The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
To install the QuAnTeTrack package, you can choose between installing the stable version from CRAN (recommended) or the development version from GitHub.
To install the stable version from CRAN, use:
If you want the latest development version, you will need to use the
devtools
package. If you haven’t installed
devtools
yet, you can do so with the following command:
Once devtools
is installed, you can install
QuAnTeTrack using:
If you have already installed QuAnTeTrack and want to ensure you have the latest version, you can update it with:
The QuAnTeTrack package (Quantitative Analysis of Tetrapod Trackways) provides a structured and comprehensive workflow for analyzing trackway data, facilitating the assessment of paleoecological and paleoethological hypotheses. The workflow integrates various functions for data digitization, loading, exploratory analysis, statistical testing, simulation, similarity assessment, intersection detection, and clustering. This pipeline aims to help researchers reconstruct, compare, and interpret movement patterns and behavioral dynamics of trackmakers.
The first step involves digitizing the trackway data using the TPS software suite, particularly:
.TPS
files.The digitization process should ensure that the footprints are consistently recorded across all tracks. This process is essential for converting raw images into structured data for further analysis.
tps_to_track()
Once digitized, the data is loaded into QuAnTeTrack
using the tps_to_track()
function. This function:
.TPS
files containing digitized footprints within
tracks.track
R
objects.The resulting track
R objects
contain:
Additionally, if the dataset is extensive, users can utilize the
subset_track()
function to isolate
specific tracks for focused analysis. This step helps avoid
computational overhead and allows customized analyses of selected
trajectories.
Before testing specific hypotheses, users should perform an initial exploration of the data. This includes:
Visual Inspection of Tracks
(plot_track()
):
Generates visualizations of trackways and footprints to inspect their
overall structure. The function offers various modes:
Parameter Calculation
(track_param()
):
Calculates essential movement parameters, including:
Velocity Calculation
(velocity_track()
):
Estimates velocities and relative stride lengths for each track,
applying formulas based on empirical studies. This step is crucial for
understanding speed dynamics and comparing them across different
trackmakers or scenarios.
Visualization of Velocity Patterns
(plot_velocity()
):
Provides a detailed view of how velocity or relative stride length
changes along each track. This visualization is essential for
identifying patterns of acceleration, deceleration, or steady
movement.
Direction Analysis
(plot_direction()
):
Provides various visualization options to explore trackway
directionality:
These functions help identify general patterns and irregularities in the data before proceeding with formal statistical testing.
To assess whether tracks exhibit distinct movement patterns, the following statistical tests can be applied:
test_velocity()
):
mode_velocity()
):
test_direction()
):
These statistical tests allow researchers to rigorously compare and quantify movement characteristics, providing a foundation for hypothesis testing.
simulate_track()
)The simulate_track()
function generates
simulated trajectories based on different movement
models to test specific hypotheses. Three models are available:
These models can be informed by geological data (e.g., sedimentology, paleogeomorphology, etc.) to test the influence of environmental constraints on movement. For example, natural barriers or features inferred from geological evidence may restrict the range of simulated paths.
The plot_sim()
function overlays simulated tracks on the
actual trajectories, allowing users to visually assess how well
different models replicate observed track patterns. This visual
comparison is essential for evaluating the realism of simulated
tracks.
The QuAnTeTrack package offers several functions aimed at comparing similarity and intersection metrics between two or more actual tracks. These metrics are then evaluated against simulated datasets to determine the probability of observing such similarity or intersection counts under scenarios of independent (non-coordinated) movement.
Dynamic Time Warping
(simil_DTW_metric()
):
Compares trajectories based on the optimal alignment of points, allowing
for variable path lengths.
Fréchet Distance
(simil_Frechet_metric()
):
Measures similarity by comparing the overall shape of trajectories,
focusing on global rather than local alignment.
Track Intersections
(track_intersection()
):
Identifies and counts unique intersections between tracks, which can
indicate interaction or coordinated movement.
combined_prob()
)The combined_prob()
function integrates
p-values from multiple similarity metrics and intersection
tests to provide a more robust assessment of observed patterns. This
approach offers an overall measure of significance, enhancing the
reliability of the results by accounting for different aspects of
similarity and interaction.
cluster_track()
)The cluster_track()
function is an optional but powerful
step that can be applied before formal statistical
testing. It clusters tracks based on calculated movement
parameters, identifying groups of tracks with similar behaviors. The
clustering process:
QuAnTeTrack accepts raw data in the form of .TPS files containing footprint coordinates. Each track should be recorded as a different image within the .TPS file.
This vignette demonstrates how to load, process, and analyze
trackway data using the QuAnTeTrack package.
We will walk through the Paluxy River and the
Mount Tom datasets, representing dinosaur tracks from
the Paluxy River site (Farlow et al., 2012) and the Mount Tom
site (Ostrom, 1972), respectively. Examples of
.tps
files of these datasets can be downloaded here:
The tps_to_track()
function is an
essential component of the QuAnTeTrack package,
designed to transform raw .TPS
files
containing digitized trackway data into structured
track
R objects. This tool is particularly
useful for reconstructing trackways from footprints digitized using the
TPS software suite, such as tpsUtil
and tpsDig. The function reads the raw
.TPS
files, extracts the coordinate data,
and processes it to generate track
R
objects that are compatible with the analytical tools provided
by QuAnTeTrack.
The tps_to_track()
function reads
.TPS
files where each track is represented
by a series of (x, y) coordinates stored as separate
images. These data points are then processed to generate
trajectory coordinates by calculating the
midpoints between consecutive footprints. These
trajectories serve as reconstructed pathways, allowing users to analyze
overall movement patterns. When missing footprints are encountered, the
function can interpolate their positions based on the locations of
adjacent footprints and the specified side (left or right) of the
initial footprint.
Several arguments are provided to customize data handling. The
file
argument specifies the path to the
.TPS
file, while the scale
argument allows users to define a scale factor (in meters per
pixel) to convert coordinates to real-world measurements. To
account for missing footprints, the
missing
argument specifies whether
interpolation is required, while the NAs
argument provides a matrix detailing which footprints need
interpolation. Additionally, the R.L.side
argument identifies whether the first footprint of each track belongs to
the left or right side, which is essential when dealing
with incomplete trackways.
The function generates a track
R object
consisting of two main components:
Trajectories
and
Footprints
. The
Trajectories
element contains a list of
interpolated trajectories, where each trajectory represents a series of
midpoints calculated between consecutive footprints. The
Footprints
element comprises a list of
data frames with the original footprint coordinates, associated metadata
(such as image reference and ID), and an indicator specifying whether
each footprint is actual or inferred.
The resulting track
R object provides a
comprehensive framework for organizing digitized trackway data, making
it compatible with the various analytical functions within the
QuAnTeTrack package. This structured data format
enables users to perform advanced analyses such as calculating movement
parameters, testing hypotheses about trackmaker behavior, and comparing
tracks using similarity metrics. By transforming raw data into
structured objects, the tps_to_track()
function serves as a foundational step in the broader analytical
pipeline provided by QuAnTeTrack.
Here, the TPS files (PaluxyRiver.tps and
MountTom.tps) are loaded using the
system.file()
function to ensure compatibility across
systems. This approach is necessary because these files are stored as
internal data within the package (specifically, in the
inst/extdata/
folder). Using system.file()
ensures that the files can be accessed regardless of the user’s
operating system or working directory, making the vignette fully
portable and reproducible. They are then converted to track
R objects using the tps_to_track()
function. The
scale
argument is used to set the coordinate scaling
factor. For the PaluxyRiver dataset, no footprints are
missing, so the missing
argument is set to
FALSE
and NAs = NULL
. For the
MountTom dataset, some footprints are missing, so the
missing
argument is set to TRUE
, and the
missing footprints are specified using the NAs
matrix.
Additionally, the R.L.side
argument is provided to specify
the side of the first footprint of each track (either “R” for right or
“L” for left).
For users working with their own data, replace
system.file("extdata", "PaluxyRiver.tps", package = "QuAnTeTrack")
and
system.file("extdata", "MountTom.tps", package = "QuAnTeTrack")
with the file paths to your .TPS files (e.g.,
"C:/path/to/your/PaluxyRiver.tps"
and
"C:/path/to/your/MountTom.tps"
).
PaluxyRiver <- tps_to_track(
system.file("extdata", "PaluxyRiver.tps", package = "QuAnTeTrack"),
scale = 0.004341493,
missing = FALSE,
NAs = NULL
)
MountTom <- tps_to_track(
system.file("extdata", "MountTom.tps", package = "QuAnTeTrack"),
scale = 0.004411765,
missing = TRUE,
NAs = matrix(c(7, 3), nrow = 1, ncol = 2),
R.L.side = c(
"R", "L", "L", "L", "R", "L", "R", "R", "L", "L", "L", "L", "L",
"R", "R", "L", "R", "R", "L", "R", "R", "R", "R"
)
)
The subset_track()
function is designed
to extract specific tracks from a larger dataset of tracks, making it
easier to focus on particular trajectories or
footprints for further analysis or visualization. This function
is particularly useful when working with extensive
datasets where only a subset of tracks is relevant to the
research question.
The function operates by taking a track
R
object, which contains two elements:
Trajectories
and
Footprints
. Each of these elements is a
list, where each list entry corresponds to a separate
track. By specifying the desired indices through the
tracks
argument, users can isolate
particular tracks of interest.
If the tracks
argument is left
unspecified (NULL
), the function defaults
to returning all tracks in the dataset. Otherwise, it
subsets the dataset based on the indices provided. If
any indices are outside the range of available tracks,
they are ignored with a warning message to notify the
user. This functionality ensures robustness when working with datasets
of varying sizes.
The function returns a modified track
R
object with the same structure as the original, but only
containing the specified tracks. This approach maintains compatibility
with other functions that expect a track
R
object, allowing for seamless integration into broader
analytical workflows.
To prepare a subset of tracks with more than three
footprints from the MountTom dataset for later
analyses, you can use the subset_track()
function. This is especially useful for focusing on a selection of
tracks of interest before applying similarity metrics, simulations, or
statistical tests.
sbMountTom <- subset_track(MountTom, tracks = c(1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 18))
print(sbMountTom)
#> $Trajectories
#> $Trajectories$Track_01
#> x y IMAGE ID time displacementTime polar
#> 1 40.67868 15.50294 Track 1.png 0 0.00 0.00 40.67868+15.50294i
#> 2 39.91544 16.25515 Track 1.png 0 0.02 0.02 39.91544+16.25515i
#> 3 39.21177 16.96103 Track 1.png 0 0.04 0.04 39.21177+16.96103i
#> 4 38.45074 17.61838 Track 1.png 0 0.06 0.06 38.45074+17.61838i
#> 5 37.75809 18.33088 Track 1.png 0 0.08 0.08 37.75809+18.33088i
#> 6 37.14927 19.09632 Track 1.png 0 0.10 0.10 37.14927+19.09632i
#> 7 36.43677 19.69853 Track 1.png 0 0.12 0.12 36.43677+19.69853i
#> 8 35.74633 20.21030 Track 1.png 0 0.14 0.14 35.74633+20.21030i
#> 9 35.03383 20.87427 Track 1.png 0 0.16 0.16 35.03383+20.87427i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.7632353+0.7522059i
#> 3 -0.7036765+0.7058824i
#> 4 -0.7610295+0.6573530i
#> 5 -0.6926471+0.7125000i
#> 6 -0.6088236+0.7654412i
#> 7 -0.7125000+0.6022059i
#> 8 -0.6904412+0.5117647i
#> 9 -0.7125000+0.6639706i
#>
#> $Trajectories$Track_02
#> x y IMAGE ID time displacementTime polar
#> 1 39.18971 14.90735 Track 2.png 1 0.00 0.00 39.18971+14.90735i
#> 2 38.56544 15.57794 Track 2.png 1 0.02 0.02 38.56544+15.57794i
#> 3 37.86177 16.29044 Track 2.png 1 0.04 0.04 37.86177+16.29044i
#> 4 37.12280 17.04485 Track 2.png 1 0.06 0.06 37.12280+17.04485i
#> 5 36.46544 17.90074 Track 2.png 1 0.08 0.08 36.46544+17.90074i
#> 6 35.83015 18.93750 Track 2.png 1 0.10 0.10 35.83015+18.93750i
#> 7 35.24118 19.83750 Track 2.png 1 0.12 0.12 35.24118+19.83750i
#> 8 34.58383 20.58530 Track 2.png 1 0.14 0.14 34.58383+20.58530i
#> 9 33.95515 21.46324 Track 2.png 1 0.16 0.16 33.95515+21.46324i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.6242647+0.6705883i
#> 3 -0.7036765+0.7125000i
#> 4 -0.7389706+0.7544118i
#> 5 -0.6573530+0.8558824i
#> 6 -0.6352942+1.0367648i
#> 7 -0.5889706+0.9000001i
#> 8 -0.6573530+0.7477942i
#> 9 -0.6286765+0.8779412i
#>
#> $Trajectories$Track_03
#> x y IMAGE ID time displacementTime polar
#> 1 38.10441 15.55147 Track 3.png 2 0.00 0.00 38.10441+15.55147i
#> 2 37.27500 16.41618 Track 3.png 2 0.02 0.02 37.27500+16.41618i
#> 3 36.36177 17.36912 Track 3.png 2 0.04 0.04 36.36177+17.36912i
#> 4 35.45515 18.44118 Track 3.png 2 0.06 0.06 35.45515+18.44118i
#> 5 34.68088 19.29927 Track 3.png 2 0.08 0.08 34.68088+19.29927i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.8294118+0.8647059i
#> 3 -0.9132354+0.9529412i
#> 4 -0.9066177+1.0720589i
#> 5 -0.7742648+0.8580883i
#>
#> $Trajectories$Track_04
#> x y IMAGE ID time displacementTime polar
#> 1 35.58088 16.01250 Track 4.png 3 0.00 0.00 35.58088+16.01250i
#> 2 34.86177 17.00294 Track 4.png 3 0.02 0.02 34.86177+17.00294i
#> 3 34.27280 17.97794 Track 4.png 3 0.04 0.04 34.27280+17.97794i
#> 4 33.67059 18.83382 Track 4.png 3 0.06 0.06 33.67059+18.83382i
#> 5 32.91838 19.63677 Track 4.png 3 0.08 0.08 32.91838+19.63677i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.7191177+0.9904412i
#> 3 -0.5889706+0.9750001i
#> 4 -0.6022059+0.8558824i
#> 5 -0.7522059+0.8029412i
#>
#> $Trajectories$Track_07
#> x y IMAGE ID time displacementTime polar
#> 1 31.20221 14.97574 Track 7.png 6 0.00 0.00 31.20221+14.97574i
#> 2 30.99062 15.79181 Track 7.png 6 0.02 0.02 30.99062+15.79181i
#> 3 30.74798 16.46461 Track 7.png 6 0.04 0.04 30.74798+16.46461i
#> 4 30.24706 17.14191 Track 7.png 6 0.06 0.06 30.24706+17.14191i
#> 5 29.68015 17.99118 Track 7.png 6 0.08 0.08 29.68015+17.99118i
#> 6 29.05809 18.81397 Track 7.png 6 0.10 0.10 29.05809+18.81397i
#> 7 28.50441 19.56177 Track 7.png 6 0.12 0.12 28.50441+19.56177i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.2115858+0.8160783i
#> 3 -0.2426471+0.6727942i
#> 4 -0.5009143+0.6773041i
#> 5 -0.5669118+0.8492648i
#> 6 -0.6220589+0.8227942i
#> 7 -0.5536765+0.7477942i
#>
#> $Trajectories$Track_08
#> x y IMAGE ID time displacementTime polar
#> 1 28.89485 15.10809 Track 8.png 7 0.00 0.00 28.89485+15.10809i
#> 2 28.16030 16.11177 Track 8.png 7 0.02 0.02 28.16030+16.11177i
#> 3 27.52941 17.17500 Track 8.png 7 0.04 0.04 27.52941+17.17500i
#> 4 27.00441 18.19853 Track 8.png 7 0.06 0.06 27.00441+18.19853i
#> 5 26.43750 19.10515 Track 8.png 7 0.08 0.08 26.43750+19.10515i
#> 6 25.73162 20.15515 Track 8.png 7 0.10 0.10 25.73162+20.15515i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.7345589+1.0036765i
#> 3 -0.6308824+1.0632354i
#> 4 -0.5250000+1.0235295i
#> 5 -0.5669118+0.9066177i
#> 6 -0.7058824+1.0500001i
#>
#> $Trajectories$Track_09
#> x y IMAGE ID time displacementTime polar
#> 1 29.19706 17.09118 Track 9.png 8 0.00 0.00 29.19706+17.09118i
#> 2 30.53824 16.41397 Track 9.png 8 0.02 0.02 30.53824+16.41397i
#> 3 31.87941 15.90221 Track 9.png 8 0.04 0.04 31.87941+15.90221i
#> 4 33.15883 15.41691 Track 9.png 8 0.06 0.06 33.15883+15.41691i
#> 5 34.25074 15.04412 Track 9.png 8 0.08 0.08 34.25074+15.04412i
#> displacement
#> 1 0.000000+0.000000i
#> 2 1.341177-0.677206i
#> 3 1.341177-0.511765i
#> 4 1.279412-0.485294i
#> 5 1.091912-0.372794i
#>
#> $Trajectories$Track_13
#> x y IMAGE ID time displacementTime polar
#> 1 14.57868 9.652942 Track 13.png 12 0.00 0.00 14.57868+9.65294i
#> 2 14.23456 9.302207 Track 13.png 12 0.02 0.02 14.23456+9.30221i
#> 3 13.88824 9.011030 Track 13.png 12 0.04 0.04 13.88824+9.01103i
#> 4 13.63015 8.682354 Track 13.png 12 0.06 0.06 13.63015+8.68235i
#> 5 13.42280 8.261030 Track 13.png 12 0.08 0.08 13.42280+8.26103i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.3441177-0.3507353i
#> 3 -0.3463236-0.2911765i
#> 4 -0.2580883-0.3286765i
#> 5 -0.2073530-0.4213236i
#>
#> $Trajectories$Track_15
#> x y IMAGE ID time displacementTime polar
#> 1 17.24780 9.004412 Track 15.png 14 0.00 0.00 17.24780+ 9.00441i
#> 2 16.81324 9.968383 Track 15.png 14 0.02 0.02 16.81324+ 9.96838i
#> 3 16.37868 11.082354 Track 15.png 14 0.04 0.04 16.37868+11.08235i
#> 4 15.82059 12.092648 Track 15.png 14 0.06 0.06 15.82059+12.09265i
#> 5 15.22941 13.089707 Track 15.png 14 0.08 0.08 15.22941+13.08971i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.4345589+0.9639707i
#> 3 -0.4345589+1.1139707i
#> 4 -0.5580883+1.0102942i
#> 5 -0.5911765+0.9970589i
#>
#> $Trajectories$Track_16
#> x y IMAGE ID time displacementTime polar
#> 1 16.21103 7.497795 Track 16.png 15 0.00 0.00 16.21103+ 7.49779i
#> 2 15.80515 8.309559 Track 16.png 15 0.02 0.02 15.80515+ 8.30956i
#> 3 15.29559 9.121324 Track 16.png 15 0.04 0.04 15.29559+ 9.12132i
#> 4 14.77059 10.027942 Track 16.png 15 0.06 0.06 14.77059+10.02794i
#> 5 14.19485 10.963236 Track 16.png 15 0.08 0.08 14.19485+10.96324i
#> 6 13.53971 11.757354 Track 16.png 15 0.10 0.10 13.53971+11.75735i
#> 7 12.86471 12.573530 Track 16.png 15 0.12 0.12 12.86471+12.57353i
#> 8 12.14118 13.277207 Track 16.png 15 0.14 0.14 12.14118+13.27721i
#> displacement
#> 1 0.0000000+0.0000000i
#> 2 -0.4058824+0.8117648i
#> 3 -0.5095589+0.8117648i
#> 4 -0.5250000+0.9066177i
#> 5 -0.5757353+0.9352942i
#> 6 -0.6551471+0.7941177i
#> 7 -0.6750000+0.8161765i
