The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Type: Package
Title: Sure Independence Screening via Quantile Correlation and Composite Quantile Correlation
Version: 0.1
Date: 2015-12-02
Author: Xuejun Ma, Jingxiao Zhang, Jingke Zhou
Maintainer: Xuejun Ma <yinuoyumi@163.com>
Description: Quantile correlation-sure independence screening (QC-SIS) and composite quantile correlation-sure independence screening (CQC-SIS) for ultrahigh-dimensional data.
License: GPL-2
URL: http://www.r-project.org
NeedsCompilation: no
Packaged: 2015-12-02 11:38:00 UTC; yinuo
Repository: CRAN
Date/Publication: 2015-12-02 14:22:26

Sure Independence Screening via Quantile Correlation and Composite Quantile Correlation

Description

Quantile correlation-sure independence screening (QC-SIS) and composite quantile correlation-sure independence screening (CQC-SIS) for ultrahigh-dimensional data.

Details

Package: QCSIS
Type: Package
Title: Sure Independence Screening via Quantile Correlation and Composite Quantile Correlation
Version: 0.1
Date: 2015-12-02
Author: Xuejun Ma, Jingxiao Zhang, Jingke Zhou
Maintainer: Xuejun Ma <yinuoyumi@163.com>
Description: Quantile correlation-sure independence screening (QC-SIS) and composite quantile correlation-sure independence screening (CQC-SIS) for ultrahigh-dimensional data.
License: GPL-2
URL: http://www.r-project.org

Index of help topics:

CQCSIS                  Compsote Quantile Correlation-Sure Independence
                        Screening (CQC-SIS)
QCSIS                   Quantile Correlation-Sure Independence
                        Screening (QC-SIS)
QCSIS-package           Sure Independence Screening via Quantile
                        Correlation and Composite Quantile Correlation
cqc                     Composite Quantile Correlation
qc                      Quantile Correlation

Author(s)

Xuejun Ma, Jingxiao Zhang, Jingke Zhou

Maintainer: Xuejun Ma <yinuoyumi@163.com>

References

Xuejun Ma and Jingxiao Zhang. Robust model-free feature screening via quantile correlation. Journal of Multivariate Analysis. Online, 2015.
Xuejun Ma et al.. Robust feature screening via composite quantile correlation learning. In submission.


Compsote Quantile Correlation-Sure Independence Screening (CQC-SIS)

Description

The function implemrnts the composite quantile correlation-sure independence screening (CQC-SIS).

Usage

CQCSIS(x, y, d)

Arguments

x

The design matrix, of dimensions n * p, without an intercept.

y

The response vector of dimension n * 1.

d

The tuning parameter used to covarites had significant effect on the response variable, such as [n/log(n)], or n-1.

Value

w

The estimate of w.

M

The subscript of x recuited by CQC-SIS.

Author(s)

Xuejun Ma, Jingxiao Zhang, Jingke Zhou

References

Xuejun Ma et al.. Robust feature screening via composite quantile correlation learning. In submission.

Examples

n <- 20
p <- 200
x <- matrix(rnorm(n * p), n, p)
e <-  rnorm(n, 0, 1)
beta1 <- 3 - runif(1)
beta2 <- 3 - runif(1)
beta3 <- 3 - runif(1)
y <- beta1 * x[, 1] + beta2 * x[, 2] + beta3 * x[, 3] + e
d <- 19
fit.CQCSIS <- CQCSIS(x = x, y = y, d = d)
fit.CQCSIS$M



Quantile Correlation-Sure Independence Screening (QC-SIS)

Description

The function implemrnts the quantile correlation-sure independence screening (QC-SIS).

Usage

QCSIS(x, y, tau, d)

Arguments

x

The design matrix, of dimensions n * p, without an intercept.

y

The response vector of dimension n * 1.

tau

The quantile(s) to be estimated. By default, tau=1:(n-1)/n.

d

The tuning parameter used to covarites had significant effect on the response variable, such as [n/log(n)],or n-1

Value

w

The estimate of w.

M

The subscript of x recuited by QC-SIS.

Author(s)

Xuejun Ma, Jingxiao Zhang, Jingke Zhou

References

Xuejun Ma and Jingxiao Zhang. Robust model-free feature screening via quantile correlation. Journal of Multivariate Analysis. Online, 2015.

Examples

n <- 20
p <- 200
r <- 0.05
x <- matrix(rnorm(n * p), n, p)
e <- rnorm(n, 0, 1)
inde <- sample(n, r * n)
x[inde, 1] <- 2 * sqrt(rchisq(r * n, df = p))
y <- 5 * x[, 1] + 5 * x[, 2] + 5 * x[, 3] + e
d <- 19
fit.QCSIS <- QCSIS(x = x, y = y, d = d)
fit.QCSIS$M

Composite Quantile Correlation

Description

cqc is used to compute the composite quantile correlation.

Usage

cqc(x, y)

Arguments

x

The covariate variable.

y

The response variable.

Value

cqc

The value of composite quantile correlation.

Author(s)

Xuejun Ma, Jingxiao Zhang, Jingke Zhou

References

Xuejun Ma et al.. Robust feature screening via composite quantile correlation learning. In submission.

Examples

x <- rnorm(100)
y <- rnorm(100)
cqc(x = x, y = y)


Quantile Correlation

Description

qc is used to compute the quantile correlation with given quantiles.

Usage

qc(x, y, tau)

Arguments

x

The covariate variable.

y

The response variable.

tau

The quantile(s) to be estimated.

Value

tau

The quantile(s).

rho

The value of quantile correlation.

Author(s)

Xuejun Ma, Jingxiao Zhang, Jingke Zhou

References

Li et al.. Quantile correlations and quantile autoregressive modeling. Journal of the American Statistical Association,2015,110(509):246–261.

Examples

n   <- 1000
x   <- rnorm(n)
y   <- 2 * x + rt(n,df = 1)
tau <- 1:9 / 10
qc(x = x, y = y, tau = tau)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.