The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Exact Procedures

Ordinary Poisson Binomial Distribution

Direct Convolution

The Direct Convolution (DC) approach is requested with method = "Convolve".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Convolve")
#>  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#>  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "Convolve")
#>  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#>  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

Divide & Conquer FFT Tree Convolution

The Divide & Conquer FFT Tree Convolution (DC-FFT) approach is requested with method = "DivideFFT".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "DivideFFT")
#>  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#>  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "DivideFFT")
#>  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#>  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

By design, as proposed by Biscarri, Zhao & Brunner (2018), its results are identical to the DC procedure, if \(n \leq 750\). Thus, differences can be observed for larger \(n > 750\):

set.seed(1)
pp1 <- runif(751)
pp2 <- pp1[1:750]

sum(abs(dpbinom(NULL, pp2, method = "DivideFFT") - dpbinom(NULL, pp2, method = "Convolve")))
#> [1] 0
sum(abs(dpbinom(NULL, pp1, method = "DivideFFT") - dpbinom(NULL, pp1, method = "Convolve")))
#> [1] 0

The reason is that the DC-FFT method splits the input probs vector into as equally sized parts as possible and computes their distributions separately with the DC approach. The results of the portions are then convoluted by means of the Fast Fourier Transformation. As proposed by Biscarri, Zhao & Brunner (2018), no splitting is done for \(n \leq 750\). In addition, the DC-FFT procedure does not produce probabilities \(\leq 5.55e\text{-}17\), i.e. smaller values are rounded off to 0, if \(n > 750\), whereas the smallest possible result of the DC algorithm is \(\sim 1e\text{-}323\). This is most likely caused by the used FFTW3 library.

set.seed(1)
pp1 <- runif(751)

d1 <- dpbinom(NULL, pp1, method = "DivideFFT")
d2 <- dpbinom(NULL, pp1, method = "Convolve")

min(d1[d1 > 0])
#> [1] 1.635357e-321
min(d2[d2 > 0])
#> [1] 1.635357e-321

Discrete Fourier Transformation of the Characteristic Function

The Discrete Fourier Transformation of the Characteristic Function (DFT-CF) approach is requested with method = "Characteristic".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Characteristic")
#>  [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [11] 0.000000e+00 2.238353e-16 3.549132e-15 4.829828e-14 5.804377e-13
#> [16] 6.158818e-12 5.784702e-11 4.822438e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110923e-10
#> [56] 2.392079e-11 1.468354e-12 6.994931e-14 2.513558e-15 0.000000e+00
#> [61] 0.000000e+00 0.000000e+00
ppbinom(NULL, pp, wt, "Characteristic")
#>  [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [11] 0.000000e+00 2.238353e-16 3.772968e-15 5.207125e-14 6.325089e-13
#> [16] 6.791327e-12 6.463834e-11 5.468822e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

As can be seen, the DFT-CF procedure does not produce probabilities \(\leq 2.22e\text{-}16\), i.e. smaller values are rounded off to 0, most likely due to the used FFTW3 library.

Recursive Formula

The Recursive Formula (RF) approach is requested with method = "Recursive".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Recursive")
#>  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26
#>  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19
#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13
#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08
#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05
#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03
#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01
#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02
#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03
#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06
#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10
#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17
#> [61] 9.411166e-19 6.727527e-21
ppbinom(NULL, pp, wt, "Recursive")
#>  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26
#>  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19
#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13
#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08
#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05
#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02
#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01
#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01
#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01
#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01
#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

Obviously, the RF procedure does produce probabilities \(\leq 5.55e\text{-}17\), because it does not rely on the FFTW3 library. Furthermore, it yields the same results as the DC method.

set.seed(1)
pp <- runif(1000)
wt <- sample(1:10, 1000, TRUE)

sum(abs(dpbinom(NULL, pp, wt, "Convolve") - dpbinom(NULL, pp, wt, "Recursive")))
#> [1] 0

Processing Speed Comparisons

To assess the performance of the exact procedures, we use the microbenchmark package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).