#> 8 -0.7235295+0.7036765i
#>
#> $Trajectories$Track_18
#> x y IMAGE ID time displacementTime polar
#> 1 13.24191 8.069118 Track 18.png 17 0.00 0.00 13.24191+ 8.06912i
#> 2 12.85809 9.266912 Track 18.png 17 0.02 0.02 12.85809+ 9.26691i
#> 3 12.45221 10.378677 Track 18.png 17 0.04 0.04 12.45221+10.37868i
#> 4 11.94265 11.536765 Track 18.png 17 0.06 0.06 11.94265+11.53677i
#> 5 11.56324 12.531618 Track 18.png 17 0.08 0.08 11.56324+12.53162i
#> displacement
#> 1 0.0000000+0.000000i
#> 2 -0.3838236+1.197794i
#> 3 -0.4058824+1.111765i
#> 4 -0.5095589+1.158088i
#> 5 -0.3794118+0.994853i
#>
#>
#> $Footprints
#> $Footprints[[1]]
#> X Y IMAGE ID Side missing
#> 1 41.15294 15.18088 Track 1.png 0 R Actual
#> 2 40.20441 15.82500 Track 1.png 0 L Actual
#> 3 39.62647 16.68530 Track 1.png 0 R Actual
#> 4 38.79706 17.23677 Track 1.png 0 L Actual
#> 5 38.10441 18.00000 Track 1.png 0 R Actual
#> 6 37.41177 18.66177 Track 1.png 0 L Actual
#> 7 36.88677 19.53088 Track 1.png 0 R Actual
#> 8 35.98677 19.86618 Track 1.png 0 L Actual
#> 9 35.50588 20.55441 Track 1.png 0 R Actual
#> 10 34.56177 21.19412 Track 1.png 0 L Actual
#>
#> $Footprints[[2]]
#> X Y IMAGE ID Side missing
#> 1 39.51618 14.55441 Track 2.png 1 L Actual
#> 2 38.86324 15.26030 Track 2.png 1 R Actual
#> 3 38.26765 15.89559 Track 2.png 1 L Actual
#> 4 37.45588 16.68530 Track 2.png 1 R Actual
#> 5 36.78971 17.40441 Track 2.png 1 L Actual
#> 6 36.14118 18.39706 Track 2.png 1 R Actual
#> 7 35.51912 19.47794 Track 2.png 1 L Actual
#> 8 34.96324 20.19706 Track 2.png 1 R Actual
#> 9 34.20441 20.97353 Track 2.png 1 L Actual
#> 10 33.70588 21.95294 Track 2.png 1 R Actual
#>
#> $Footprints[[3]]
#> X Y IMAGE ID Side missing
#> 1 38.51912 15.05294 Track 3.png 2 L Actual
#> 2 37.68971 16.05000 Track 3.png 2 R Actual
#> 3 36.86030 16.78235 Track 3.png 2 L Actual
#> 4 35.86324 17.95588 Track 3.png 2 R Actual
#> 5 35.04706 18.92647 Track 3.png 2 L Actual
#> 6 34.31471 19.67206 Track 3.png 2 R Actual
#>
#> $Footprints[[4]]
#> X Y IMAGE ID Side missing
#> 1 35.94706 15.52059 Track 4.png 3 L Actual
#> 2 35.21471 16.50441 Track 4.png 3 R Actual
#> 3 34.50883 17.50147 Track 4.png 3 L Actual
#> 4 34.03677 18.45441 Track 4.png 3 R Actual
#> 5 33.30441 19.21324 Track 4.png 3 L Actual
#> 6 32.53236 20.06030 Track 4.png 3 R Actual
#>
#> $Footprints[[5]]
#> X Y IMAGE ID Side missing
#> 1 31.38088 14.52794 Track 7.png 6 R Actual
#> 2 31.02353 15.42353 Track 7.png 6 L Actual
#> 3 30.95771 16.16010 Track 7.png 6 R Inferred
#> 4 30.53824 16.76912 Track 7.png 6 L Actual
#> 5 29.95588 17.51471 Track 7.png 6 R Actual
#> 6 29.40441 18.46765 Track 7.png 6 L Actual
#> 7 28.71177 19.16030 Track 7.png 6 R Actual
#> 8 28.29706 19.96324 Track 7.png 6 L Actual
#>
#> $Footprints[[6]]
#> X Y IMAGE ID Side missing
#> 1 29.35147 14.66471 Track 8.png 7 R Actual
#> 2 28.43824 15.55147 Track 8.png 7 L Actual
#> 3 27.88235 16.67206 Track 8.png 7 R Actual
#> 4 27.17647 17.67794 Track 8.png 7 L Actual
#> 5 26.83235 18.71912 Track 8.png 7 R Actual
#> 6 26.04265 19.49118 Track 8.png 7 L Actual
#> 7 25.42059 20.81912 Track 8.png 7 R Actual
#>
#> $Footprints[[7]]
#> X Y IMAGE ID Side missing
#> 1 28.50441 17.52794 Track 9.png 8 L Actual
#> 2 29.88971 16.65441 Track 9.png 8 R Actual
#> 3 31.18677 16.17353 Track 9.png 8 L Actual
#> 4 32.57206 15.63088 Track 9.png 8 R Actual
#> 5 33.74559 15.20294 Track 9.png 8 L Actual
#> 6 34.75588 14.88530 Track 9.png 8 R Actual
#>
#> $Footprints[[8]]
#> X Y IMAGE ID Side missing
#> 1 14.73088 9.798530 Track 13.png 12 L Actual
#> 2 14.42647 9.507354 Track 13.png 12 R Actual
#> 3 14.04265 9.097059 Track 13.png 12 L Actual
#> 4 13.73382 8.925001 Track 13.png 12 R Actual
#> 5 13.52647 8.439706 Track 13.png 12 L Actual
#> 6 13.31912 8.082353 Track 13.png 12 R Actual
#>
#> $Footprints[[9]]
#> X Y IMAGE ID Side missing
#> 1 17.47941 8.602942 Track 15.png 14 R Actual
#> 2 17.01618 9.405883 Track 15.png 14 L Actual
#> 3 16.61030 10.530883 Track 15.png 14 R Actual
#> 4 16.14706 11.633824 Track 15.png 14 L Actual
#> 5 15.49412 12.551471 Track 15.png 14 R Actual
#> 6 14.96471 13.627942 Track 15.png 14 L Actual
#>
#> $Footprints[[10]]
#> X Y IMAGE ID Side missing
#> 1 16.37206 7.072059 Track 16.png 15 L Actual
#> 2 16.05000 7.923530 Track 16.png 15 R Actual
#> 3 15.56030 8.695589 Track 16.png 15 L Actual
#> 4 15.03088 9.547059 Track 16.png 15 R Actual
#> 5 14.51030 10.508824 Track 16.png 15 L Actual
#> 6 13.87941 11.417648 Track 16.png 15 R Actual
#> 7 13.20000 12.097060 Track 16.png 15 L Actual
#> 8 12.52941 13.050001 Track 16.png 15 R Actual
#> 9 11.75294 13.504413 Track 16.png 15 L Actual
#>
#> $Footprints[[11]]
#> X Y IMAGE ID Side missing
#> 1 13.53971 7.442648 Track 18.png 17 R Actual
#> 2 12.94412 8.695589 Track 18.png 17 L Actual
#> 3 12.77206 9.838236 Track 18.png 17 R Actual
#> 4 12.13235 10.919118 Track 18.png 17 L Actual
#> 5 11.75294 12.154413 Track 18.png 17 R Actual
#> 6 11.37353 12.908824 Track 18.png 17 L Actual
The plot_track()
function is a
versatile tool designed to visualize track and footprint
data from a track
R object in
various ways, providing a flexible approach to examining and presenting
trackway datasets. This function generates customizable plots using the
ggplot2
package, allowing users to inspect
individual tracks, footprints, or a combination of both. By adjusting
various plotting parameters, users can tailor their visualizations to
highlight specific aspects of the dataset, such as individual
track paths, footprint shapes, and
colors.
The plot_track()
function allows users
to choose between three plotting modes: plotting only the
footprints, only the interpolated
trackways, or a combination of both. This is
controlled by the plot
argument, which can
be set to "Footprints"
,
"Tracks"
, or
"FootprintsTracks"
(default). The
footprints and tracks are plotted using different layers, with
footprints represented by points and tracks represented
by lines.
Additional customization options include changing
colors, sizes,
shapes, and transparency of the
plotted elements. Users can provide a vector of colors via the
colours
argument, which allows different
tracks to be plotted in different colors. The
cex.f
and
cex.t
arguments control the sizes of
footprint points and track lines, respectively. The
shape.f
argument allows users to specify
the shapes of footprint points, while the
alpha.f
,
alpha.t
, and
alpha.l
arguments control the transparency
of footprints, track lines, and labels, respectively.
The plot_track()
function also supports
the addition of labels to individual tracks. If the
plot.labels
argument is set to
TRUE
, labels are displayed at the start of
each track, with the label text determined by the
labels
argument. If labels are not
provided, the function automatically generates labels based on track
names in the original TPS file. Users can adjust the label size using
the cex.l
argument and control the padding
around the labels with the box.p
argument.
The plot_track()
function returns a
ggplot
object, which can be further
customized using additional ggplot2
functions. This allows users to enhance their plots with additional
layers, themes, and annotations as needed.
The function is especially useful for comparing multiple trackways at once, providing a comprehensive view of track distribution, direction, and spacing. It also allows users to produce clean visualizations suitable for presentation or publication.
By default, plot_track()
displays both
footprints and interpolated trajectories. This is useful for getting a
general overview of the track and its corresponding interpolated
pathways.
To visualize only the footprint data without the interpolated
trajectories, use the plot = "Footprints"
argument. This is
particularly useful when you want to inspect the original footprint
positions without the influence of interpolated tracks.
If you want to focus on the interpolated trackways without displaying
the footprints, use the plot = "Tracks"
argument. This
visualization helps analyze the continuity and pattern of movement.
The plot_track()
function allows
flexible customization to improve the clarity and presentation of
trackway data. Users can label tracks, change footprint shapes, adjust
colors, and control label size and transparency.
In this first example, tracks from the Mount Tom
dataset are labeled using paste()
to generate names like
"Track 1"
, "Track 2"
, etc. Labels are enlarged
with cex.l = 4
, given padding using
box.p = 0.3
, and made semi-transparent
with alpha.l = 0.7
.
labels <- paste("Track", seq_along(MountTom[[1]]))
plot_track(MountTom, plot.labels = TRUE, labels = labels, cex.l = 4, box.p = 0.3, alpha.l = 0.7)
In the second example, we plot only footprints from
the Paluxy River dataset, using
colours = c("red", "orange")
to
distinguish tracks and shape.f = c(15, 18)
to assign different shapes to footprints—useful for visually comparing
trackmakers.
The track_param()
function is designed
to compute and display various parameters related to the
movement patterns of tracks from a
track
R object. This function is essential
for extracting detailed information about the structure of
individual tracks and their spatial
relationships, providing key metrics that can be used for
further analysis, comparison, and visualization. The
track_param()
function utilizes several
helper functions from the trajr
package,
which is commonly applied in animal movement
analysis.
The track_param()
function works by
iterating over each trajectory within the provided track data and
computing a set of movement-related parameters. These
include turning angles, step lengths,
total distances covered, track
lengths, and measures of sinuosity and
straightness. Such parameters are crucial for understanding the
locomotor patterns of trackmakers and assessing their
movement efficiency.
The turning angles are calculated using the
trajr::TrajAngles()
function, providing a
measure of directional changes at each step. The
mean turning angle and standard
deviation are also calculated to summarize overall turning
behavior. The distance covered by the track is obtained
using the trajr::TrajDistance()
function,
which measures the total straight-line distance between
the start and end points of the track. The track length
is calculated using the
trajr::TrajLength()
function, which sums
the distances between all consecutive points in the track. The
step lengths, representing the distances between
consecutive points, are calculated with
trajr::TrajStepLengths()
. The function
also computes the mean and standard deviation of these step
lengths. The sinuosity of the track is
calculated using the
trajr::TrajSinuosity2()
function, which
quantifies how much a path deviates from a straight line. This measure
of sinuosity is based on the method described by Benhamou
(2004), which refines previous methods to provide more accurate
estimates of tortuosity for paths with varying turning angles and step
lengths. The straightness index is calculated with
trajr::TrajStraightness()
, defined as the
ratio between the beeline distance (start to end) and the total path
length. This measure is based on the work of Batschelet (1981)
and provides insight into how direct or meandering the movement of the
trackmaker was.
The calculation of sinuosity is based on the
formula:
\[
S = 2 \left[ p \left( \frac{1 + c}{1 - c} + b^2 \right) \right]^{-0.5}
\]
where:
The straightness index is calculated as the ratio \(D/L\), where \(D\) is the beeline distance between the first and last points of the trajectory, and \(L\) is the total path length. This index is particularly useful for comparing the efficiency of directed walks, but it is not suitable for random trajectories, where the index tends towards zero with increasing steps.
The track_param()
function returns a
list of lists, where each sublist contains the
computed parameters for a corresponding track. The
parameters include: turning angles, mean
turning angle, standard deviation of turning
angles, distance, length,
step lengths, mean step length,
standard deviation of step length,
sinuosity and straightness.
The reference direction for calculating angles is considered to be along the positive x-axis, with angles measured counterclockwise. The computed parameters are returned in a structured format, allowing users to further process or visualize the data as needed.
The track_param()
function provides
valuable insights into the structure and efficiency of
trackmaker movements, making it a crucial tool for analyzing
fossil trackways.
The track_param()
function extracts
movement parameters such as turning angles, step lengths, distances,
track lengths, sinuosity, and straightness from
track
R objects. The examples below
calculate these parameters for the Paluxy River and
Mount Tom datasets.
The velocity_track()
function
calculates the velocities and relative stride
lengths for each step within a series of tracks. It requires a
track
R object as input, which contains
both trajectories and footprints, and uses the
height at the hip, H
, for each track maker
to estimate speed. The H
argument should be supplied as a
numeric value representing the hip height in meters. If the hip height
is unknown, it must be estimated from skeletal proportions or other
anatomical information. The accuracy of velocity calculations depends
heavily on providing a realistic value for this parameter. The function
supports two calculation methods: Method A
(Alexander, 1976) and Method B (Ruiz &
Torices, 2013), which are specified via the method
argument. By default, Method A is applied to all tracks
if no method is specified. The gravitational
acceleration, G
, is set to 9.8
m/s2 by default.
This function works by first extracting the track data and then calculating the Euclidean distance between consecutive footprints to determine the stride length. For each step, the velocity is calculated using one of the two methods.
Method A applies the formula (Alexander, 1976):
\[ v = 0.25 \cdot \sqrt{G} \cdot S^{1.67} \cdot H^{-1.17} \]
where \(v\) is the velocity (m/s), \(G\) is gravitational acceleration (m/s2), \(S\) is stride length (m), and \(H\) is the hip height (m). This method is based on empirical studies that model the relationship between stride length, body size, and speed for general terrestrial vertebrates. The coefficients \(0.25\), \(1.67\), and \(-1.17\) have been derived from studies focused on scaling relationships in bipedal and quadrupedal animals.
Method B follows a similar approach but with a coefficient of \(0.226\) instead of \(0.25\), which provides a refinement for bipedal locomotion. The formula is (Ruiz & Torices, 2013):
\[ v = 0.226 \cdot \sqrt{G} \cdot S^{1.67} \cdot H^{-1.17} \]
The relative stride length is calculated as the ratio between stride length and hip height (\(S / H\)), which allows distinguishing between different gaits according to Thulborn & Wade (1984). The classification is as follows:
The function returns a track
velocity object
, which is structured as a
list of lists, with each list representing an
individual track. For each track, the output includes various metrics
that describe the calculated velocities and relative stride lengths.
Specifically, it provides a vector of calculated velocities for each
step, referred to as Step_velocities
,
measured in meters per second (m/s). Additionally, the
function calculates the Mean_velocity
,
which represents the average speed across all steps, as well as the
Standard_deviation_velocity
, which
quantifies the variation in velocity measurements. The
Maximum_velocity
and
Minimum_velocity
indicate the highest and
lowest calculated velocities, respectively. In terms of relative stride
lengths, the function also provides a vector of calculated values known
as Step_relative_stride
. The average of
these values is captured by the
Mean_relative_stride
, while their
variation is described by the
Standard_deviation_relative_stride
.
Moreover, the highest and lowest calculated relative stride lengths are
denoted as Maximum_relative_stride
and
Minimum_relative_stride
, respectively.
This comprehensive output allows users to thoroughly assess the speed
and locomotion style of the track-makers under study.
The function is particularly useful for estimating the speed of ancient track-makers from their footprints and evaluating their locomotion style (walking, trotting, or running).
Calculating velocities for the Paluxy River dataset
using Method A for both tracks. The hip heights
(H_paluxyriver
) are provided for each trackmaker.
H_paluxyriver <- c(3.472, 2.200)
velocity_paluxyriver <- velocity_track(PaluxyRiver, H = H_paluxyriver)
Calculating velocities for the Mount Tom dataset
using Method A for all tracks. Multiple hip heights
(H_mounttom
) are specified, corresponding to each track in
the dataset.
H_mounttom <- c(
1.380, 1.404, 1.320, 1.736, 1.364, 1.432, 1.508, 1.768, 1.600,
1.848, 1.532, 1.532, 0.760, 1.532, 1.688, 1.620, 0.636, 1.784, 1.676, 1.872,
1.648, 1.760, 1.612
)
velocity_mounttom <- velocity_track(MountTom, H = H_mounttom)
Comparing velocities for the Paluxy River dataset using different methods: Method A for the sauropod trackway and Method B for the theropod trackway. This demonstrates how to apply distinct calculation methods to different trackmakers within the same dataset.
The plot_velocity()
function provides a
powerful visualization tool for examining trajectories colored by either
velocity or relative stride length. By
applying color gradients, it highlights how these parameters change
along the paths of various tracks, providing valuable insights into
locomotor dynamics.
The function takes as inputs a track
R
object and a track velocity
R
object, where the latter contains the calculated velocities and
relative stride lengths for each track. The user can specify the
parameter to be visualized via the param
argument, choosing between "V"
for
velocity or "RSL"
for relative stride
length. If not specified, the function defaults to visualizing
velocity.
The plotting process is handled by the
ggplot2
package, using
ggplot2::geom_path()
to plot the tracks
and ggplot2::scale_color_gradientn()
to
apply a color gradient representing the selected parameter. Users can
customize the color palette via the
colours
argument and adjust the line width
with the lwd
argument.
The function also allows the user to include or exclude a legend from
the plot by setting the legend
argument to
TRUE
or
FALSE
, respectively. This flexibility
ensures that the plots can be tailored to the user’s preferences and
presentation requirements.
The resulting plot provides a visually appealing and informative representation of how velocity or relative stride length changes along each trajectory. Such plots are particularly useful for comparing the locomotor patterns of different track makers or assessing how environmental or anatomical factors influence movement.
Plotting trajectories colored by relative stride length
(RSL) for the PaluxyRiver dataset using the
previously calculated velocity_paluxyriver_diff
object.
Plotting trajectories colored by velocity for the
MountTom dataset using the previously calculated
velocity_mounttom
object.
