.673
#> CLL.B.cell..patient.UM1_stimulated.cells_at.210min_.agg.
#> Min. : 6.634
#> 1st Qu.: 8.199
#> Median : 9.079
#> Mean : 9.257
#> 3rd Qu.:10.269
#> Max. :12.598
#> CLL.B.cell..patient.UM1_stimulated.cells_at.390min_.agg.
#> Min. : 6.716
#> 1st Qu.: 8.043
#> Median : 9.073
#> Mean : 9.151
#> 3rd Qu.:10.125
#> Max. :12.915
#> CLL.B.cell..patient.UM2_stimulated.cells_at.60min_.agg.
#> Min. : 6.794
#> 1st Qu.: 7.657
#> Median : 8.182
#> Mean : 8.419
#> 3rd Qu.: 8.926
#> Max. :11.797
#> CLL.B.cell..patient.UM2_stimulated.cells_at.90min_.agg.
#> Min. : 6.553
#> 1st Qu.: 7.868
#> Median : 8.420
#> Mean : 8.838
#> 3rd Qu.: 9.232
#> Max. :13.391
#> CLL.B.cell..patient.UM2_stimulated.cells_at.210min_.agg.
#> Min. : 6.770
#> 1st Qu.: 8.213
#> Median : 9.027
#> Mean : 9.242
#> 3rd Qu.:10.144
#> Max. :13.459
#> CLL.B.cell..patient.UM2_stimulated.cells_at.390min_.agg.
#> Min. : 6.767
#> 1st Qu.: 8.047
#> Median : 8.613
#> Mean : 8.774
#> 3rd Qu.: 9.381
#> Max. :12.201
#> CLL.B.cell..patient.UM3_stimulated.cells_at.60min_.agg.
#> Min. : 6.670
#> 1st Qu.: 7.665
#> Median : 8.049
#> Mean : 8.245
#> 3rd Qu.: 8.580
#> Max. :11.190
#> CLL.B.cell..patient.UM3_stimulated.cells_at.90min_.agg.
#> Min. : 6.978
#> 1st Qu.: 7.764
#> Median : 8.287
#> Mean : 8.574
#> 3rd Qu.: 9.056
#> Max. :12.449
#> CLL.B.cell..patient.UM3_stimulated.cells_at.210min_.agg.
#> Min. : 6.605
#> 1st Qu.: 8.053
#> Median : 8.779
#> Mean : 9.131
#> 3rd Qu.: 9.937
#> Max. :12.544
#> CLL.B.cell..patient.UM3_stimulated.cells_at.390min_.agg.
#> Min. : 6.653
#> 1st Qu.: 7.909
#> Median : 8.877
#> Mean : 9.007
#> 3rd Qu.: 9.821
#> Max. :12.848
#> CLL.B.cell..patient.UM4_stimulated.cells_at.60min_.agg.
#> Min. : 6.802
#> 1st Qu.: 7.678
#> Median : 8.318
#> Mean : 8.745
#> 3rd Qu.: 9.186
#> Max. :13.437
#> CLL.B.cell..patient.UM4_stimulated.cells_at.90min_.agg.
#> Min. : 6.604
#> 1st Qu.: 7.840
#> Median : 8.542
#> Mean : 9.026
#> 3rd Qu.: 9.980
#> Max. :13.173
#> CLL.B.cell..patient.UM4_stimulated.cells_at.210min_.agg.
#> Min. : 6.592
#> 1st Qu.: 8.190
#> Median : 9.185
#> Mean : 9.361
#> 3rd Qu.:10.454
#> Max. :13.772
#> CLL.B.cell..patient.UM4_stimulated.cells_at.390min_.agg.
#> Min. : 6.758
#> 1st Qu.: 7.955
#> Median : 9.150
#> Mean : 9.150
#> 3rd Qu.:10.053
#> Max. :13.818
Number of genes in the merged selection.
Translate the probesets’ names for the selection.
require(biomaRt)
affyids=c("202763_at","209310_s_at","207500_at")
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")
infos<-getBM(attributes=c("affy_hg_u133_plus_2","ensembl_gene_id","hgnc_symbol","chromosome_name","start_position","end_position","band"), filters = "affy_hg_u133_plus_2", values = CLL[CLL[,1] %in% selection@name,1] , mart = ensembl,uniqueRows=TRUE, checkFilters = TRUE)
Add groupping information according to the pre-merge selection membership to perform network inference.
selection@group <- rep(NA, length(selection@name))
names(selection@group) <- selection@name
selection@group[selection@name %in% selection4@name] <- 4
selection@group[selection@name %in% selection3@name] <- 3
selection@group[selection@name %in% selection2@name] <- 2
selection@group[selection@name %in% selection1@name] <- 1
plot(selection)
Check the length of the group
slot of the
selection
object.
Performs a lasso based inference of the network. Then prints the
network
pbject.
network<-inference(selection,fitfun="LASSO2",Finit=CascadeFinit(4,4),Fshape=CascadeFshape(4,4))
#> We are at step : 1
#> Computing Group (out of 4) :
#> 1
#> 2...............................................................................
#> 3.............................................
#> 4.......................................
#> The convergence of the network is (L1 norm) : 0.00571
#> We are at step : 2
#> Computing Group (out of 4) :
#> 1
#> 2...............................................................................
#> 3.............................................
#> 4.......................................
#> The convergence of the network is (L1 norm) : 0.00122
#> We are at step : 3
#> Computing Group (out of 4) :
#> 1
#> 2...............................................................................
#> 3.............................................
#> 4.......................................
#> The convergence of the network is (L1 norm) : 0.00069
str(network)
#> Formal class 'omics_network' [package "Patterns"] with 6 slots
#> ..@ omics_network: num [1:169, 1:169] 0 0 0 0 0 0 0 0 0 0 ...
#> ..@ name : chr [1:169] "201694_s_at" "227404_s_at" "237009_at" "201693_s_at" ...
#> ..@ F : num [1:4, 1:4, 1:16] 0 0 0 0 0 0 0 0 0 0 ...
#> ..@ convF : num [1:16, 1:4] 0.141 0.141 0.141 0.141 0.141 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : NULL
#> .. .. ..$ : chr [1:4] "convF" "cc" "cc" "cc"
#> ..@ convO : num [1:4] 8.08e+01 5.71e-03 1.22e-03 6.92e-04
#> ..@ time_pt : num [1:4] 60 90 210 390
Plot the inferred F matrix.
Save results.
Retrieve human transcription factors from HumanTFDB, extracted from AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Hui Hu, Ya-Ru Miao, Long-Hao Jia, Qing-Yang Yu, Qiong Zhang and An-Yuan Guo. Nucl. Acids Res. (2018).
doc <- read.delim("http://bioinfo.life.hust.edu.cn/static/AnimalTFDB3/download/Homo_sapiens_TF",encoding = "UTF-8", header=TRUE)
TF<-as.character(doc[,"Symbol"])
TF<-TF[order(TF)]
The TF
object holds the list of human transcription
factors geneID. We retrieve those that are in the selection
object.
infos_selection <- infos[infos$affy_hg_u133_plus_2 %in% selection@name,]
tfs<-which(infos_selection[,"hgnc_symbol"] %in% TF)
Some plots of the TF
found in the selection.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.