library(microbenchmark)
set.seed(1)

f1 <- function() dpbinom(NULL, runif(6000), method = "DivideFFT")
f2 <- function() dpbinom(NULL, runif(6000), method = "Convolve")
f3 <- function() dpbinom(NULL, runif(6000), method = "Recursive")
f4 <- function() dpbinom(NULL, runif(6000), method = "Characteristic")

microbenchmark(f1(), f2(), f3(), f4(), times = 51)
#> Unit: milliseconds
#>  expr      min        lq      mean   median        uq      max neval
#>  f1()  20.9010  21.82365  23.03580  22.3124  22.60315  33.6471    51
#>  f2()  44.1096  44.98895  45.64250  45.2764  45.94010  53.8505    51
#>  f3()  80.0998  80.81575  83.09995  81.6625  82.49565 129.9786    51
#>  f4() 198.8036 203.35170 206.31347 205.5394 207.87380 237.2220    51

Clearly, the DC-FFT procedure is the fastest, followed by DC, RF and DFT-CF methods.

Generalized Poisson Binomial Distribution

Generalized Direct Convolution

The Generalized Direct Convolution (G-DC) approach is requested with method = "Convolve".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)

dgpbinom(NULL, pp, va, vb, wt, "Convolve")
#>   [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26
#>   [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23
#>  [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20
#>  [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18
#>  [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16
#>  [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14
#>  [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13
#>  [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11
#>  [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10
#>  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09
#>  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#>  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#>  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#>  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#>  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#>  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#>  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#>  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#>  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#>  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13
#> [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15
#> [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18
#> [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23
#> [216] 2.108301e-24
pgpbinom(NULL, pp, va, vb, wt, "Convolve")
#>   [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26
#>   [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23
#>  [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20
#>  [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18
#>  [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16
#>  [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14
#>  [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13
#>  [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11
#>  [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10
#>  [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09
#>  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#>  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#>  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#>  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#>  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#>  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#>  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#>  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#>  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#>  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00

Generalized Divide & Conquer FFT Tree Convolution

The Generalized Divide & Conquer FFT Tree Convolution (G-DC-FFT) approach is requested with method = "DivideFFT".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)

dgpbinom(NULL, pp, va, vb, wt, "DivideFFT")
#>   [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26
#>   [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23
#>  [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20
#>  [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18
#>  [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16
#>  [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14
#>  [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13
#>  [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11
#>  [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10
#>  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09
#>  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#>  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#>  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#>  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#>  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#>  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#>  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#>  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#>  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#>  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13
#> [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15
#> [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18
#> [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23
#> [216] 2.108301e-24
pgpbinom(NULL, pp, va, vb, wt, "DivideFFT")
#>   [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26
#>   [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23
#>  [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20
#>  [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18
#>  [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16
#>  [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14
#>  [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13
#>  [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11
#>  [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10
#>  [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09
#>  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#>  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#>  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#>  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#>  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#>  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#>  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#>  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#>  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#>  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00

By design, similar to the ordinary DC-FFT algorithm by Biscarri, Zhao & Brunner (2018), its results are identical to the G-DC procedure, if \(n\) and the number of possible observed values is small. Thus, differences can be observed for larger numbers:

set.seed(1)
pp1 <- runif(250)
va1 <- sample(0:50, 250, TRUE)
vb1 <- sample(0:50, 250, TRUE)
pp2 <- pp1[1:248]
va2 <- va1[1:248]
vb2 <- vb1[1:248]

sum(abs(dgpbinom(NULL, pp1, va1, vb1, method = "DivideFFT")
        - dgpbinom(NULL, pp1, va1, vb1, method = "Convolve")))
#> [1] 0

sum(abs(dgpbinom(NULL, pp2, va2, vb2, method = "DivideFFT")
        - dgpbinom(NULL, pp2, va2, vb2, method = "Convolve")))
#> [1] 0

The reason is that the G-DC-FFT method splits the input probs, val_p and val_q vectors into parts such that the numbers of possible observations of all parts are as equally sized as possible. Their distributions are then computed separately with the G-DC approach. The results of the portions are then convoluted by means of the Fast Fourier Transformation. For small \(n\) and small distribution sizes, no splitting is needed. In addition, the G-DC-FFT procedure, just like the DC-FFT method, does not produce probabilities \(\leq 5.55e\text{-}17\), i.e. smaller values are rounded off to \(0\), if the total number of possible observations is smaller than \(750\), whereas the smallest possible result of the DC algorithm is \(\sim 1e\text{-}323\). This is most likely caused by the used FFTW3 library.

d1 <- dgpbinom(NULL, pp1, va1, vb1, method = "DivideFFT")
d2 <- dgpbinom(NULL, pp1, va1, vb1, method = "Convolve")

min(d1[d1 > 0])
#> [1] 2.839368e-99
min(d2[d2 > 0])
#> [1] 2.839368e-99

Generalized Discrete Fourier Transformation of the Characteristic Function

The Generalized Discrete Fourier Transformation of the Characteristic Function (G-DFT-CF) approach is requested with method = "Characteristic".