Generating a clean visualization of relative stride length (RSL) for the PaluxyRiver dataset without displaying a legend.
plot_velocity(PaluxyRiver, velocity_paluxyriver_diff, param = "RSL", lwd = 1.5,
colours = c("purple", "orange", "pink", "gray"), legend = FALSE)
Applying custom colors and increased line width to enhance visualization of velocity patterns for the MountTom dataset.
plot_velocity(MountTom, velocity_mounttom, param = "V", lwd = 2,
colours = c("blue", "green", "yellow", "red"))
The plot_direction()
function provides
a comprehensive approach to visualizing direction data
from track
R objects. It allows users to
generate various types of plots to effectively compare and examine
directionality within their datasets. The available plotting styles are
highly customizable, making this function versatile for different types
of directional analysis.
This function supports four primary plotting styles,
specified by the plot_type
argument. The
"boxplot"
option displays the distribution
of step directions across tracks as boxplots, providing an overview of
directionality variations by showing medians, quartiles, and potential
outliers. The "polar_steps"
option
generates polar histograms that visualize the frequency
of steps within various directional bins, making it particularly useful
for examining the spread and density of step directions around a central
point and highlighting dominant movement trends. The
"polar_average"
style also produces
polar histograms, but it focuses on average directions
per track rather than individual steps. This summarization approach
offers a simplified comparison of overall trends across multiple tracks.
Finally, the "faceted"
option creates
faceted polar histograms where each track is displayed
separately within a grid of plots, providing a clear visual comparison
of step directions across tracks and making it especially effective for
analyzing individual trackmaker behaviors.
The plot_direction()
function allows
users to customize visualizations through several
arguments. The angle_range
argument
controls the width of the bins used in polar
histograms, allowing users to specify the desired
angular resolution. The
y_labels_position
argument is useful for
positioning the labels of the y-axis, especially in
polar plots, to enhance clarity and presentation. Users can also provide
custom breaks for the y-axis using the
y_breaks_manual
argument, which defines
where the labels should be placed for better visualization of frequency
data. This flexibility ensures that the user can tailor the
output to suit specific analytical needs, whether examining
general trends, comparing individual
tracks, or highlighting particular aspects of
directional data.
By generating high-quality visualizations as
ggplot
R objects, the
plot_direction()
function allows for
further customization using additional functions from the
ggplot2
package. This integration makes it
easy to enhance plots with annotations, themes, and other graphical
elements.
The function is particularly useful for analyzing trackway direction data, providing valuable insights into movement patterns, orientation preferences, and potential group behavior.
The boxplot
option generates a summary
of directional data distribution, highlighting central tendency,
variability, and potential outliers across tracks.
The polar_steps
option creates a polar
histogram of individual steps radiating from a central point, revealing
the angular spread of movement and dominant directions.
The polar_average
option generates a
simplified polar plot by averaging step directions for each track,
providing a general overview of dominant movement trends.
The faceted
option displays individual
step directions separately for each track using faceted panels, allowing
detailed comparison of movement patterns across multiple tracks.
Customization options include setting custom breaks on the radial
axis with y_breaks_manual
and adjusting
the position of y-axis labels with
y_labels_position
for better
presentation.
The test_velocity()
function evaluates
differences in velocities across different tracks
within a track
R object. It provides three
statistical methods, which can be selected using the
analysis
argument:: ANOVA,
Kruskal-Wallis test, and Generalized Linear
Models (GLM), allowing users to compare velocity data and
identify significant differences between tracks. The function also
includes diagnostic tests to check assumptions of
normality and homogeneity of variances
before proceeding with the analysis. When more than two tracks are
present, it performs pairwise comparisons to identify
specific differences between tracks.
The test_velocity()
function requires
that each track contains more than three footprints to
be included in the analysis. This is necessary because statistical tests
for comparing mean velocities rely on having a sufficient number of data
points to provide meaningful results. When a track contains only three
or fewer footprints, the sample size is too small to accurately estimate
mean velocity and its variability, making statistical comparisons
unreliable. By setting this threshold, the function ensures that the
results are statistically robust and meaningful.
The function accepts a track velocity
R
object, which is an output of the
velocity_track()
function. This object
contains calculated velocities and other related
parameters for each track, including individual step
velocities, mean velocities, and
relative stride lengths. This information serves as the
input for the statistical comparisons performed by
test_velocity()
.
If "ANOVA"
is selected, the function
checks for normality (using the Shapiro-Wilk
test) and homogeneity of variances (using
Levene’s test). If assumptions are violated, it issues
warnings suggesting the use of
"Kruskal-Wallis"
or
"GLM"
instead.
"ANOVA"
compares mean velocities across
tracks, and if significant differences are detected, Tukey’s
HSD is used for post-hoc pairwise comparisons.
When "Kruskal-Wallis"
is chosen, the
function performs a non-parametric test that compares
median velocities across tracks. If significant
differences are detected, Dunn’s test is used for
post-hoc pairwise comparisons. If
"GLM"
is specified, the function uses a
Generalized Linear Model (GLM) with a Gaussian
family to compare mean velocities across
tracks. Pairwise comparisons are conducted using the
emmeans
package, which computes
differences between group means and adjusts for multiple comparisons
using Tukey’s method. This approach is useful when the
data does not meet the assumptions of ANOVA but still
requires a parametric approach.
If the argument plot = TRUE
is
specified, a boxplot of velocities by track is
generated for visual comparison of velocity
distributions across tracks. The boxplot allows the user to
visually assess differences in central tendency and
variability across tracks, complementing the
statistical analyses.
The function returns a list of results that includes:
normality_results
, a matrix containing the
test statistic and p-value for the Shapiro-Wilk
normality test for each track;
homogeneity_test
, the result of
Levene’s test, including the p-value for
testing homogeneity of variances across tracks;
ANOVA
, if selected, containing the
ANOVA table and Tukey HSD post-hoc
results; Kruskal_Wallis
, if selected,
containing the Kruskal-Wallis test result and
Dunn’s test post-hoc results;
GLM
, if selected, providing a summary of
the GLM fit and pairwise comparisons from the
emmeans
package; and finally, the
plot
if requested, displaying a
boxplot of velocities by track.
The ANOVA method is suitable for comparing mean velocities when data meet the assumptions of normality and homogeneity of variances.
#> Warning in test_velocity(PaluxyRiver, velocity_paluxyriver_diff, analysis =
#> "ANOVA"): One or more tracks do not follow a normal distribution (p-value <=
#> 0.05). Assumptions for ANOVA are not met. Consider using 'Kruskal-Wallis' or
#> 'GLM'.
#> Warning in test_velocity(PaluxyRiver, velocity_paluxyriver_diff, analysis =
#> "ANOVA"): Homogeneity of variances assumption is violated (Levene's test
#> p-value <= 0.05). Assumptions for ANOVA are not met. Consider using
#> 'Kruskal-Wallis' or 'GLM'.
#> $normality_results
#> Track 1 Track 2
#> statistic.W 0.9586486 0.91134871
#> p_value 0.3043396 0.03773134
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 1 18.698 7.121e-05 ***
#> 51
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $ANOVA
#> $ANOVA$ANOVA
#> Df Sum Sq Mean Sq F value Pr(>F)
#> track 1 0.6687 0.6687 111.9 1.82e-14 ***
#> Residuals 51 0.3046 0.0060
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $ANOVA$Tukey
#> Tukey multiple comparisons of means
#> 95% family-wise confidence level
#>
#> Fit: aov(formula = vel ~ track, data = M_analysis)
#>
#> $track
#> diff lwr upr p adj
#> Track 2-Track 1 0.2256526 0.1828352 0.26847 0
#> Warning in test_velocity(MountTom, velocity_mounttom, analysis = "ANOVA"): The
#> following tracks were removed from the analysis due to having 3 or fewer
#> footprints: Track 05, Track 06, Track 10, Track 11, Track 12, Track 14, Track
#> 17, Track 19, Track 20, Track 21, Track 22, Track 23.
#> $normality_results
#> Track 01 Track 02 Track 03 Track 04 Track 07 Track 08
#> statistic.W 0.9209702 0.9049639 0.8522781 0.9286605 0.9371515 0.81516913
#> p_value 0.4003329 0.2821994 0.2018271 0.5872649 0.6132123 0.08011557
#> Track 09 Track 13 Track 15 Track 16 Track 18
#> statistic.W 0.8697921 0.9420435 0.8148552 0.9692820 0.8301712
#> p_value 0.2655830 0.6804196 0.1064974 0.8923149 0.1395325
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 10 1.8073 0.07947 .
#> 58
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $ANOVA
#> $ANOVA$ANOVA
#> Df Sum Sq Mean Sq F value Pr(>F)
#> track 10 10.729 1.0729 19 7.35e-15 ***
#> Residuals 58 3.275 0.0565
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $ANOVA$Tukey
#> Tukey multiple comparisons of means
#> 95% family-wise confidence level
#>
#> Fit: aov(formula = vel ~ track, data = M_analysis)
#>
#> $track
#> diff lwr upr p adj
#> Track 02-Track 01 0.194005116 -0.1812699957 0.569280228 0.8128384
#> Track 03-Track 01 0.966158204 0.5221267034 1.410189704 0.0000001
#> Track 04-Track 01 -0.058483846 -0.5025153465 0.385547654 0.9999966
#> Track 07-Track 01 -0.337960523 -0.7391464928 0.063225447 0.1756512
#> Track 08-Track 01 0.105284346 -0.3142859841 0.524854676 0.9987899
#> Track 09-Track 01 0.663995566 0.2199640654 1.108027066 0.0002666
#> Track 13-Track 01 -0.703166313 -1.1471978130 -0.259134812 0.0000926
#> Track 15-Track 01 0.050096645 -0.3939348551 0.494128146 0.9999992
#> Track 16-Track 01 -0.189837124 -0.5766618555 0.196987607 0.8563548
#> Track 18-Track 01 -0.000824843 -0.4448563435 0.443206657 1.0000000
#> Track 03-Track 02 0.772153088 0.3281215872 1.216184588 0.0000136
#> Track 04-Track 02 -0.252488962 -0.6965204627 0.191542538 0.7114764
#> Track 07-Track 02 -0.531965639 -0.9331516090 -0.130779669 0.0018707
#> Track 08-Track 02 -0.088720770 -0.5082911003 0.330849560 0.9997273
#> Track 09-Track 02 0.469990450 0.0259589492 0.914021950 0.0294239
#> Track 13-Track 02 -0.897171429 -1.3412029292 -0.453139928 0.0000004
#> Track 15-Track 02 -0.143908471 -0.5879399713 0.300123030 0.9904498
#> Track 16-Track 02 -0.383842241 -0.7706669717 0.002982491 0.0534952
#> Track 18-Track 02 -0.194829959 -0.6388614597 0.249201541 0.9236910
#> Track 04-Track 03 -1.024642050 -1.5281264461 -0.521157654 0.0000003
#> Track 07-Track 03 -1.304118727 -1.7702547008 -0.837982753 0.0000000
#> Track 08-Track 03 -0.860873858 -1.3429234671 -0.378824249 0.0000076
#> Track 09-Track 03 -0.302162638 -0.8056470343 0.201321758 0.6425087
#> Track 13-Track 03 -1.669324516 -2.1728089127 -1.165840120 0.0000000
#> Track 15-Track 03 -0.916061559 -1.4195459547 -0.412577162 0.0000050
#> Track 16-Track 03 -1.155995328 -1.6098300300 -0.702160626 0.0000000
#> Track 18-Track 03 -0.966983047 -1.4704674431 -0.463498651 0.0000014
#> Track 07-Track 04 -0.279476677 -0.7456126509 0.186659297 0.6438142
#> Track 08-Track 04 0.163768192 -0.3182814172 0.645817801 0.9864022
#> Track 09-Track 04 0.722479412 0.2189950157 1.225963808 0.0005416
#> Track 13-Track 04 -0.644682467 -1.1481668627 -0.141198070 0.0030869
#> Track 15-Track 04 0.108580491 -0.3949039048 0.612064888 0.9996753
#> Track 16-Track 04 -0.131353278 -0.5851879800 0.322481423 0.9960595
#> Track 18-Track 04 0.057659003 -0.4458253932 0.561143399 0.9999991
#> Track 08-Track 07 0.443244869 0.0003475505 0.886142188 0.0496557
#> Track 09-Track 07 1.001956089 0.5358201149 1.468092063 0.0000001
#> Track 13-Track 07 -0.365205790 -0.8313417635 0.100930184 0.2604157
#> Track 15-Track 07 0.388057168 -0.0780788056 0.854193142 0.1882672
#> Track 16-Track 07 0.148123399 -0.2638864865 0.560133284 0.9794893
#> Track 18-Track 07 0.337135680 -0.1290002940 0.803271654 0.3706410
#> Track 09-Track 08 0.558711220 0.0766616105 1.040760829 0.0110562
#> Track 13-Track 08 -0.808450659 -1.2905002679 -0.326401049 0.0000294
#> Track 15-Track 08 -0.055187701 -0.5372373100 0.426861909 0.9999991
#> Track 16-Track 08 -0.295121470 -0.7250531220 0.134810181 0.4479344
#> Track 18-Track 08 -0.106109189 -0.5881587984 0.375940420 0.9996108
#> Track 13-Track 09 -1.367161878 -1.8706462746 -0.863677482 0.0000000
#> Track 15-Track 09 -0.613898920 -1.1173833167 -0.110414524 0.0059373
#> Track 16-Track 09 -0.853832690 -1.3076673919 -0.399997988 0.0000023
#> Track 18-Track 09 -0.664820409 -1.1683048051 -0.161336013 0.0019895
#> Track 15-Track 13 0.753262958 0.2497785617 1.256747354 0.0002643
#> Track 16-Track 13 0.513329188 0.0594944865 0.967163890 0.0146246
#> Track 18-Track 13 0.702341470 0.1988570733 1.205825866 0.0008589
#> Track 16-Track 15 -0.239933770 -0.6937684714 0.213900932 0.7915111
#> Track 18-Track 15 -0.050921488 -0.5544058846 0.452562908 0.9999997
#> Track 18-Track 16 0.189012281 -0.2648224205 0.642846983 0.9447031
The Kruskal-Wallis test is a non-parametric method that compares median velocities, useful when normality or homogeneity of variances cannot be assumed.
#> Warning in test_velocity(PaluxyRiver, velocity_paluxyriver_diff, analysis =
#> "Kruskal-Wallis"): One or more tracks do not follow a normal distribution
#> (p-value <= 0.05). Assumptions for ANOVA are not met. Consider using
#> 'Kruskal-Wallis' or 'GLM'.
#> Warning in test_velocity(PaluxyRiver, velocity_paluxyriver_diff, analysis =
#> "Kruskal-Wallis"): Homogeneity of variances assumption is violated (Levene's
#> test p-value <= 0.05). Assumptions for ANOVA are not met. Consider using
#> 'Kruskal-Wallis' or 'GLM'.
#> Kruskal-Wallis rank sum test
#>
#> data: x and group
#> Kruskal-Wallis chi-squared = 38.6698, df = 1, p-value = 0
#>
#>
#> Comparison of x by group
#> (No adjustment)
#> Col Mean-|
#> Row Mean | Track 1
#> ---------+-----------
#> Track 2 | -6.218503
#> | 0.0000*
#>
#> alpha = 0.05
#> Reject Ho if p <= alpha/2
#> $normality_results
#> Track 1 Track 2
#> statistic.W 0.9586486 0.91134871
#> p_value 0.3043396 0.03773134
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 1 18.698 7.121e-05 ***
#> 51
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $Kruskal_Wallis
#> $Kruskal_Wallis$Kruskal_Wallis
#>
#> Kruskal-Wallis rank sum test
#>
#> data: vel by track
#> Kruskal-Wallis chi-squared = 38.67, df = 1, p-value = 5.019e-10
#>
#>
#> $Kruskal_Wallis$Dunn
#> $Kruskal_Wallis$Dunn$chi2
#> [1] 38.66978
#>
#> $Kruskal_Wallis$Dunn$Z
#> [1] -6.218503
#>
#> $Kruskal_Wallis$Dunn$P
#> [1] 2.509595e-10
#>
#> $Kruskal_Wallis$Dunn$P.adjusted
#> [1] 2.509595e-10
#>
#> $Kruskal_Wallis$Dunn$comparisons
#> [1] "Track 1 - Track 2"
#> Warning in test_velocity(MountTom, velocity_mounttom, analysis =
#> "Kruskal-Wallis"): The following tracks were removed from the analysis due to
#> having 3 or fewer footprints: Track 05, Track 06, Track 10, Track 11, Track 12,
#> Track 14, Track 17, Track 19, Track 20, Track 21, Track 22, Track 23.
#> Kruskal-Wallis rank sum test
#>
#> data: x and group
#> Kruskal-Wallis chi-squared = 47.0791, df = 10, p-value = 0
#>
#>
#> Comparison of x by group
#> (No adjustment)
#> Col Mean-|
#> Row Mean | Track 01 Track 02 Track 03 Track 04 Track 07 Track 08
#> ---------+------------------------------------------------------------------
#> Track 02 | -1.421706
#> | 0.0776
#> |
#> Track 03 | -2.691099 -1.489538
#> | 0.0036* 0.0682
#> |
#> Track 04 | 0.490554 1.692115 2.805954
#> | 0.3119 0.0453 0.0025*
#> |
#> Track 07 | 2.038004 3.367888 4.317520 1.286742
#> | 0.0208* 0.0004* 0.0000* 0.0991
#> |
#> Track 08 | -0.704116 0.567496 1.866004 -1.064720 -2.513099
#> | 0.2407 0.2852 0.0310 0.1435 0.0060*
#> |
#> Track 09 | -2.101242 -0.899681 0.520205 -2.285749 -3.755634 -1.322667
#> | 0.0178* 0.1841 0.3015 0.0111* 0.0001* 0.0930
#> |
#> Track 13 | 2.778485 3.980046 4.823720 2.017765 0.892692 3.172207
#> | 0.0027* 0.0000* 0.0000* 0.0218* 0.1860 0.0008*
#> |
#> Track 15 | -0.349544 0.852015 2.065056 -0.740898 -2.087004 0.290877
#> | 0.3633 0.1971 0.0195* 0.2294 0.0184* 0.3856
#> |
#> Track 16 | 1.476147 2.855404 3.891159 0.778231 -0.598549 2.015289
#> | 0.0700 0.0021* 0.0000* 0.2182 0.2747 0.0219*
#> |
#> Track 18 | 0.061567 1.263128 2.427623 -0.378331 -1.695386 0.669566
#> | 0.4755 0.1033 0.0076* 0.3526 0.0450 0.2516
#> Col Mean-|
#> Row Mean | Track 09 Track 13 Track 15 Track 16
#> ---------+--------------------------------------------
#> Track 13 | 4.303515
#> | 0.0000*
#> |
#> Track 15 | 1.544851 -2.758663
#> | 0.0612 0.0029*
#> |
#> Track 16 | 3.314043 -1.460277 1.600184
#> | 0.0005* 0.0721 0.0548
#> |
#> Track 18 | 1.907418 -2.396096 0.362567 -1.197952
#> | 0.0282 0.0083* 0.3585 0.1155
#>
#> alpha = 0.05
#> Reject Ho if p <= alpha/2
#> $normality_results
#> Track 01 Track 02 Track 03 Track 04 Track 07 Track 08
#> statistic.W 0.9209702 0.9049639 0.8522781 0.9286605 0.9371515 0.81516913
#> p_value 0.4003329 0.2821994 0.2018271 0.5872649 0.6132123 0.08011557
#> Track 09 Track 13 Track 15 Track 16 Track 18
#> statistic.W 0.8697921 0.9420435 0.8148552 0.9692820 0.8301712
#> p_value 0.2655830 0.6804196 0.1064974 0.8923149 0.1395325
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 10 1.8073 0.07947 .
#> 58
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $Kruskal_Wallis
#> $Kruskal_Wallis$Kruskal_Wallis
#>
#> Kruskal-Wallis rank sum test
#>
#> data: vel by track
#> Kruskal-Wallis chi-squared = 47.079, df = 10, p-value = 9.135e-07
#>
#>
#> $Kruskal_Wallis$Dunn
#> $Kruskal_Wallis$Dunn$chi2
#> [1] 47.07915
#>
#> $Kruskal_Wallis$Dunn$Z
#> [1] -1.42170606 -2.69109927 -1.48953834 0.49055463 1.69211556 2.80595499
#> [7] 2.03800443 3.36788868 4.31752052 1.28674273 -0.70411605 0.56749651
#> [13] 1.86600430 -1.06472010 -2.51309940 -2.10124209 -0.89968116 0.52020514
#> [19] -2.28574985 -3.75563475 -1.32266775 2.77848552 3.98004645 4.82372037
#> [25] 2.01776539 0.89269297 3.17220731 4.30351524 -0.34954500 0.85201593
#> [31] 2.06505676 -0.74089823 -2.08700428 0.29087714 1.54485162 -2.75866361
#> [37] 1.47614746 2.85540494 3.89115946 0.77823189 -0.59854981 2.01528904
#> [43] 3.31404367 -1.46027782 1.60018468 0.06156758 1.26312851 2.42762398
#> [49] -0.37833101 -1.69538693 0.66956625 1.90741884 -2.39609639 0.36256722
#> [55] -1.19795246
#>
#> $Kruskal_Wallis$Dunn$P
#> [1] 7.755580e-02 3.560850e-03 6.817283e-02 3.118707e-01 4.531197e-02
#> [6] 2.508385e-03 2.077474e-02 3.787309e-04 7.889587e-06 9.909199e-02
#> [11] 2.406803e-01 2.851884e-01 3.102038e-02 1.435013e-01 5.983780e-03
#> [16] 1.780986e-02 1.841450e-01 3.014603e-01 1.113445e-02 8.645135e-05
#> [21] 9.297295e-02 2.730647e-03 3.445090e-05 7.045246e-07 2.180785e-02
#> [26] 1.860108e-01 7.564248e-04 8.405464e-06 3.633401e-01 1.971026e-01
#> [31] 1.945881e-02 2.293776e-01 1.844387e-02 3.855726e-01 6.119108e-02
#> [36] 2.901912e-03 6.995215e-02 2.149099e-03 4.988317e-05 2.182162e-01
#> [41] 2.747366e-01 2.193719e-02 4.597857e-04 7.210687e-02 5.477881e-02
#> [46] 4.754536e-01 1.032715e-01 7.599046e-03 3.525924e-01 4.500102e-02
#> [51] 2.515672e-01 2.823319e-02 8.285366e-03 3.584641e-01 1.154678e-01
#>
#> $Kruskal_Wallis$Dunn$P.adjusted
#> [1] 7.755580e-02 3.560850e-03 6.817283e-02 3.118707e-01 4.531197e-02
#> [6] 2.508385e-03 2.077474e-02 3.787309e-04 7.889587e-06 9.909199e-02
#> [11] 2.406803e-01 2.851884e-01 3.102038e-02 1.435013e-01 5.983780e-03
#> [16] 1.780986e-02 1.841450e-01 3.014603e-01 1.113445e-02 8.645135e-05
#> [21] 9.297295e-02 2.730647e-03 3.445090e-05 7.045246e-07 2.180785e-02
#> [26] 1.860108e-01 7.564248e-04 8.405464e-06 3.633401e-01 1.971026e-01
#> [31] 1.945881e-02 2.293776e-01 1.844387e-02 3.855726e-01 6.119108e-02
#> [36] 2.901912e-03 6.995215e-02 2.149099e-03 4.988317e-05 2.182162e-01
#> [41] 2.747366e-01 2.193719e-02 4.597857e-04 7.210687e-02 5.477881e-02
#> [46] 4.754536e-01 1.032715e-01 7.599046e-03 3.525924e-01 4.500102e-02
#> [51] 2.515672e-01 2.823319e-02 8.285366e-03 3.584641e-01 1.154678e-01
#>
#> $Kruskal_Wallis$Dunn$comparisons
#> [1] "Track 01 - Track 02" "Track 01 - Track 03" "Track 02 - Track 03"
#> [4] "Track 01 - Track 04" "Track 02 - Track 04" "Track 03 - Track 04"
#> [7] "Track 01 - Track 07" "Track 02 - Track 07" "Track 03 - Track 07"
#> [10] "Track 04 - Track 07" "Track 01 - Track 08" "Track 02 - Track 08"
#> [13] "Track 03 - Track 08" "Track 04 - Track 08" "Track 07 - Track 08"
#> [16] "Track 01 - Track 09" "Track 02 - Track 09" "Track 03 - Track 09"
#> [19] "Track 04 - Track 09" "Track 07 - Track 09" "Track 08 - Track 09"
#> [22] "Track 01 - Track 13" "Track 02 - Track 13" "Track 03 - Track 13"
#> [25] "Track 04 - Track 13" "Track 07 - Track 13" "Track 08 - Track 13"
#> [28] "Track 09 - Track 13" "Track 01 - Track 15" "Track 02 - Track 15"
#> [31] "Track 03 - Track 15" "Track 04 - Track 15" "Track 07 - Track 15"
#> [34] "Track 08 - Track 15" "Track 09 - Track 15" "Track 13 - Track 15"
#> [37] "Track 01 - Track 16" "Track 02 - Track 16" "Track 03 - Track 16"
#> [40] "Track 04 - Track 16" "Track 07 - Track 16" "Track 08 - Track 16"
#> [43] "Track 09 - Track 16" "Track 13 - Track 16" "Track 15 - Track 16"
#> [46] "Track 01 - Track 18" "Track 02 - Track 18" "Track 03 - Track 18"
#> [49] "Track 04 - Track 18" "Track 07 - Track 18" "Track 08 - Track 18"
#> [52] "Track 09 - Track 18" "Track 13 - Track 18" "Track 15 - Track 18"
#> [55] "Track 16 - Track 18"
The GLM approach offers a flexible alternative when
data do not meet the assumptions required for ANOVA. This method fits a
linear model with a Gaussian family and performs pairwise comparisons
using emmeans
.
#> Warning in test_velocity(PaluxyRiver, velocity_paluxyriver_diff, analysis =
#> "GLM"): One or more tracks do not follow a normal distribution (p-value <=
#> 0.05). Assumptions for ANOVA are not met. Consider using 'Kruskal-Wallis' or
#> 'GLM'.
#> Warning in test_velocity(PaluxyRiver, velocity_paluxyriver_diff, analysis =
#> "GLM"): Homogeneity of variances assumption is violated (Levene's test p-value
#> <= 0.05). Assumptions for ANOVA are not met. Consider using 'Kruskal-Wallis' or
#> 'GLM'.
#> $normality_results
#> Track 1 Track 2
#> statistic.W 0.9586486 0.91134871
#> p_value 0.3043396 0.03773134
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 1 18.698 7.121e-05 ***
#> 51
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $GLM
#> $GLM$GLM
#>
#> Call:
#> glm(formula = vel ~ track, family = gaussian(), data = M_analysis)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.23808 0.01435 16.59 < 2e-16 ***
#> trackTrack 2 0.22565 0.02133 10.58 1.82e-14 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 0.005973464)
#>
#> Null deviance: 0.97332 on 52 degrees of freedom
#> Residual deviance: 0.30465 on 51 degrees of freedom
#> AIC: -117.01
#>
#> Number of Fisher Scoring iterations: 2
#>
#>
#> $GLM$pairwise_results
#> $emmeans
#> track emmean SE df lower.CL upper.CL
#> Track 1 0.238 0.0144 51 0.209 0.267
#> Track 2 0.464 0.0158 51 0.432 0.495
#>
#> Confidence level used: 0.95
#>
#> $contrasts
#> contrast estimate SE df t.ratio p.value
#> Track 1 - Track 2 -0.226 0.0213 51 -10.580 <.0001
#> Warning in test_velocity(MountTom, velocity_mounttom, analysis = "GLM"): The
#> following tracks were removed from the analysis due to having 3 or fewer
#> footprints: Track 05, Track 06, Track 10, Track 11, Track 12, Track 14, Track
#> 17, Track 19, Track 20, Track 21, Track 22, Track 23.
#> $normality_results
#> Track 01 Track 02 Track 03 Track 04 Track 07 Track 08
#> statistic.W 0.9209702 0.9049639 0.8522781 0.9286605 0.9371515 0.81516913
#> p_value 0.4003329 0.2821994 0.2018271 0.5872649 0.6132123 0.08011557
#> Track 09 Track 13 Track 15 Track 16 Track 18
#> statistic.W 0.8697921 0.9420435 0.8148552 0.9692820 0.8301712
#> p_value 0.2655830 0.6804196 0.1064974 0.8923149 0.1395325
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 10 1.8073 0.07947 .
#> 58
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $GLM
#> $GLM$GLM
#>
#> Call:
#> glm(formula = vel ~ track, family = gaussian(), data = M_analysis)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.6439628 0.0792060 20.756 < 2e-16 ***
#> trackTrack 02 0.1940051 0.1120142 1.732 0.08859 .
#> trackTrack 03 0.9661582 0.1325370 7.290 9.55e-10 ***
#> trackTrack 04 -0.0584838 0.1325370 -0.441 0.66066
#> trackTrack 07 -0.3379605 0.1197482 -2.822 0.00652 **
#> trackTrack 08 0.1052843 0.1252357 0.841 0.40397
#> trackTrack 09 0.6639956 0.1325370 5.010 5.42e-06 ***
#> trackTrack 13 -0.7031663 0.1325370 -5.305 1.84e-06 ***
#> trackTrack 15 0.0500966 0.1325370 0.378 0.70682
#> trackTrack 16 -0.1898371 0.1154616 -1.644 0.10555
#> trackTrack 18 -0.0008248 0.1325370 -0.006 0.99506
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 0.05646233)
#>
#> Null deviance: 14.0038 on 68 degrees of freedom
#> Residual deviance: 3.2748 on 58 degrees of freedom
#> AIC: 9.5122
#>
#> Number of Fisher Scoring iterations: 2
#>
#>
#> $GLM$pairwise_results
#> $emmeans
#> track emmean SE df lower.CL upper.CL
#> Track 01 1.644 0.0792 58 1.485 1.80
#> Track 02 1.838 0.0792 58 1.679 2.00
#> Track 03 2.610 0.1060 58 2.397 2.82
#> Track 04 1.585 0.1060 58 1.373 1.80
#> Track 07 1.306 0.0898 58 1.126 1.49
#> Track 08 1.749 0.0970 58 1.555 1.94
#> Track 09 2.308 0.1060 58 2.095 2.52
#> Track 13 0.941 0.1060 58 0.728 1.15
#> Track 15 1.694 0.1060 58 1.481 1.91
#> Track 16 1.454 0.0840 58 1.286 1.62
#> Track 18 1.643 0.1060 58 1.430 1.86
#>
#> Confidence level used: 0.95
#>
#> $contrasts
#> contrast estimate SE df t.ratio p.value
#> Track 01 - Track 02 -0.194005 0.112 58 -1.732 0.8128
#> Track 01 - Track 03 -0.966158 0.133 58 -7.290 <.0001
#> Track 01 - Track 04 0.058484 0.133 58 0.441 1.0000
#> Track 01 - Track 07 0.337960 0.120 58 2.822 0.1757
#> Track 01 - Track 08 -0.105284 0.125 58 -0.841 0.9988
#> Track 01 - Track 09 -0.663996 0.133 58 -5.010 0.0003
#> Track 01 - Track 13 0.703166 0.133 58 5.305 0.0001
#> Track 01 - Track 15 -0.050097 0.133 58 -0.378 1.0000
#> Track 01 - Track 16 0.189837 0.115 58 1.644 0.8564
#> Track 01 - Track 18 0.000825 0.133 58 0.006 1.0000
#> Track 02 - Track 03 -0.772153 0.133 58 -5.826 <.0001
#> Track 02 - Track 04 0.252489 0.133 58 1.905 0.7115
#> Track 02 - Track 07 0.531966 0.120 58 4.442 0.0019
#> Track 02 - Track 08 0.088721 0.125 58 0.708 0.9997
#> Track 02 - Track 09 -0.469990 0.133 58 -3.546 0.0294
#> Track 02 - Track 13 0.897171 0.133 58 6.769 <.0001
#> Track 02 - Track 15 0.143908 0.133 58 1.086 0.9904
#> Track 02 - Track 16 0.383842 0.115 58 3.324 0.0535
#> Track 02 - Track 18 0.194830 0.133 58 1.470 0.9237
#> Track 03 - Track 04 1.024642 0.150 58 6.818 <.0001
#> Track 03 - Track 07 1.304119 0.139 58 9.373 <.0001
#> Track 03 - Track 08 0.860874 0.144 58 5.983 <.0001
#> Track 03 - Track 09 0.302163 0.150 58 2.011 0.6425
#> Track 03 - Track 13 1.669325 0.150 58 11.108 <.0001
#> Track 03 - Track 15 0.916062 0.150 58 6.096 <.0001
#> Track 03 - Track 16 1.155995 0.135 58 8.534 <.0001
#> Track 03 - Track 18 0.966983 0.150 58 6.434 <.0001
#> Track 04 - Track 07 0.279477 0.139 58 2.009 0.6438
#> Track 04 - Track 08 -0.163768 0.144 58 -1.138 0.9864
#> Track 04 - Track 09 -0.722479 0.150 58 -4.807 0.0005
#> Track 04 - Track 13 0.644683 0.150 58 4.290 0.0031
#> Track 04 - Track 15 -0.108580 0.150 58 -0.723 0.9997
#> Track 04 - Track 16 0.131353 0.135 58 0.970 0.9961
#> Track 04 - Track 18 -0.057659 0.150 58 -0.384 1.0000
#> Track 07 - Track 08 -0.443245 0.132 58 -3.353 0.0497
#> Track 07 - Track 09 -1.001956 0.139 58 -7.201 <.0001
#> Track 07 - Track 13 0.365206 0.139 58 2.625 0.2604
#> Track 07 - Track 15 -0.388057 0.139 58 -2.789 0.1883
#> Track 07 - Track 16 -0.148123 0.123 58 -1.204 0.9795
#> Track 07 - Track 18 -0.337136 0.139 58 -2.423 0.3706
#> Track 08 - Track 09 -0.558711 0.144 58 -3.883 0.0111
#> Track 08 - Track 13 0.808451 0.144 58 5.619 <.0001
#> Track 08 - Track 15 0.055188 0.144 58 0.384 1.0000
#> Track 08 - Track 16 0.295121 0.128 58 2.300 0.4479
#> Track 08 - Track 18 0.106109 0.144 58 0.737 0.9996
#> Track 09 - Track 13 1.367162 0.150 58 9.097 <.0001
#> Track 09 - Track 15 0.613899 0.150 58 4.085 0.0059
#> Track 09 - Track 16 0.853833 0.135 58 6.303 <.0001
#> Track 09 - Track 18 0.664820 0.150 58 4.424 0.0020
#> Track 13 - Track 15 -0.753263 0.150 58 -5.012 0.0003
#> Track 13 - Track 16 -0.513329 0.135 58 -3.789 0.0146
#> Track 13 - Track 18 -0.702341 0.150 58 -4.673 0.0009
#> Track 15 - Track 16 0.239934 0.135 58 1.771 0.7915
#> Track 15 - Track 18 0.050922 0.150 58 0.339 1.0000
#> Track 16 - Track 18 -0.189012 0.135 58 -1.395 0.9447
#>
#> P value adjustment: tukey method for comparing a family of 11 estimates
The mode_velocity()
function evaluates
whether a track maker is accelerating,
decelerating, or maintaining a steady
speed along its trajectory by applying Spearman’s rank
correlation test. This test is particularly suitable for
analyzing trends in velocity because it does not assume normality or
linearity in the relationship between step number and velocity. Instead,
it detects monotonic relationships based on ranks,
making it robust to outliers and effective for
identifying general trends.
The function accepts a track velocity
R
object and processes each trajectory separately. For each
trajectory, the function calculates the Spearman correlation
coefficient and its associated p-value, comparing
velocity values to their corresponding step
numbers. If the p-value is less than
0.05, the trend is classified as
“acceleration” if the correlation coefficient is
positive or “deceleration” if it is negative. If the
p-value is greater than or equal to 0.05, the
trend is labeled as “steady,” indicating no significant
monotonic relationship between velocity and step
number. This approach allows the detection of gradual changes
in velocity over the course of a track, which may reflect shifts in
locomotor performance or behavior.
Trajectories with fewer than three steps are considered insufficient for reliable statistical analysis, and the function returns a message indicating that the data is inadequate for correlation analysis. This is because the calculation of a meaningful correlation requires a minimum of three data points.
The mode_velocity()
function provides a
straightforward way to classify velocity trends based
on statistical significance, making it a useful tool for examining how
track makers modulate their speed along their paths.
However, it only identifies monotonic trends and may
not detect more complex, non-monotonic changes in
speed. Furthermore, the classification is
qualitative, providing information about the general
nature of the trend rather than quantifying the rate of change.
This approach draws from established non-parametric statistical techniques for measuring association between variables. The robustness of the method to non-normal data and its resistance to outliers makes it well-suited for paleontological and biomechanical applications where data quality and quantity can be limited.
The velocity_paluxyriver_diff
object
contains calculated velocities for the PaluxyRiver
dataset with different methods applied to the sauropod (Method
A) and theropod (Method B).
#> $Track_1
#> $Track_1$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 3178, p-value = 0.5088
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> 0.1302682
#>
#>
#> $Track_1$trend
#> [1] "Steady"
#>
#>
#> $Track_2
#> $Track_2$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 1426, p-value = 0.1711
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> 0.2954545
#>
#>
#> $Track_2$trend
#> [1] "Steady"
The velocity_mounttom
object contains
calculated velocities for the MountTom dataset.
#> $Track_01
#> $Track_01$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 160, p-value = 0.002008
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> -0.9047619
#>
#>
#> $Track_01$trend
#> [1] "Deceleration"
#>
#>
#> $Track_02
#> $Track_02$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 42, p-value = 0.207
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> 0.5
#>
#>
#> $Track_02$trend
#> [1] "Steady"
#>
#>
#> $Track_03
#> $Track_03$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 12, p-value = 0.8
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> -0.2
#>
#>
#> $Track_03$trend
#> [1] "Steady"
#>
#>
#> $Track_04
#> $Track_04$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 18, p-value = 0.2
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> -0.8
#>
#>
#> $Track_04$trend
#> [1] "Steady"
#>
#>
#> $Track_05
#> [1] "Less than three steps"
#>
#> $Track_06
#> [1] "Less than three steps"
#>
#> $Track_07
#> $Track_07$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 12, p-value = 0.1562
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> 0.6571429
#>
#>
#> $Track_07$trend
#> [1] "Steady"
#>
#>
#> $Track_08
#> $Track_08$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 20, p-value = 1
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> 0
#>
#>
#> $Track_08$trend
#> [1] "Steady"
#>
#>
#> $Track_09
#> $Track_09$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 20, p-value < 2.2e-16
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> -1
#>
#>
#> $Track_09$trend
#> [1] "Deceleration"
#>
#>
#> $Track_10
#> [1] "Less than three steps"
#>
#> $Track_11
#> [1] "Less than three steps"
#>
#> $Track_12
#> [1] "Less than three steps"
#>
#> $Track_13
#> $Track_13$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 14, p-value = 0.6
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> -0.4
#>
#>
#> $Track_13$trend
#> [1] "Steady"
#>
#>
#> $Track_14
#> [1] "Less than three steps"
#>
#> $Track_15
#> $Track_15$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 6, p-value = 0.6
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> 0.4
#>
#>
#> $Track_15$trend
#> [1] "Steady"
#>
#>
#> $Track_16
#> $Track_16$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 30, p-value = 0.2939
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> 0.4642857
#>
#>
#> $Track_16$trend
#> [1] "Steady"
#>
#>
#> $Track_17
#> [1] "Less than three steps"
#>
#> $Track_18
#> $Track_18$correlation
#>
#> Spearman's rank correlation rho
#>
#> data: velocity and steps
#> S = 14, p-value = 0.6
#> alternative hypothesis: true rho is not equal to 0
#> sample estimates:
#> rho
#> -0.4
#>
#>
#> $Track_18$trend
#> [1] "Steady"
#>
#>
#> $Track_19
#> [1] "Less than three steps"
#>
#> $Track_20
#> [1] "Less than three steps"
#>
#> $Track_21
#> [1] "Less than three steps"
#>
#> $Track_22
#> [1] "Less than three steps"
#>
#> $Track_23
#> [1] "Less than three steps"
The test_direction()
function provides
a powerful statistical framework for comparing
directions across different tracks within a
track
R object. It offers three distinct
methods for this purpose, which can be selected using the
analysis
argument: ANOVA,
Kruskal-Wallis test, and Generalized Linear
Models (GLM), ensuring robust analysis even when assumptions
about data distribution and variance homogeneity are violated. The
function requires that each track contains more than three
footprints to be included in the analysis, as statistical tests
for comparing mean directions require a sufficient sample size to
generate meaningful results. This threshold ensures that the comparisons
are statistically reliable and robust.