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)

dgpbinom(NULL, pp, va, vb, wt, "Characteristic")
#>   [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>   [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.837237e-16
#>  [26] 6.250144e-16 1.365163e-15 2.931811e-15 6.199773e-15 1.292382e-14
#>  [31] 2.657288e-14 5.394142e-14 1.081912e-13 2.144812e-13 4.201536e-13
#>  [36] 8.135511e-13 1.557734e-12 2.949810e-12 5.527683e-12 1.025814e-11
#>  [41] 1.885776e-11 3.434640e-11 6.196980e-11 1.106787e-10 1.956340e-10
#>  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753750e-09 2.972596e-09
#>  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08
#>  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07
#>  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06
#>  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05
#>  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05
#>  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04
#>  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03
#>  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03
#>  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03
#>  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02
#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02
#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02
#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02
#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02
#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02
#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02
#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02
#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03
#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03
#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03
#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04
#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04
#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05
#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05
#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06
#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07
#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08
#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09
#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11
#> [196] 1.676155e-11 7.585978e-12 3.326431e-12 1.407528e-12 5.717366e-13
#> [201] 2.216380e-13 8.149294e-14 2.825106e-14 9.182984e-15 2.782753e-15
#> [206] 7.822960e-16 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [211] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [216] 0.000000e+00
pgpbinom(NULL, pp, va, vb, wt, "Characteristic")
#>   [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>   [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#>  [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.837237e-16
#>  [26] 9.087381e-16 2.273901e-15 5.205712e-15 1.140549e-14 2.432930e-14
#>  [31] 5.090218e-14 1.048436e-13 2.130348e-13 4.275160e-13 8.476697e-13
#>  [36] 1.661221e-12 3.218955e-12 6.168765e-12 1.169645e-11 2.195459e-11
#>  [41] 4.081235e-11 7.515874e-11 1.371285e-10 2.478072e-10 4.434412e-10
#>  [46] 7.859806e-10 1.380788e-09 2.406013e-09 4.159763e-09 7.132359e-09
#>  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08
#>  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07
#>  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06
#>  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05
#>  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04
#>  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03
#>  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03
#>  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02
#>  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02
#>  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01
#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01
#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01
#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01
#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01
#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01
#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01
#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01
#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01
#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01
#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01
#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01
#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01
#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01
#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01
#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01
#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01
#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00
#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [216] 1.000000e+00

As can be seen, the G-DFT-CF procedure does not produce probabilities \(\leq 2.2e\text{-}16\), i.e. smaller values are rounded off to 0, most likely due to the used FFTW3 library.

Processing Speed Comparisons

To assess the performance of the exact procedures, we use the microbenchmark package. Each algorithm has to calculate the PMF repeatedly based on random probability and value vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).

library(microbenchmark)
n <- 2500
set.seed(1)
va <- sample(1:50, n, TRUE)
vb <- sample(1:50, n, TRUE)

f1 <- function() dgpbinom(NULL, runif(n), va, vb, method = "DivideFFT")
f2 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Convolve")
f3 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Characteristic")

microbenchmark(f1(), f2(), f3(), times = 51)
#> Unit: milliseconds
#>  expr      min        lq      mean   median        uq      max neval
#>  f1()  78.0103  80.94265  85.83106  82.3256  84.77965 222.4554    51
#>  f2() 185.1651 189.36355 192.53650 191.5913 194.92825 216.8803    51
#>  f3() 639.9733 721.50785 739.89051 747.7238 764.83850 801.4566    51

Clearly, the G-DC-FFT procedure is the fastest one. It outperforms both the G-DC and G-DFT-CF approaches. The latter one needs a lot more time than the others. Generally, the computational speed advantage of the G-DC-FFT procedure increases with larger \(n\) (and \(m\)).

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.