When using the "ANOVA"
option, the
function first checks the normality of the data through
the Shapiro-Wilk test and assesses homogeneity
of variances using Levene’s test. If these
assumptions are violated, the user is advised to consider the
Kruskal-Wallis or GLM methods instead.
The ANOVA method compares mean directions
across tracks, and if significant differences are detected,
Tukey’s HSD test is applied to perform post-hoc
pairwise comparisons. The
"Kruskal-Wallis"
option, in contrast,
offers a non-parametric approach that compares median
directions across tracks and applies Dunn’s
test for pairwise comparisons if significant differences are
found. This method is particularly suitable when data do not meet the
assumptions required for parametric tests. Alternatively, if the
"GLM"
option is selected, the function
applies a Generalized Linear Model (GLM) with a
Gaussian family to compare mean
directions. The emmeans
package
is then used to compute pairwise comparisons, with
adjustments for multiple comparisons following Tukey’s
method, offering a flexible approach when dealing with complex
data distributions or deviations from normality.
The test_direction()
function returns
list with a detailed set of results. It provides a normality
results matrix containing the Shapiro-Wilk test
statistic and p-value for each track, allowing the
user to evaluate whether the data follows a normal distribution. The
function also outputs the result of Levene’s test,
including the p-value used to assess whether variances
across tracks are homogeneous. When the ANOVA method is
selected, the function delivers the ANOVA table along
with Tukey HSD post-hoc results, enabling a thorough
examination of differences between groups. For the
Kruskal-Wallis test, the function returns the overall
test result alongside Dunn’s test post-hoc comparisons,
providing a non-parametric alternative for analyzing differences in
central tendency. In the case of GLM, the output
includes a summary of the model fit along with the pairwise
comparisons calculated via the emmeans
package, providing an efficient method to detect significant
differences while accommodating more complex statistical models.
The flexibility and comprehensiveness of the
test_direction()
function make it a
versatile tool for comparing directional data across
multiple tracks. Its ability to perform parametric,
non-parametric, and generalized linear model analyses ensures
that researchers can robustly test hypotheses related to
movement patterns, group behavior, and ecological
interactions, regardless of the underlying data structure.
Testing with ANOVA checks for differences in mean directions across tracks, assuming the data is normally distributed and variances are homogeneous. Post-hoc pairwise comparisons are conducted if significant differences are found.
#> $normality_results
#> Track 1 Track 2
#> statistic.W 0.900319498 0.91666968
#> p_value 0.009971017 0.04932503
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 1 0.2935 0.5903
#> 51
#>
#> $ANOVA
#> $ANOVA$ANOVA
#> Df Sum Sq Mean Sq F value Pr(>F)
#> track 1 49 49.01 0.646 0.425
#> Residuals 51 3867 75.82
#>
#> $ANOVA$Tukey
#> Tukey multiple comparisons of means
#> 95% family-wise confidence level
#>
#> Fit: aov(formula = dir ~ track, data = M_analysis)
#>
#> $track
#> diff lwr upr p adj
#> Track 2-Track 1 -1.931824 -6.755731 2.892084 0.4251435
#> $normality_results
#> Track 01 Track 02 Track 03 Track 04 Track 07 Track 08
#> statistic.W 0.9651863 0.9159365 0.8835034 0.8785774 0.717041538 0.9574186
#> p_value 0.8507202 0.3596607 0.3254893 0.3029142 0.005672604 0.7996415
#> Track 09 Track 13 Track 15 Track 16 Track 18
#> statistic.W 0.78162330 0.8903881 0.8576212 0.9064091 0.9483026
#> p_value 0.05691451 0.3590583 0.2198329 0.3294686 0.7250578
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 10 1.8236 0.07643 .
#> 58
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $ANOVA
#> $ANOVA$ANOVA
#> Df Sum Sq Mean Sq F value Pr(>F)
#> track 10 372424 37242 1081 <2e-16 ***
#> Residuals 58 1999 34
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $ANOVA$Tukey
#> Tukey multiple comparisons of means
#> 95% family-wise confidence level
#>
#> Fit: aov(formula = dir ~ track, data = M_analysis)
#>
#> $track
#> diff lwr upr p adj
#> Track 02-Track 01 -8.0809326 -17.352515 1.1906495 0.1421812
#> Track 03-Track 01 -4.2235962 -15.193880 6.7466877 0.9669723
#> Track 04-Track 01 -8.9073199 -19.877604 2.0629641 0.2165280
#> Track 07-Track 01 -15.9377861 -25.849524 -6.0260479 0.0000688
#> Track 08-Track 01 -14.2962893 -24.662233 -3.9303453 0.0010286
#> Track 09-Track 01 -157.8393877 -168.809672 -146.8691037 0.0000000
#> Track 13-Track 01 -263.5986805 -274.568964 -252.6283965 0.0000000
#> Track 15-Track 01 -19.4449561 -30.415240 -8.4746721 0.0000090
#> Track 16-Track 01 -10.2244220 -19.781350 -0.6674939 0.0264453
#> Track 18-Track 01 -25.9444892 -36.914773 -14.9742053 0.0000000
#> Track 03-Track 02 3.8573364 -7.112948 14.8276203 0.9825136
#> Track 04-Track 02 -0.8263872 -11.796671 10.1438967 1.0000000
#> Track 07-Track 02 -7.8568535 -17.768592 2.0548847 0.2456248
#> Track 08-Track 02 -6.2153566 -16.581301 4.1505873 0.6437392
#> Track 09-Track 02 -149.7584550 -160.728739 -138.7881711 0.0000000
#> Track 13-Track 02 -255.5177478 -266.488032 -244.5474639 0.0000000
#> Track 15-Track 02 -11.3640234 -22.334307 -0.3937395 0.0362396
#> Track 16-Track 02 -2.1434894 -11.700418 7.4134387 0.9995411
#> Track 18-Track 02 -17.8635566 -28.833841 -6.8932727 0.0000536
#> Track 04-Track 03 -4.6837236 -17.122856 7.7554092 0.9716324
#> Track 07-Track 03 -11.7141899 -23.230589 -0.1977908 0.0429263
#> Track 08-Track 03 -10.0726930 -21.982256 1.8368699 0.1715168
#> Track 09-Track 03 -153.6157914 -166.054924 -141.1766587 0.0000000
#> Track 13-Track 03 -259.3750842 -271.814217 -246.9359515 0.0000000
#> Track 15-Track 03 -15.2213598 -27.660493 -2.7822271 0.0056705
#> Track 16-Track 03 -6.0008258 -17.213309 5.2116570 0.7791969
#> Track 18-Track 03 -21.7208930 -34.160026 -9.2817602 0.0000125
#> Track 07-Track 04 -7.0304663 -18.546865 4.4859329 0.6192299
#> Track 08-Track 04 -5.3889694 -17.298532 6.5205935 0.9084457
#> Track 09-Track 04 -148.9320678 -161.371201 -136.4929350 0.0000000
#> Track 13-Track 04 -254.6913606 -267.130493 -242.2522279 0.0000000
#> Track 15-Track 04 -10.5376362 -22.976769 1.9014966 0.1698520
#> Track 16-Track 04 -1.3171022 -12.529585 9.8953806 0.9999989
#> Track 18-Track 04 -17.0371694 -29.476302 -4.5980366 0.0011459
#> Track 08-Track 07 1.6414969 -9.300766 12.5837596 0.9999884
#> Track 09-Track 07 -141.9016015 -153.418001 -130.3852024 0.0000000
#> Track 13-Track 07 -247.6608943 -259.177293 -236.1444952 0.0000000
#> Track 15-Track 07 -3.5071699 -15.023569 8.0092292 0.9940963
#> Track 16-Track 07 5.7133641 -4.465791 15.8925190 0.7269309
#> Track 18-Track 07 -10.0067031 -21.523102 1.5096961 0.1450230
#> Track 09-Track 08 -143.5430984 -155.452661 -131.6335355 0.0000000
#> Track 13-Track 08 -249.3023912 -261.211954 -237.3928283 0.0000000
#> Track 15-Track 08 -5.1486668 -17.058230 6.7608961 0.9302534
#> Track 16-Track 08 4.0718672 -6.550065 14.6937990 0.9679259
#> Track 18-Track 08 -11.6482000 -23.557763 0.2613630 0.0605113
#> Track 13-Track 09 -105.7592928 -118.198426 -93.3201600 0.0000000
#> Track 15-Track 09 138.3944316 125.955299 150.8335644 0.0000000
#> Track 16-Track 09 147.6149656 136.402483 158.8274484 0.0000000
#> Track 18-Track 09 131.8948984 119.455766 144.3340312 0.0000000
#> Track 15-Track 13 244.1537244 231.714592 256.5928572 0.0000000
#> Track 16-Track 13 253.3742584 242.161776 264.5867412 0.0000000
#> Track 18-Track 13 237.6541912 225.215058 250.0933240 0.0000000
#> Track 16-Track 15 9.2205340 -1.991949 20.4330168 0.2018750
#> Track 18-Track 15 -6.4995332 -18.938666 5.9395996 0.8028891
#> Track 18-Track 16 -15.7200672 -26.932550 -4.5075844 0.0007922
Testing with Kruskal-Wallis provides a non-parametric alternative for comparing median directions across tracks when the data does not meet the assumptions of ANOVA. Significant differences are further examined using Dunn’s test.
#> $normality_results
#> Track 1 Track 2
#> statistic.W 0.900319498 0.91666968
#> p_value 0.009971017 0.04932503
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 1 0.2935 0.5903
#> 51
#>
#> $Kruskal_Wallis
#> $Kruskal_Wallis$Kruskal_Wallis
#>
#> Kruskal-Wallis rank sum test
#>
#> data: dir by track
#> Kruskal-Wallis chi-squared = 0.53676, df = 1, p-value = 0.4638
#>
#>
#> $Kruskal_Wallis$Dunn
#> $Kruskal_Wallis$Dunn$chi2
#> [1] 0.536761
#>
#> $Kruskal_Wallis$Dunn$Z
#> [1] 0.7326398
#>
#> $Kruskal_Wallis$Dunn$P
#> [1] 0.2318891
#>
#> $Kruskal_Wallis$Dunn$P.adjusted
#> [1] 0.2318891
#>
#> $Kruskal_Wallis$Dunn$comparisons
#> [1] "Track 1 - Track 2"
#> $normality_results
#> Track 01 Track 02 Track 03 Track 04 Track 07 Track 08
#> statistic.W 0.9651863 0.9159365 0.8835034 0.8785774 0.717041538 0.9574186
#> p_value 0.8507202 0.3596607 0.3254893 0.3029142 0.005672604 0.7996415
#> Track 09 Track 13 Track 15 Track 16 Track 18
#> statistic.W 0.78162330 0.8903881 0.8576212 0.9064091 0.9483026
#> p_value 0.05691451 0.3590583 0.2198329 0.3294686 0.7250578
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 10 1.8236 0.07643 .
#> 58
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $Kruskal_Wallis
#> $Kruskal_Wallis$Kruskal_Wallis
#>
#> Kruskal-Wallis rank sum test
#>
#> data: dir by track
#> Kruskal-Wallis chi-squared = 53.636, df = 10, p-value = 5.671e-08
#>
#>
#> $Kruskal_Wallis$Dunn
#> $Kruskal_Wallis$Dunn$chi2
#> [1] 53.63609
#>
#> $Kruskal_Wallis$Dunn$Z
#> [1] 1.8799419 0.8440717 -0.7447692 1.8092926 0.2204517 0.8512448
#> [7] 2.9690804 1.2105558 1.7513323 0.8318828 2.9741021 1.2926309
#> [13] 1.8111218 0.9220257 0.1280017 4.8658252 3.2769843 3.5468532
#> [19] 2.6956084 2.0797071 1.8934455 5.3126867 3.7238459 3.9409480
#> [25] 3.0897032 2.5053781 2.3050641 0.3940948 3.6682364 2.0793955
#> [31] 2.4906791 1.6394344 0.9389087 0.7903077 -1.0561741 -1.4502689
#> [37] 2.2384437 0.4146322 1.0820921 0.1377208 -0.7894666 -0.8884194
#> [43] -2.8527883 -3.2899972 -1.6810683 4.2402191 2.6513782 2.9951205
#> [49] 2.1438757 1.4837676 1.3171795 -0.5517327 -0.9458275 0.5044413
#> [55] 2.2406958
#>
#> $Kruskal_Wallis$Dunn$P
#> [1] 3.005800e-02 1.993147e-01 2.282056e-01 3.520278e-02 4.127597e-01
#> [6] 1.973167e-01 1.493462e-03 1.130328e-01 3.994435e-02 2.027375e-01
#> [11] 1.469236e-03 9.806936e-02 3.506100e-02 1.782576e-01 4.490738e-01
#> [16] 5.699010e-07 5.246109e-04 1.949309e-04 3.513010e-03 1.877620e-02
#> [21] 2.914932e-02 5.401032e-08 9.810538e-05 4.058011e-05 1.001783e-03
#> [26] 6.116028e-03 1.058149e-02 3.467555e-01 1.221146e-04 1.879051e-02
#> [31] 6.374960e-03 5.056141e-02 1.738888e-01 2.146740e-01 1.454443e-01
#> [36] 7.349178e-02 1.259607e-02 3.392056e-01 1.396058e-01 4.452305e-01
#> [41] 2.149197e-01 1.871576e-01 2.166874e-03 5.009419e-04 4.637482e-02
#> [46] 1.116508e-05 4.008200e-03 1.371682e-03 1.602142e-02 6.893529e-02
#> [51] 9.388923e-02 2.905657e-01 1.721183e-01 3.069756e-01 1.252289e-02
#>
#> $Kruskal_Wallis$Dunn$P.adjusted
#> [1] 3.005800e-02 1.993147e-01 2.282056e-01 3.520278e-02 4.127597e-01
#> [6] 1.973167e-01 1.493462e-03 1.130328e-01 3.994435e-02 2.027375e-01
#> [11] 1.469236e-03 9.806936e-02 3.506100e-02 1.782576e-01 4.490738e-01
#> [16] 5.699010e-07 5.246109e-04 1.949309e-04 3.513010e-03 1.877620e-02
#> [21] 2.914932e-02 5.401032e-08 9.810538e-05 4.058011e-05 1.001783e-03
#> [26] 6.116028e-03 1.058149e-02 3.467555e-01 1.221146e-04 1.879051e-02
#> [31] 6.374960e-03 5.056141e-02 1.738888e-01 2.146740e-01 1.454443e-01
#> [36] 7.349178e-02 1.259607e-02 3.392056e-01 1.396058e-01 4.452305e-01
#> [41] 2.149197e-01 1.871576e-01 2.166874e-03 5.009419e-04 4.637482e-02
#> [46] 1.116508e-05 4.008200e-03 1.371682e-03 1.602142e-02 6.893529e-02
#> [51] 9.388923e-02 2.905657e-01 1.721183e-01 3.069756e-01 1.252289e-02
#>
#> $Kruskal_Wallis$Dunn$comparisons
#> [1] "Track 01 - Track 02" "Track 01 - Track 03" "Track 02 - Track 03"
#> [4] "Track 01 - Track 04" "Track 02 - Track 04" "Track 03 - Track 04"
#> [7] "Track 01 - Track 07" "Track 02 - Track 07" "Track 03 - Track 07"
#> [10] "Track 04 - Track 07" "Track 01 - Track 08" "Track 02 - Track 08"
#> [13] "Track 03 - Track 08" "Track 04 - Track 08" "Track 07 - Track 08"
#> [16] "Track 01 - Track 09" "Track 02 - Track 09" "Track 03 - Track 09"
#> [19] "Track 04 - Track 09" "Track 07 - Track 09" "Track 08 - Track 09"
#> [22] "Track 01 - Track 13" "Track 02 - Track 13" "Track 03 - Track 13"
#> [25] "Track 04 - Track 13" "Track 07 - Track 13" "Track 08 - Track 13"
#> [28] "Track 09 - Track 13" "Track 01 - Track 15" "Track 02 - Track 15"
#> [31] "Track 03 - Track 15" "Track 04 - Track 15" "Track 07 - Track 15"
#> [34] "Track 08 - Track 15" "Track 09 - Track 15" "Track 13 - Track 15"
#> [37] "Track 01 - Track 16" "Track 02 - Track 16" "Track 03 - Track 16"
#> [40] "Track 04 - Track 16" "Track 07 - Track 16" "Track 08 - Track 16"
#> [43] "Track 09 - Track 16" "Track 13 - Track 16" "Track 15 - Track 16"
#> [46] "Track 01 - Track 18" "Track 02 - Track 18" "Track 03 - Track 18"
#> [49] "Track 04 - Track 18" "Track 07 - Track 18" "Track 08 - Track 18"
#> [52] "Track 09 - Track 18" "Track 13 - Track 18" "Track 15 - Track 18"
#> [55] "Track 16 - Track 18"
Testing with Generalized Linear Model (GLM) offers a
flexible approach for comparing mean directions even
when data distribution assumptions are violated. Pairwise comparisons
are computed using the emmeans
package.
#> $normality_results
#> Track 1 Track 2
#> statistic.W 0.900319498 0.91666968
#> p_value 0.009971017 0.04932503
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 1 0.2935 0.5903
#> 51
#>
#> $GLM
#> $GLM$GLM
#>
#> Call:
#> glm(formula = dir ~ track, family = gaussian(), data = M_analysis)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 85.550 1.617 52.909 <2e-16 ***
#> trackTrack 2 -1.932 2.403 -0.804 0.425
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 75.82002)
#>
#> Null deviance: 3915.8 on 52 degrees of freedom
#> Residual deviance: 3866.8 on 51 degrees of freedom
#> AIC: 383.77
#>
#> Number of Fisher Scoring iterations: 2
#>
#>
#> $GLM$pairwise_results
#> $emmeans
#> track emmean SE df lower.CL upper.CL
#> Track 1 85.6 1.62 51 82.3 88.8
#> Track 2 83.6 1.78 51 80.1 87.2
#>
#> Confidence level used: 0.95
#>
#> $contrasts
#> contrast estimate SE df t.ratio p.value
#> Track 1 - Track 2 1.93 2.4 51 0.804 0.4251
#> $normality_results
#> Track 01 Track 02 Track 03 Track 04 Track 07 Track 08
#> statistic.W 0.9651863 0.9159365 0.8835034 0.8785774 0.717041538 0.9574186
#> p_value 0.8507202 0.3596607 0.3254893 0.3029142 0.005672604 0.7996415
#> Track 09 Track 13 Track 15 Track 16 Track 18
#> statistic.W 0.78162330 0.8903881 0.8576212 0.9064091 0.9483026
#> p_value 0.05691451 0.3590583 0.2198329 0.3294686 0.7250578
#>
#> $homogeneity_test
#> Levene's Test for Homogeneity of Variance (center = median)
#> Df F value Pr(>F)
#> group 10 1.8236 0.07643 .
#> 58
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> $GLM
#> $GLM$GLM
#>
#> Call:
#> glm(formula = dir ~ track, family = gaussian(), data = M_analysis)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 136.609 1.957 69.810 < 2e-16 ***
#> trackTrack 02 -8.081 2.767 -2.920 0.004978 **
#> trackTrack 03 -4.224 3.274 -1.290 0.202220
#> trackTrack 04 -8.907 3.274 -2.720 0.008595 **
#> trackTrack 07 -15.938 2.959 -5.387 1.36e-06 ***
#> trackTrack 08 -14.296 3.094 -4.621 2.18e-05 ***
#> trackTrack 09 -157.839 3.274 -48.203 < 2e-16 ***
#> trackTrack 13 -263.599 3.274 -80.501 < 2e-16 ***
#> trackTrack 15 -19.445 3.274 -5.938 1.72e-07 ***
#> trackTrack 16 -10.224 2.853 -3.584 0.000694 ***
#> trackTrack 18 -25.944 3.274 -7.923 8.24e-11 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 34.4641)
#>
#> Null deviance: 374423.4 on 68 degrees of freedom
#> Residual deviance: 1998.9 on 58 degrees of freedom
#> AIC: 452.09
#>
#> Number of Fisher Scoring iterations: 2
#>
#>
#> $GLM$pairwise_results
#> $emmeans
#> track emmean SE df lower.CL upper.CL
#> Track 01 136.6 1.96 58 132.7 141
#> Track 02 128.5 1.96 58 124.6 132
#> Track 03 132.4 2.63 58 127.1 138
#> Track 04 127.7 2.63 58 122.4 133
#> Track 07 120.7 2.22 58 116.2 125
#> Track 08 122.3 2.40 58 117.5 127
#> Track 09 -21.2 2.63 58 -26.5 -16
#> Track 13 -127.0 2.63 58 -132.2 -122
#> Track 15 117.2 2.63 58 111.9 122
#> Track 16 126.4 2.08 58 122.2 131
#> Track 18 110.7 2.63 58 105.4 116
#>
#> Confidence level used: 0.95
#>
#> $contrasts
#> contrast estimate SE df t.ratio p.value
#> Track 01 - Track 02 8.081 2.77 58 2.920 0.1422
#> Track 01 - Track 03 4.224 3.27 58 1.290 0.9670
#> Track 01 - Track 04 8.907 3.27 58 2.720 0.2165
#> Track 01 - Track 07 15.938 2.96 58 5.387 0.0001
#> Track 01 - Track 08 14.296 3.09 58 4.621 0.0010
#> Track 01 - Track 09 157.839 3.27 58 48.203 <.0001
#> Track 01 - Track 13 263.599 3.27 58 80.501 <.0001
#> Track 01 - Track 15 19.445 3.27 58 5.938 <.0001
#> Track 01 - Track 16 10.224 2.85 58 3.584 0.0264
#> Track 01 - Track 18 25.944 3.27 58 7.923 <.0001
#> Track 02 - Track 03 -3.857 3.27 58 -1.178 0.9825
#> Track 02 - Track 04 0.826 3.27 58 0.252 1.0000
#> Track 02 - Track 07 7.857 2.96 58 2.656 0.2456
#> Track 02 - Track 08 6.215 3.09 58 2.009 0.6437
#> Track 02 - Track 09 149.758 3.27 58 45.735 <.0001
#> Track 02 - Track 13 255.518 3.27 58 78.033 <.0001
#> Track 02 - Track 15 11.364 3.27 58 3.470 0.0362
#> Track 02 - Track 16 2.143 2.85 58 0.751 0.9995
#> Track 02 - Track 18 17.864 3.27 58 5.455 0.0001
#> Track 03 - Track 04 4.684 3.71 58 1.261 0.9716
#> Track 03 - Track 07 11.714 3.44 58 3.408 0.0429
#> Track 03 - Track 08 10.073 3.55 58 2.834 0.1715
#> Track 03 - Track 09 153.616 3.71 58 41.374 <.0001
#> Track 03 - Track 13 259.375 3.71 58 69.858 <.0001
#> Track 03 - Track 15 15.221 3.71 58 4.100 0.0057
#> Track 03 - Track 16 6.001 3.35 58 1.793 0.7792
#> Track 03 - Track 18 21.721 3.71 58 5.850 <.0001
#> Track 04 - Track 07 7.030 3.44 58 2.045 0.6192
#> Track 04 - Track 08 5.389 3.55 58 1.516 0.9084
#> Track 04 - Track 09 148.932 3.71 58 40.112 <.0001
#> Track 04 - Track 13 254.691 3.71 58 68.596 <.0001
#> Track 04 - Track 15 10.538 3.71 58 2.838 0.1699
#> Track 04 - Track 16 1.317 3.35 58 0.394 1.0000
#> Track 04 - Track 18 17.037 3.71 58 4.589 0.0011
#> Track 07 - Track 08 -1.641 3.27 58 -0.503 1.0000
#> Track 07 - Track 09 141.902 3.44 58 41.281 <.0001
#> Track 07 - Track 13 247.661 3.44 58 72.047 <.0001
#> Track 07 - Track 15 3.507 3.44 58 1.020 0.9941
#> Track 07 - Track 16 -5.713 3.04 58 -1.880 0.7269
#> Track 07 - Track 18 10.007 3.44 58 2.911 0.1450
#> Track 08 - Track 09 143.543 3.55 58 40.380 <.0001
#> Track 08 - Track 13 249.302 3.55 58 70.131 <.0001
#> Track 08 - Track 15 5.149 3.55 58 1.448 0.9303
#> Track 08 - Track 16 -4.072 3.17 58 -1.284 0.9679
#> Track 08 - Track 18 11.648 3.55 58 3.277 0.0605
#> Track 09 - Track 13 105.759 3.71 58 28.484 <.0001
#> Track 09 - Track 15 -138.394 3.71 58 -37.274 <.0001
#> Track 09 - Track 16 -147.615 3.35 58 -44.107 <.0001
#> Track 09 - Track 18 -131.895 3.71 58 -35.523 <.0001
#> Track 13 - Track 15 -244.154 3.71 58 -65.758 <.0001
#> Track 13 - Track 16 -253.374 3.35 58 -75.707 <.0001
#> Track 13 - Track 18 -237.654 3.71 58 -64.008 <.0001
#> Track 15 - Track 16 -9.221 3.35 58 -2.755 0.2019
#> Track 15 - Track 18 6.500 3.71 58 1.751 0.8029
#> Track 16 - Track 18 15.720 3.35 58 4.697 0.0008
#>
#> P value adjustment: tukey method for comparing a family of 11 estimates
The simulate_track()
function generates
simulated movement trajectories based on an existing
set of tracks. It offers three distinct movement
models—Directed, Constrained, and
Unconstrained—each representing varying levels of
constraint in movement patterns. This flexibility allows users to model
scenarios reflecting biological or environmental
constraints, such as directed movement towards resources,
movement along geographical features, or free exploratory behavior.
The Directed
model is the most
constrained, simulating trajectories that follow a specific direction
based on the original track’s angular orientation. It
aims to maintain a consistent overall direction with minor deviations to
reflect natural variability. This model is useful for scenarios where
movement is highly directional, such as an animal
navigating toward a known resource.
The Constrained
model represents a
correlated random walk, where movement is not strictly
directional but is influenced by certain angular and linear
properties of the original track. This model allows for random
exploration while retaining some of the characteristics of the original
movement pattern. It is suitable for situations where animals navigate
with limited knowledge of their surroundings, such as
navigating within a bounded area without a specific
destination.
The Unconstrained
model provides the
most flexibility, simulating trajectories that represent
exploratory or dispersal behavior without directional
bias. It is based on a fully random walk with
the starting direction randomly determined for each simulation. This
model is appropriate for scenarios where animals are moving through
unfamiliar or homogeneous environments.
The simulate_track()
function requires
several arguments to define the simulation process. The
data
argument specifies the input as a
track
R object. The nsim
argument defines the number of simulations to run, with a default value
of 1000 if not specified. This number represents a
recommended minimum to ensure stable and reliable
estimation of p-values, particularly when assessing the
statistical significance of observed trajectory features. Using fewer
simulations may result in imprecise or biased p-value estimates
due to insufficient sampling of the null distribution. The
model
argument determines the type of
movement model to be used, which can be “Directed”,
“Constrained”, or “Unconstrained”,
with the default being “Unconstrained” if not
provided.
The function ensures that simulations are only applied to
trajectories with at least four steps, as calculating
the standard deviations of angles and step
lengths—essential for the simulation process—is not feasible
for shorter trajectories. In cases where tracks are too short, the user
is advised to use the subset_track()
function to exclude those tracks from the simulation process.
The simulate_track()
function returns a
track simulation
R object, which is a list
of simulated trajectories. Each simulation is stored separately,
providing users with the flexibility to visualize, analyze, and
compare these simulations against the original tracks to
evaluate movement constraints or explore
alternative movement hypotheses. This approach is
particularly useful for testing paleoecological and
paleoethological hypotheses, such as assessing whether observed
movement patterns are consistent with group behavior, resource-driven
navigation, or independent exploratory movement.
Simulating tracks from the Paluxy River and
Mount Tom datasets using the
Unconstrained, Directed, and
Constrained models. For the Mount Tom
dataset, tracks were preprocessed using
subset_track()
to retain only those
containing at least four steps. Although the simulations were performed
with 100 simulated tracks, the examples below display
only a subset of 10 simulated tracks to prevent the
vignette from becoming excessively large. This approach ensures the
vignette remains efficient, clear, and easy to navigate.
sim_unconstrained_paluxy <- simulate_track(PaluxyRiver, nsim = 100, model = "Unconstrained")
print(sim_unconstrained_paluxy[1:10])
#> [[1]]
#> [[1]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.02676309 0.00 0.00 0.755420+1.026763i
#> 2 1.2503999 0.68886263 0.02 0.02 1.250400+0.688863i
#> 3 1.6761051 0.41203073 0.04 0.04 1.676105+0.412031i
#> 4 2.1939241 0.05758865 0.06 0.06 2.193924+0.057589i
#> 5 2.6481169 -0.26590688 0.08 0.08 2.648117-0.265907i
#> 6 3.1241281 -0.64046020 0.10 0.10 3.124128-0.640460i
#> 7 3.5014357 -0.95183260 0.12 0.12 3.501436-0.951833i
#> 8 3.9171138 -1.31080631 0.14 0.14 3.917114-1.310806i
#> 9 4.4450646 -1.71085707 0.16 0.16 4.445065-1.710857i
#> 10 4.8614568 -2.01775734 0.18 0.18 4.861457-2.017757i
#> 11 5.2783275 -2.32953515 0.20 0.20 5.278328-2.329535i
#> 12 5.6946005 -2.60426927 0.22 0.22 5.694600-2.604269i
#> 13 6.1013578 -2.84190699 0.24 0.24 6.101358-2.841907i
#> 14 6.6180546 -3.08330957 0.26 0.26 6.618055-3.083310i
#> 15 7.1596536 -3.32890431 0.28 0.28 7.159654-3.328904i
#> 16 7.8045106 -3.55937020 0.30 0.30 7.804511-3.559370i
#> 17 8.4571812 -3.68499079 0.32 0.32 8.457181-3.684991i
#> 18 8.9799483 -3.85355016 0.34 0.34 8.979948-3.853550i
#> 19 9.5660412 -4.00322846 0.36 0.36 9.566041-4.003228i
#> 20 10.1516649 -4.11504595 0.38 0.38 10.151665-4.115046i
#> 21 10.7251448 -4.28973241 0.40 0.40 10.725145-4.289732i
#> 22 11.3083138 -4.45469386 0.42 0.42 11.308314-4.454694i
#> 23 11.8094309 -4.64259488 0.44 0.44 11.809431-4.642595i
#> 24 12.3702407 -4.84031603 0.46 0.46 12.370241-4.840316i
#> 25 12.8890248 -4.97442896 0.48 0.48 12.889025-4.974429i
#> 26 13.4288131 -5.16116574 0.50 0.50 13.428813-5.161166i
#> 27 13.9490842 -5.36812813 0.52 0.52 13.949084-5.368128i
#> 28 14.4614034 -5.58083975 0.54 0.54 14.461403-5.580840i
#> 29 15.0581649 -5.88092159 0.56 0.56 15.058165-5.880922i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_1 TrajSim_1_1
#> 2 0.4949801-0.3379005i Traj_1 Sim_1 TrajSim_1_1
#> 3 0.4257053-0.2768319i Traj_1 Sim_1 TrajSim_1_1
#> 4 0.5178190-0.3544421i Traj_1 Sim_1 TrajSim_1_1
#> 5 0.4541928-0.3234955i Traj_1 Sim_1 TrajSim_1_1
#> 6 0.4760112-0.3745533i Traj_1 Sim_1 TrajSim_1_1
#> 7 0.3773076-0.3113724i Traj_1 Sim_1 TrajSim_1_1
#> 8 0.4156781-0.3589737i Traj_1 Sim_1 TrajSim_1_1
#> 9 0.5279507-0.4000508i Traj_1 Sim_1 TrajSim_1_1
#> 10 0.4163922-0.3069003i Traj_1 Sim_1 TrajSim_1_1
#> 11 0.4168707-0.3117778i Traj_1 Sim_1 TrajSim_1_1
#> 12 0.4162729-0.2747341i Traj_1 Sim_1 TrajSim_1_1
#> 13 0.4067573-0.2376377i Traj_1 Sim_1 TrajSim_1_1
#> 14 0.5166968-0.2414026i Traj_1 Sim_1 TrajSim_1_1
#> 15 0.5415989-0.2455947i Traj_1 Sim_1 TrajSim_1_1
#> 16 0.6448570-0.2304659i Traj_1 Sim_1 TrajSim_1_1
#> 17 0.6526706-0.1256206i Traj_1 Sim_1 TrajSim_1_1
#> 18 0.5227671-0.1685594i Traj_1 Sim_1 TrajSim_1_1
#> 19 0.5860929-0.1496783i Traj_1 Sim_1 TrajSim_1_1
#> 20 0.5856237-0.1118175i Traj_1 Sim_1 TrajSim_1_1
#> 21 0.5734799-0.1746865i Traj_1 Sim_1 TrajSim_1_1
#> 22 0.5831690-0.1649615i Traj_1 Sim_1 TrajSim_1_1
#> 23 0.5011171-0.1879010i Traj_1 Sim_1 TrajSim_1_1
#> 24 0.5608098-0.1977211i Traj_1 Sim_1 TrajSim_1_1
#> 25 0.5187841-0.1341129i Traj_1 Sim_1 TrajSim_1_1
#> 26 0.5397883-0.1867368i Traj_1 Sim_1 TrajSim_1_1
#> 27 0.5202711-0.2069624i Traj_1 Sim_1 TrajSim_1_1
#> 28 0.5123192-0.2127116i Traj_1 Sim_1 TrajSim_1_1
#> 29 0.5967615-0.3000818i Traj_1 Sim_1 TrajSim_1_1
#>
#> [[1]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.6931823 0.00 0.00 0.3646854+ 1.6931823i
#> 2 0.4833692 0.9720469 0.02 0.02 0.4833692+ 0.9720469i
#> 3 0.4957142 0.2722800 0.04 0.04 0.4957142+ 0.2722800i
#> 4 0.5111746 -0.3652129 0.06 0.06 0.5111746- 0.3652129i
#> 5 0.6626249 -1.0547883 0.08 0.08 0.6626249- 1.0547883i
#> 6 0.9150378 -1.7207076 0.10 0.10 0.9150378- 1.7207076i
#> 7 1.1525610 -2.3289621 0.12 0.12 1.1525610- 2.3289621i
#> 8 1.3653810 -2.6903659 0.14 0.14 1.3653810- 2.6903659i
#> 9 1.6502864 -3.2199470 0.16 0.16 1.6502864- 3.2199470i
#> 10 1.9802995 -3.8515007 0.18 0.18 1.9802995- 3.8515007i
#> 11 2.1056432 -4.5403577 0.20 0.20 2.1056432- 4.5403577i
#> 12 2.2307696 -5.0649043 0.22 0.22 2.2307696- 5.0649043i
#> 13 2.3381572 -5.8603854 0.24 0.24 2.3381572- 5.8603854i
#> 14 2.3113193 -6.5653640 0.26 0.26 2.3113193- 6.5653640i
#> 15 2.1809249 -7.4455038 0.28 0.28 2.1809249- 7.4455038i
#> 16 2.1654729 -8.1650711 0.30 0.30 2.1654729- 8.1650711i
#> 17 2.0573486 -8.8940547 0.32 0.32 2.0573486- 8.8940547i
#> 18 2.0379870 -9.5226969 0.34 0.34 2.0379870- 9.5226969i
#> 19 1.8938744 -10.1131239 0.36 0.36 1.8938744-10.1131239i
#> 20 1.7030625 -10.8775872 0.38 0.38 1.7030625-10.8775872i
#> 21 1.4605839 -11.5778597 0.40 0.40 1.4605839-11.5778597i
#> 22 1.2092682 -12.1751716 0.42 0.42 1.2092682-12.1751716i
#> 23 1.0144270 -12.6897581 0.44 0.44 1.0144270-12.6897581i
#> 24 0.7479119 -13.2858565 0.46 0.46 0.7479119-13.2858565i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_1 TrajSim_2_1
#> 2 0.1186838-0.7211354i Traj_2 Sim_1 TrajSim_2_1
#> 3 0.0123451-0.6997669i Traj_2 Sim_1 TrajSim_2_1
#> 4 0.0154604-0.6374929i Traj_2 Sim_1 TrajSim_2_1
#> 5 0.1514502-0.6895754i Traj_2 Sim_1 TrajSim_2_1
#> 6 0.2524129-0.6659193i Traj_2 Sim_1 TrajSim_2_1
#> 7 0.2375232-0.6082546i Traj_2 Sim_1 TrajSim_2_1
#> 8 0.2128200-0.3614037i Traj_2 Sim_1 TrajSim_2_1
#> 9 0.2849054-0.5295811i Traj_2 Sim_1 TrajSim_2_1
#> 10 0.3300131-0.6315538i Traj_2 Sim_1 TrajSim_2_1
#> 11 0.1253438-0.6888569i Traj_2 Sim_1 TrajSim_2_1
#> 12 0.1251263-0.5245466i Traj_2 Sim_1 TrajSim_2_1
#> 13 0.1073877-0.7954811i Traj_2 Sim_1 TrajSim_2_1
#> 14 -0.0268379-0.7049787i Traj_2 Sim_1 TrajSim_2_1
#> 15 -0.1303944-0.8801397i Traj_2 Sim_1 TrajSim_2_1
#> 16 -0.0154520-0.7195673i Traj_2 Sim_1 TrajSim_2_1
#> 17 -0.1081243-0.7289836i Traj_2 Sim_1 TrajSim_2_1
#> 18 -0.0193615-0.6286422i Traj_2 Sim_1 TrajSim_2_1
#> 19 -0.1441127-0.5904269i Traj_2 Sim_1 TrajSim_2_1
#> 20 -0.1908119-0.7644633i Traj_2 Sim_1 TrajSim_2_1
#> 21 -0.2424785-0.7002726i Traj_2 Sim_1 TrajSim_2_1
#> 22 -0.2513157-0.5973118i Traj_2 Sim_1 TrajSim_2_1
#> 23 -0.1948412-0.5145865i Traj_2 Sim_1 TrajSim_2_1
#> 24 -0.2665151-0.5960984i Traj_2 Sim_1 TrajSim_2_1
#>
#>
#> [[2]]
#> [[2]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+1.026763i
#> 2 0.2439536 1.273521 0.02 0.02 0.243954+1.273521i
#> 3 -0.3650471 1.567771 0.04 0.04 -0.365047+1.567771i
#> 4 -1.0334081 1.913898 0.06 0.06 -1.033408+1.913898i
#> 5 -1.5936089 2.160683 0.08 0.08 -1.593609+2.160683i
#> 6 -2.1547290 2.391357 0.10 0.10 -2.154729+2.391357i
#> 7 -2.6325705 2.564241 0.12 0.12 -2.632570+2.564241i
#> 8 -3.1389561 2.736224 0.14 0.14 -3.138956+2.736224i
#> 9 -3.6958607 2.908340 0.16 0.16 -3.695861+2.908340i
#> 10 -4.1790388 3.059177 0.18 0.18 -4.179039+3.059177i
#> 11 -4.7038221 3.208904 0.20 0.20 -4.703822+3.208904i
#> 12 -5.2483104 3.368572 0.22 0.22 -5.248310+3.368572i
#> 13 -5.8766327 3.557840 0.24 0.24 -5.876633+3.557840i
#> 14 -6.4970013 3.774701 0.26 0.26 -6.497001+3.774701i
#> 15 -6.9520020 3.950304 0.28 0.28 -6.952002+3.950304i
#> 16 -7.4870138 4.085849 0.30 0.30 -7.487014+4.085849i
#> 17 -7.9621558 4.255248 0.32 0.32 -7.962156+4.255248i
#> 18 -8.4927253 4.453899 0.34 0.34 -8.492725+4.453899i
#> 19 -9.0519730 4.642884 0.36 0.36 -9.051973+4.642884i
#> 20 -9.6039502 4.810623 0.38 0.38 -9.603950+4.810623i
#> 21 -10.2397544 4.981275 0.40 0.40 -10.239754+4.981275i
#> 22 -10.8244961 5.151199 0.42 0.42 -10.824496+5.151199i
#> 23 -11.4400746 5.272834 0.44 0.44 -11.440075+5.272834i
#> 24 -11.9667339 5.336644 0.46 0.46 -11.966734+5.336644i
#> 25 -12.6236719 5.456667 0.48 0.48 -12.623672+5.456667i
#> 26 -13.1200056 5.541281 0.50 0.50 -13.120006+5.541281i
#> 27 -13.6635245 5.627793 0.52 0.52 -13.663524+5.627793i
#> 28 -14.3033201 5.698076 0.54 0.54 -14.303320+5.698076i
#> 29 -14.9039618 5.770757 0.56 0.56 -14.903962+5.770757i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_2 TrajSim_1_2
#> 2 -0.5114662+0.2467582i Traj_1 Sim_2 TrajSim_1_2
#> 3 -0.6090007+0.2942498i Traj_1 Sim_2 TrajSim_1_2
#> 4 -0.6683611+0.3461270i Traj_1 Sim_2 TrajSim_1_2
#> 5 -0.5602008+0.2467851i Traj_1 Sim_2 TrajSim_1_2
#> 6 -0.5611200+0.2306742i Traj_1 Sim_2 TrajSim_1_2
#> 7 -0.4778415+0.1728833i Traj_1 Sim_2 TrajSim_1_2
#> 8 -0.5063857+0.1719831i Traj_1 Sim_2 TrajSim_1_2
#> 9 -0.5569046+0.1721166i Traj_1 Sim_2 TrajSim_1_2
#> 10 -0.4831781+0.1508367i Traj_1 Sim_2 TrajSim_1_2
#> 11 -0.5247833+0.1497275i Traj_1 Sim_2 TrajSim_1_2
#> 12 -0.5444883+0.1596674i Traj_1 Sim_2 TrajSim_1_2
#> 13 -0.6283223+0.1892687i Traj_1 Sim_2 TrajSim_1_2
#> 14 -0.6203686+0.2168603i Traj_1 Sim_2 TrajSim_1_2
#> 15 -0.4550007+0.1756028i Traj_1 Sim_2 TrajSim_1_2
#> 16 -0.5350118+0.1355457i Traj_1 Sim_2 TrajSim_1_2
#> 17 -0.4751420+0.1693990i Traj_1 Sim_2 TrajSim_1_2
#> 18 -0.5305695+0.1986507i Traj_1 Sim_2 TrajSim_1_2
#> 19 -0.5592477+0.1889850i Traj_1 Sim_2 TrajSim_1_2
#> 20 -0.5519773+0.1677393i Traj_1 Sim_2 TrajSim_1_2
#> 21 -0.6358041+0.1706519i Traj_1 Sim_2 TrajSim_1_2
#> 22 -0.5847418+0.1699236i Traj_1 Sim_2 TrajSim_1_2
#> 23 -0.6155785+0.1216355i Traj_1 Sim_2 TrajSim_1_2
#> 24 -0.5266592+0.0638093i Traj_1 Sim_2 TrajSim_1_2
#> 25 -0.6569381+0.1200232i Traj_1 Sim_2 TrajSim_1_2
#> 26 -0.4963337+0.0846139i Traj_1 Sim_2 TrajSim_1_2
#> 27 -0.5435188+0.0865125i Traj_1 Sim_2 TrajSim_1_2
#> 28 -0.6397957+0.0702827i Traj_1 Sim_2 TrajSim_1_2
#> 29 -0.6006417+0.0726813i Traj_1 Sim_2 TrajSim_1_2
#>
#> [[2]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+1.693182i
#> 2 0.9274132 1.877223 0.02 0.02 0.927413+1.877223i
#> 3 1.6192014 2.144774 0.04 0.04 1.619201+2.144774i
#> 4 2.3084745 2.370399 0.06 0.06 2.308475+2.370399i
#> 5 3.0745582 2.555941 0.08 0.08 3.074558+2.555941i
#> 6 3.8483964 2.753285 0.10 0.10 3.848396+2.753285i
#> 7 4.5715942 3.143960 0.12 0.12 4.571594+3.143960i
#> 8 5.1451603 3.331907 0.14 0.14 5.145160+3.331907i
#> 9 5.7461290 3.634626 0.16 0.16 5.746129+3.634626i
#> 10 6.4310222 3.884460 0.18 0.18 6.431022+3.884460i
#> 11 7.0586187 4.161705 0.20 0.20 7.058619+4.161705i
#> 12 7.6881738 4.583688 0.22 0.22 7.688174+4.583688i
#> 13 8.2570367 4.892142 0.24 0.24 8.257037+4.892142i
#> 14 8.9376634 5.095645 0.26 0.26 8.937663+5.095645i
#> 15 9.5284422 5.222484 0.28 0.28 9.528442+5.222484i
#> 16 10.2594625 5.371071 0.30 0.30 10.259463+5.371071i
#> 17 10.9292597 5.436984 0.32 0.32 10.929260+5.436984i
#> 18 11.6886739 5.315914 0.34 0.34 11.688674+5.315914i
#> 19 12.4679088 5.181736 0.36 0.36 12.467909+5.181736i
#> 20 13.0578847 5.114967 0.38 0.38 13.057885+5.114967i
#> 21 13.7306702 4.959268 0.40 0.40 13.730670+4.959268i
#> 22 14.2893708 4.669190 0.42 0.42 14.289371+4.669190i
#> 23 14.8395664 4.431495 0.44 0.44 14.839566+4.431495i
#> 24 15.4321940 4.193493 0.46 0.46 15.432194+4.193493i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_2 TrajSim_2_2
#> 2 0.5627278+0.1840405i Traj_2 Sim_2 TrajSim_2_2
#> 3 0.6917882+0.2675508i Traj_2 Sim_2 TrajSim_2_2
#> 4 0.6892732+0.2256250i Traj_2 Sim_2 TrajSim_2_2
#> 5 0.7660836+0.1855420i Traj_2 Sim_2 TrajSim_2_2
#> 6 0.7738382+0.1973447i Traj_2 Sim_2 TrajSim_2_2
#> 7 0.7231979+0.3906749i Traj_2 Sim_2 TrajSim_2_2
#> 8 0.5735661+0.1879464i Traj_2 Sim_2 TrajSim_2_2
#> 9 0.6009687+0.3027193i Traj_2 Sim_2 TrajSim_2_2
#> 10 0.6848931+0.2498342i Traj_2 Sim_2 TrajSim_2_2
#> 11 0.6275965+0.2772452i Traj_2 Sim_2 TrajSim_2_2
#> 12 0.6295551+0.4219830i Traj_2 Sim_2 TrajSim_2_2
#> 13 0.5688629+0.3084540i Traj_2 Sim_2 TrajSim_2_2
#> 14 0.6806267+0.2035023i Traj_2 Sim_2 TrajSim_2_2
#> 15 0.5907788+0.1268399i Traj_2 Sim_2 TrajSim_2_2
#> 16 0.7310204+0.1485865i Traj_2 Sim_2 TrajSim_2_2
#> 17 0.6697972+0.0659129i Traj_2 Sim_2 TrajSim_2_2
#> 18 0.7594141-0.1210700i Traj_2 Sim_2 TrajSim_2_2
#> 19 0.7792349-0.1341779i Traj_2 Sim_2 TrajSim_2_2
#> 20 0.5899759-0.0667695i Traj_2 Sim_2 TrajSim_2_2
#> 21 0.6727855-0.1556983i Traj_2 Sim_2 TrajSim_2_2
#> 22 0.5587006-0.2900781i Traj_2 Sim_2 TrajSim_2_2
#> 23 0.5501956-0.2376953i Traj_2 Sim_2 TrajSim_2_2
#> 24 0.5926276-0.2380015i Traj_2 Sim_2 TrajSim_2_2
#>
#>
#> [[3]]
#> [[3]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+1.026763i
#> 2 1.2809449 1.107382 0.02 0.02 1.280945+1.107382i
#> 3 1.8136345 1.196747 0.04 0.04 1.813634+1.196747i
#> 4 2.4017555 1.262106 0.06 0.06 2.401755+1.262106i
#> 5 2.9501269 1.344599 0.08 0.08 2.950127+1.344599i
#> 6 3.4910335 1.426854 0.10 0.10 3.491033+1.426854i
#> 7 4.0191582 1.515024 0.12 0.12 4.019158+1.515024i
#> 8 4.5918044 1.624622 0.14 0.14 4.591804+1.624622i
#> 9 5.1654414 1.708798 0.16 0.16 5.165441+1.708798i
#> 10 5.7638076 1.829869 0.18 0.18 5.763808+1.829869i
#> 11 6.4342330 1.939329 0.20 0.20 6.434233+1.939329i
#> 12 7.0106318 2.057267 0.22 0.22 7.010632+2.057267i
#> 13 7.4783635 2.172791 0.24 0.24 7.478363+2.172791i
#> 14 8.1579035 2.328831 0.26 0.26 8.157903+2.328831i
#> 15 8.7100008 2.505129 0.28 0.28 8.710001+2.505129i
#> 16 9.2051669 2.698025 0.30 0.30 9.205167+2.698025i
#> 17 9.7489636 2.920632 0.32 0.32 9.748964+2.920632i
#> 18 10.2878838 3.169796 0.34 0.34 10.287884+3.169796i
#> 19 10.8809013 3.401813 0.36 0.36 10.880901+3.401813i
#> 20 11.3832011 3.562436 0.38 0.38 11.383201+3.562436i
#> 21 11.8698770 3.689258 0.40 0.40 11.869877+3.689258i
#> 22 12.4474112 3.847669 0.42 0.42 12.447411+3.847669i
#> 23 12.9628616 3.961820 0.44 0.44 12.962862+3.961820i
#> 24 13.5091359 4.037613 0.46 0.46 13.509136+4.037613i
#> 25 14.1229737 4.174526 0.48 0.48 14.122974+4.174526i
#> 26 14.7061418 4.291397 0.50 0.50 14.706142+4.291397i
#> 27 15.2367534 4.357523 0.52 0.52 15.236753+4.357523i
#> 28 15.7617937 4.416597 0.54 0.54 15.761794+4.416597i
#> 29 16.2831481 4.505231 0.56 0.56 16.283148+4.505231i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_3 TrajSim_1_3
#> 2 0.5255251+0.0806190i Traj_1 Sim_3 TrajSim_1_3
#> 3 0.5326896+0.0893651i Traj_1 Sim_3 TrajSim_1_3
#> 4 0.5881210+0.0653586i Traj_1 Sim_3 TrajSim_1_3
#> 5 0.5483714+0.0824935i Traj_1 Sim_3 TrajSim_1_3
#> 6 0.5409065+0.0822550i Traj_1 Sim_3 TrajSim_1_3
#> 7 0.5281248+0.0881694i Traj_1 Sim_3 TrajSim_1_3
#> 8 0.5726462+0.1095987i Traj_1 Sim_3 TrajSim_1_3
#> 9 0.5736370+0.0841753i Traj_1 Sim_3 TrajSim_1_3
#> 10 0.5983662+0.1210712i Traj_1 Sim_3 TrajSim_1_3
#> 11 0.6704254+0.1094601i Traj_1 Sim_3 TrajSim_1_3
#> 12 0.5763988+0.1179376i Traj_1 Sim_3 TrajSim_1_3
#> 13 0.4677317+0.1155245i Traj_1 Sim_3 TrajSim_1_3
#> 14 0.6795400+0.1560397i Traj_1 Sim_3 TrajSim_1_3
#> 15 0.5520973+0.1762979i Traj_1 Sim_3 TrajSim_1_3
#> 16 0.4951661+0.1928966i Traj_1 Sim_3 TrajSim_1_3
#> 17 0.5437967+0.2226066i Traj_1 Sim_3 TrajSim_1_3
#> 18 0.5389202+0.2491641i Traj_1 Sim_3 TrajSim_1_3
#> 19 0.5930175+0.2320167i Traj_1 Sim_3 TrajSim_1_3
#> 20 0.5022999+0.1606232i Traj_1 Sim_3 TrajSim_1_3
#> 21 0.4866759+0.1268225i Traj_1 Sim_3 TrajSim_1_3
#> 22 0.5775342+0.1584113i Traj_1 Sim_3 TrajSim_1_3
#> 23 0.5154504+0.1141502i Traj_1 Sim_3 TrajSim_1_3
#> 24 0.5462743+0.0757928i Traj_1 Sim_3 TrajSim_1_3
#> 25 0.6138377+0.1369139i Traj_1 Sim_3 TrajSim_1_3
#> 26 0.5831681+0.1168706i Traj_1 Sim_3 TrajSim_1_3
#> 27 0.5306116+0.0661261i Traj_1 Sim_3 TrajSim_1_3
#> 28 0.5250404+0.0590742i Traj_1 Sim_3 TrajSim_1_3
#> 29 0.5213543+0.0886341i Traj_1 Sim_3 TrajSim_1_3
#>
#> [[3]][[2]]
#> x y time displacementTime polar
#> 1 0.36468541 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.32681838 2.348883 0.02 0.02 0.326818+ 2.348883i
#> 3 0.21996817 2.938992 0.04 0.04 0.219968+ 2.938992i
#> 4 -0.04630263 3.613349 0.06 0.06 -0.046303+ 3.613349i
#> 5 -0.26084941 4.300567 0.08 0.08 -0.260849+ 4.300567i
#> 6 -0.54045318 4.891290 0.10 0.10 -0.540453+ 4.891290i
#> 7 -0.73198481 5.424849 0.12 0.12 -0.731985+ 5.424849i
#> 8 -0.86144005 6.004249 0.14 0.14 -0.861440+ 6.004249i
#> 9 -1.11527734 6.808769 0.16 0.16 -1.115277+ 6.808769i
#> 10 -1.28919498 7.520121 0.18 0.18 -1.289195+ 7.520121i
#> 11 -1.40170443 8.257342 0.20 0.20 -1.401704+ 8.257342i
#> 12 -1.40816961 8.932838 0.22 0.22 -1.408170+ 8.932838i
#> 13 -1.37812427 9.543196 0.24 0.24 -1.378124+ 9.543196i
#> 14 -1.23770633 10.259380 0.26 0.26 -1.237706+10.259380i
#> 15 -1.07952235 10.867737 0.28 0.28 -1.079522+10.867737i
#> 16 -1.01808264 11.310121 0.30 0.30 -1.018083+11.310121i
#> 17 -0.89836466 11.980081 0.32 0.32 -0.898365+11.980081i
#> 18 -0.74903856 12.573151 0.34 0.34 -0.749039+12.573151i
#> 19 -0.53436260 13.400899 0.36 0.36 -0.534363+13.400899i
#> 20 -0.37206797 14.052561 0.38 0.38 -0.372068+14.052561i
#> 21 -0.27204553 14.616416 0.40 0.40 -0.272046+14.616416i
#> 22 -0.13764082 15.320368 0.42 0.42 -0.137641+15.320368i
#> 23 -0.04832432 16.006871 0.44 0.44 -0.048324+16.006871i
#> 24 0.02154846 16.587900 0.46 0.46 0.021548+16.587900i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_3 TrajSim_2_3
#> 2 -0.0378670+0.6557009i Traj_2 Sim_3 TrajSim_2_3
#> 3 -0.1068502+0.5901084i Traj_2 Sim_3 TrajSim_2_3
#> 4 -0.2662708+0.6743579i Traj_2 Sim_3 TrajSim_2_3
#> 5 -0.2145468+0.6872171i Traj_2 Sim_3 TrajSim_2_3
#> 6 -0.2796038+0.5907232i Traj_2 Sim_3 TrajSim_2_3
#> 7 -0.1915316+0.5335592i Traj_2 Sim_3 TrajSim_2_3
#> 8 -0.1294552+0.5793995i Traj_2 Sim_3 TrajSim_2_3
#> 9 -0.2538373+0.8045208i Traj_2 Sim_3 TrajSim_2_3
#> 10 -0.1739176+0.7113521i Traj_2 Sim_3 TrajSim_2_3
#> 11 -0.1125094+0.7372203i Traj_2 Sim_3 TrajSim_2_3
#> 12 -0.0064652+0.6754965i Traj_2 Sim_3 TrajSim_2_3
#> 13 0.0300453+0.6103580i Traj_2 Sim_3 TrajSim_2_3
#> 14 0.1404179+0.7161833i Traj_2 Sim_3 TrajSim_2_3
#> 15 0.1581840+0.6083578i Traj_2 Sim_3 TrajSim_2_3
#> 16 0.0614397+0.4423840i Traj_2 Sim_3 TrajSim_2_3
#> 17 0.1197180+0.6699596i Traj_2 Sim_3 TrajSim_2_3
#> 18 0.1493261+0.5930700i Traj_2 Sim_3 TrajSim_2_3
#> 19 0.2146760+0.8277481i Traj_2 Sim_3 TrajSim_2_3
#> 20 0.1622946+0.6516620i Traj_2 Sim_3 TrajSim_2_3
#> 21 0.1000224+0.5638552i Traj_2 Sim_3 TrajSim_2_3
#> 22 0.1344047+0.7039514i Traj_2 Sim_3 TrajSim_2_3
#> 23 0.0893165+0.6865035i Traj_2 Sim_3 TrajSim_2_3
#> 24 0.0698728+0.5810287i Traj_2 Sim_3 TrajSim_2_3
#>
#>
#> [[4]]
#> [[4]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 1.0731159 1.452829 0.02 0.02 1.073116+ 1.452829i
#> 3 1.3726540 1.960979 0.04 0.04 1.372654+ 1.960979i
#> 4 1.6680931 2.476822 0.06 0.06 1.668093+ 2.476822i
#> 5 1.9323124 2.924173 0.08 0.08 1.932312+ 2.924173i
#> 6 2.1904429 3.478210 0.10 0.10 2.190443+ 3.478210i
#> 7 2.4046048 4.060021 0.12 0.12 2.404605+ 4.060021i
#> 8 2.6756735 4.637165 0.14 0.14 2.675674+ 4.637165i
#> 9 2.8780469 5.125572 0.16 0.16 2.878047+ 5.125572i
#> 10 3.1365456 5.718861 0.18 0.18 3.136546+ 5.718861i
#> 11 3.3724334 6.343385 0.20 0.20 3.372433+ 6.343385i
#> 12 3.5404018 6.844770 0.22 0.22 3.540402+ 6.844770i
#> 13 3.6739820 7.368207 0.24 0.24 3.673982+ 7.368207i
#> 14 3.7848665 7.887954 0.26 0.26 3.784866+ 7.887954i
#> 15 3.8870048 8.427563 0.28 0.28 3.887005+ 8.427563i
#> 16 3.9852456 8.921589 0.30 0.30 3.985246+ 8.921589i
#> 17 4.0938038 9.464993 0.32 0.32 4.093804+ 9.464993i
#> 18 4.2395959 10.055199 0.34 0.34 4.239596+10.055199i
#> 19 4.4372884 10.625852 0.36 0.36 4.437288+10.625852i
#> 20 4.6828551 11.288661 0.38 0.38 4.682855+11.288661i
#> 21 4.8287417 11.849865 0.40 0.40 4.828742+11.849865i
#> 22 4.8816560 12.553169 0.42 0.42 4.881656+12.553169i
#> 23 4.9205549 13.202184 0.44 0.44 4.920555+13.202184i
#> 24 4.9857587 13.755240 0.46 0.46 4.985759+13.755240i
#> 25 5.1173945 14.455951 0.48 0.48 5.117394+14.455951i
#> 26 5.2229920 15.172027 0.50 0.50 5.222992+15.172027i
#> 27 5.3325415 15.935728 0.52 0.52 5.332542+15.935728i
#> 28 5.4164057 16.635924 0.54 0.54 5.416406+16.635924i
#> 29 5.5079754 17.168239 0.56 0.56 5.507975+17.168239i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_4 TrajSim_1_4
#> 2 0.3176961+0.4260657i Traj_1 Sim_4 TrajSim_1_4
#> 3 0.2995381+0.5081503i Traj_1 Sim_4 TrajSim_1_4
#> 4 0.2954391+0.5158431i Traj_1 Sim_4 TrajSim_1_4
#> 5 0.2642193+0.4473508i Traj_1 Sim_4 TrajSim_1_4
#> 6 0.2581305+0.5540375i Traj_1 Sim_4 TrajSim_1_4
#> 7 0.2141619+0.5818108i Traj_1 Sim_4 TrajSim_1_4
#> 8 0.2710688+0.5771441i Traj_1 Sim_4 TrajSim_1_4
#> 9 0.2023734+0.4884068i Traj_1 Sim_4 TrajSim_1_4
#> 10 0.2584986+0.5932886i Traj_1 Sim_4 TrajSim_1_4
#> 11 0.2358879+0.6245243i Traj_1 Sim_4 TrajSim_1_4
#> 12 0.1679683+0.5013853i Traj_1 Sim_4 TrajSim_1_4
#> 13 0.1335802+0.5234364i Traj_1 Sim_4 TrajSim_1_4
#> 14 0.1108845+0.5197474i Traj_1 Sim_4 TrajSim_1_4
#> 15 0.1021383+0.5396083i Traj_1 Sim_4 TrajSim_1_4
#> 16 0.0982408+0.4940262i Traj_1 Sim_4 TrajSim_1_4
#> 17 0.1085582+0.5434047i Traj_1 Sim_4 TrajSim_1_4
#> 18 0.1457922+0.5902058i Traj_1 Sim_4 TrajSim_1_4
#> 19 0.1976925+0.5706530i Traj_1 Sim_4 TrajSim_1_4
#> 20 0.2455667+0.6628089i Traj_1 Sim_4 TrajSim_1_4
#> 21 0.1458866+0.5612044i Traj_1 Sim_4 TrajSim_1_4
#> 22 0.0529143+0.7033037i Traj_1 Sim_4 TrajSim_1_4
#> 23 0.0388989+0.6490147i Traj_1 Sim_4 TrajSim_1_4
#> 24 0.0652038+0.5530566i Traj_1 Sim_4 TrajSim_1_4
#> 25 0.1316358+0.7007108i Traj_1 Sim_4 TrajSim_1_4
#> 26 0.1055975+0.7160759i Traj_1 Sim_4 TrajSim_1_4
#> 27 0.1095495+0.7637013i Traj_1 Sim_4 TrajSim_1_4
#> 28 0.0838641+0.7001952i Traj_1 Sim_4 TrajSim_1_4
#> 29 0.0915697+0.5323150i Traj_1 Sim_4 TrajSim_1_4
#>
#> [[4]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 1.0170807 1.922242 0.02 0.02 1.017081+ 1.922242i
#> 3 1.6299900 2.229782 0.04 0.04 1.629990+ 2.229782i
#> 4 2.1952585 2.609824 0.06 0.06 2.195259+ 2.609824i
#> 5 2.6634463 2.867955 0.08 0.08 2.663446+ 2.867955i
#> 6 3.1748472 3.141381 0.10 0.10 3.174847+ 3.141381i
#> 7 3.7399308 3.413073 0.12 0.12 3.739931+ 3.413073i
#> 8 4.4302052 3.767051 0.14 0.14 4.430205+ 3.767051i
#> 9 4.9974267 4.069199 0.16 0.16 4.997427+ 4.069199i
#> 10 5.5490401 4.504563 0.18 0.18 5.549040+ 4.504563i
#> 11 6.1236167 5.002709 0.20 0.20 6.123617+ 5.002709i
#> 12 6.5881871 5.559865 0.22 0.22 6.588187+ 5.559865i
#> 13 7.0059979 6.067577 0.24 0.24 7.005998+ 6.067577i
#> 14 7.2961518 6.511801 0.26 0.26 7.296152+ 6.511801i
#> 15 7.6841320 7.142797 0.28 0.28 7.684132+ 7.142797i
#> 16 7.9392999 7.728686 0.30 0.30 7.939300+ 7.728686i
#> 17 8.0995005 8.317062 0.32 0.32 8.099501+ 8.317062i
#> 18 8.2836542 8.906550 0.34 0.34 8.283654+ 8.906550i
#> 19 8.5293504 9.659112 0.36 0.36 8.529350+ 9.659112i
#> 20 8.9084716 10.242030 0.38 0.38 8.908472+10.242030i
#> 21 9.2676537 10.687720 0.40 0.40 9.267654+10.687720i
#> 22 9.6652475 11.249789 0.42 0.42 9.665248+11.249789i
#> 23 10.0141602 11.787157 0.44 0.44 10.014160+11.787157i
#> 24 10.3572307 12.256621 0.46 0.46 10.357231+12.256621i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_4 TrajSim_2_4
#> 2 0.6523953+0.2290595i Traj_2 Sim_4 TrajSim_2_4
#> 3 0.6129093+0.3075398i Traj_2 Sim_4 TrajSim_2_4
#> 4 0.5652685+0.3800425i Traj_2 Sim_4 TrajSim_2_4
#> 5 0.4681877+0.2581312i Traj_2 Sim_4 TrajSim_2_4
#> 6 0.5114010+0.2734255i Traj_2 Sim_4 TrajSim_2_4
#> 7 0.5650836+0.2716921i Traj_2 Sim_4 TrajSim_2_4
#> 8 0.6902744+0.3539778i Traj_2 Sim_4 TrajSim_2_4
#> 9 0.5672215+0.3021485i Traj_2 Sim_4 TrajSim_2_4
#> 10 0.5516134+0.4353644i Traj_2 Sim_4 TrajSim_2_4
#> 11 0.5745766+0.4981458i Traj_2 Sim_4 TrajSim_2_4
#> 12 0.4645704+0.5571556i Traj_2 Sim_4 TrajSim_2_4
#> 13 0.4178108+0.5077118i Traj_2 Sim_4 TrajSim_2_4
#> 14 0.2901539+0.4442244i Traj_2 Sim_4 TrajSim_2_4
#> 15 0.3879802+0.6309962i Traj_2 Sim_4 TrajSim_2_4
#> 16 0.2551679+0.5858889i Traj_2 Sim_4 TrajSim_2_4
#> 17 0.1602006+0.5883755i Traj_2 Sim_4 TrajSim_2_4
#> 18 0.1841537+0.5894884i Traj_2 Sim_4 TrajSim_2_4
#> 19 0.2456962+0.7525619i Traj_2 Sim_4 TrajSim_2_4
#> 20 0.3791212+0.5829183i Traj_2 Sim_4 TrajSim_2_4
#> 21 0.3591821+0.4456897i Traj_2 Sim_4 TrajSim_2_4
#> 22 0.3975939+0.5620686i Traj_2 Sim_4 TrajSim_2_4
#> 23 0.3489127+0.5373679i Traj_2 Sim_4 TrajSim_2_4
#> 24 0.3430704+0.4694648i Traj_2 Sim_4 TrajSim_2_4
#>
#>
#> [[5]]
#> [[5]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 1.0382210 1.526335 0.02 0.02 1.038221+ 1.526335i
#> 3 1.3132524 2.093890 0.04 0.04 1.313252+ 2.093890i
#> 4 1.5419602 2.646118 0.06 0.06 1.541960+ 2.646118i
#> 5 1.6797561 3.174213 0.08 0.08 1.679756+ 3.174213i
#> 6 1.8242315 3.703463 0.10 0.10 1.824231+ 3.703463i
#> 7 1.9675713 4.256587 0.12 0.12 1.967571+ 4.256587i
#> 8 2.1540461 4.820961 0.14 0.14 2.154046+ 4.820961i
#> 9 2.3492662 5.351992 0.16 0.16 2.349266+ 5.351992i
#> 10 2.5636426 5.818549 0.18 0.18 2.563643+ 5.818549i
#> 11 2.7878941 6.337838 0.20 0.20 2.787894+ 6.337838i
#> 12 2.9633160 6.837593 0.22 0.22 2.963316+ 6.837593i
#> 13 3.1502789 7.435791 0.24 0.24 3.150279+ 7.435791i
#> 14 3.2411469 7.967753 0.26 0.26 3.241147+ 7.967753i
#> 15 3.3517739 8.507610 0.28 0.28 3.351774+ 8.507610i
#> 16 3.4468021 9.085938 0.30 0.30 3.446802+ 9.085938i
#> 17 3.5535595 9.678695 0.32 0.32 3.553560+ 9.678695i
#> 18 3.6008791 10.267548 0.34 0.34 3.600879+10.267548i
#> 19 3.6875495 10.856399 0.36 0.36 3.687549+10.856399i
#> 20 3.8120637 11.413645 0.38 0.38 3.812064+11.413645i
#> 21 3.9924239 12.020235 0.40 0.40 3.992424+12.020235i
#> 22 4.2128289 12.682992 0.42 0.42 4.212829+12.682992i
#> 23 4.4101947 13.264397 0.44 0.44 4.410195+13.264397i
#> 24 4.6450402 13.836978 0.46 0.46 4.645040+13.836978i
#> 25 4.8868495 14.320378 0.48 0.48 4.886849+14.320378i
#> 26 5.1509983 14.921411 0.50 0.50 5.150998+14.921411i
#> 27 5.3944590 15.419213 0.52 0.52 5.394459+15.419213i
#> 28 5.5997635 15.855758 0.54 0.54 5.599763+15.855758i
#> 29 5.8480796 16.406653 0.56 0.56 5.848080+16.406653i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_5 TrajSim_1_5
#> 2 0.2828013+0.4995715i Traj_1 Sim_5 TrajSim_1_5
#> 3 0.2750314+0.5675551i Traj_1 Sim_5 TrajSim_1_5
#> 4 0.2287078+0.5522288i Traj_1 Sim_5 TrajSim_1_5
#> 5 0.1377959+0.5280944i Traj_1 Sim_5 TrajSim_1_5
#> 6 0.1444754+0.5292504i Traj_1 Sim_5 TrajSim_1_5
#> 7 0.1433398+0.5531239i Traj_1 Sim_5 TrajSim_1_5
#> 8 0.1864749+0.5643742i Traj_1 Sim_5 TrajSim_1_5
#> 9 0.1952201+0.5310309i Traj_1 Sim_5 TrajSim_1_5
#> 10 0.2143764+0.4665567i Traj_1 Sim_5 TrajSim_1_5
#> 11 0.2242515+0.5192890i Traj_1 Sim_5 TrajSim_1_5
#> 12 0.1754219+0.4997549i Traj_1 Sim_5 TrajSim_1_5
#> 13 0.1869629+0.5981986i Traj_1 Sim_5 TrajSim_1_5
#> 14 0.0908679+0.5319613i Traj_1 Sim_5 TrajSim_1_5
#> 15 0.1106271+0.5398572i Traj_1 Sim_5 TrajSim_1_5
#> 16 0.0950282+0.5783276i Traj_1 Sim_5 TrajSim_1_5
#> 17 0.1067574+0.5927574i Traj_1 Sim_5 TrajSim_1_5
#> 18 0.0473196+0.5888529i Traj_1 Sim_5 TrajSim_1_5
#> 19 0.0866704+0.5888514i Traj_1 Sim_5 TrajSim_1_5
#> 20 0.1245142+0.5572458i Traj_1 Sim_5 TrajSim_1_5
#> 21 0.1803601+0.6065897i Traj_1 Sim_5 TrajSim_1_5
#> 22 0.2204050+0.6627576i Traj_1 Sim_5 TrajSim_1_5
#> 23 0.1973658+0.5814049i Traj_1 Sim_5 TrajSim_1_5
#> 24 0.2348455+0.5725808i Traj_1 Sim_5 TrajSim_1_5
#> 25 0.2418093+0.4833997i Traj_1 Sim_5 TrajSim_1_5
#> 26 0.2641488+0.6010335i Traj_1 Sim_5 TrajSim_1_5
#> 27 0.2434607+0.4978020i Traj_1 Sim_5 TrajSim_1_5
#> 28 0.2053045+0.4365448i Traj_1 Sim_5 TrajSim_1_5
#> 29 0.2483161+0.5508950i Traj_1 Sim_5 TrajSim_1_5
#>
#> [[5]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.3313567 2.345528 0.02 0.02 0.331357+ 2.345528i
#> 3 0.4080902 2.899963 0.04 0.04 0.408090+ 2.899963i
#> 4 0.2882624 3.554710 0.06 0.06 0.288262+ 3.554710i
#> 5 0.2268895 4.199156 0.08 0.08 0.226889+ 4.199156i
#> 6 0.1596263 4.741408 0.10 0.10 0.159626+ 4.741408i
#> 7 0.2307038 5.588451 0.12 0.12 0.230704+ 5.588451i
#> 8 0.2874857 6.259540 0.14 0.14 0.287486+ 6.259540i
#> 9 0.3711715 6.862181 0.16 0.16 0.371172+ 6.862181i
#> 10 0.4897259 7.325957 0.18 0.18 0.489726+ 7.325957i
#> 11 0.7457844 7.800228 0.20 0.20 0.745784+ 7.800228i
#> 12 1.0899699 8.403189 0.22 0.22 1.089970+ 8.403189i
#> 13 1.3034708 9.032201 0.24 0.24 1.303471+ 9.032201i
#> 14 1.5048122 9.650610 0.26 0.26 1.504812+ 9.650610i
#> 15 1.5330915 10.322569 0.28 0.28 1.533091+10.322569i
#> 16 1.5866485 10.925505 0.30 0.30 1.586648+10.925505i
#> 17 1.5725309 11.497480 0.32 0.32 1.572531+11.497480i
#> 18 1.5972872 12.191308 0.34 0.34 1.597287+12.191308i
#> 19 1.5869508 12.904825 0.36 0.36 1.586951+12.904825i
#> 20 1.5825960 13.631849 0.38 0.38 1.582596+13.631849i
#> 21 1.6118003 14.260248 0.40 0.40 1.611800+14.260248i
#> 22 1.7055776 15.020706 0.42 0.42 1.705578+15.020706i
#> 23 1.8529541 15.759377 0.44 0.44 1.852954+15.759377i
#> 24 1.9787508 16.468646 0.46 0.46 1.978751+16.468646i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_5 TrajSim_2_5
#> 2 -0.0333287+0.6523458i Traj_2 Sim_5 TrajSim_2_5
#> 3 0.0767335+0.5544347i Traj_2 Sim_5 TrajSim_2_5
#> 4 -0.1198278+0.6547472i Traj_2 Sim_5 TrajSim_2_5
#> 5 -0.0613729+0.6444465i Traj_2 Sim_5 TrajSim_2_5
#> 6 -0.0672632+0.5422517i Traj_2 Sim_5 TrajSim_2_5
#> 7 0.0710776+0.8470428i Traj_2 Sim_5 TrajSim_2_5
#> 8 0.0567818+0.6710888i Traj_2 Sim_5 TrajSim_2_5
#> 9 0.0836859+0.6026416i Traj_2 Sim_5 TrajSim_2_5
#> 10 0.1185544+0.4637756i Traj_2 Sim_5 TrajSim_2_5
#> 11 0.2560584+0.4742707i Traj_2 Sim_5 TrajSim_2_5
#> 12 0.3441856+0.6029619i Traj_2 Sim_5 TrajSim_2_5
#> 13 0.2135009+0.6290117i Traj_2 Sim_5 TrajSim_2_5
#> 14 0.2013414+0.6184088i Traj_2 Sim_5 TrajSim_2_5
#> 15 0.0282792+0.6719594i Traj_2 Sim_5 TrajSim_2_5
#> 16 0.0535570+0.6029356i Traj_2 Sim_5 TrajSim_2_5
#> 17 -0.0141176+0.5719755i Traj_2 Sim_5 TrajSim_2_5
#> 18 0.0247563+0.6938280i Traj_2 Sim_5 TrajSim_2_5
#> 19 -0.0103364+0.7135162i Traj_2 Sim_5 TrajSim_2_5
#> 20 -0.0043547+0.7270248i Traj_2 Sim_5 TrajSim_2_5
#> 21 0.0292043+0.6283990i Traj_2 Sim_5 TrajSim_2_5
#> 22 0.0937773+0.7604576i Traj_2 Sim_5 TrajSim_2_5
#> 23 0.1473765+0.7386709i Traj_2 Sim_5 TrajSim_2_5
#> 24 0.1257967+0.7092689i Traj_2 Sim_5 TrajSim_2_5
#>
#>
#> [[6]]
#> [[6]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.2501650 1.393766 0.02 0.02 0.250165+ 1.393766i
#> 3 -0.2375407 1.717344 0.04 0.04 -0.237541+ 1.717344i
#> 4 -0.7506514 2.035721 0.06 0.06 -0.750651+ 2.035721i
#> 5 -1.1773891 2.298549 0.08 0.08 -1.177389+ 2.298549i
#> 6 -1.6023575 2.550464 0.10 0.10 -1.602358+ 2.550464i
#> 7 -1.9380780 2.803706 0.12 0.12 -1.938078+ 2.803706i
#> 8 -2.3907776 3.134517 0.14 0.14 -2.390778+ 3.134517i
#> 9 -2.8310997 3.526901 0.16 0.16 -2.831100+ 3.526901i
#> 10 -3.2827308 3.941055 0.18 0.18 -3.282731+ 3.941055i
#> 11 -3.7497323 4.353133 0.20 0.20 -3.749732+ 4.353133i
#> 12 -4.1871821 4.735527 0.22 0.22 -4.187182+ 4.735527i
#> 13 -4.5981392 5.065770 0.24 0.24 -4.598139+ 5.065770i
#> 14 -5.0547363 5.484498 0.26 0.26 -5.054736+ 5.484498i
#> 15 -5.4502951 5.854650 0.28 0.28 -5.450295+ 5.854650i
#> 16 -5.9885860 6.301188 0.30 0.30 -5.988586+ 6.301188i
#> 17 -6.4039235 6.625110 0.32 0.32 -6.403924+ 6.625110i
#> 18 -6.8403641 6.934365 0.34 0.34 -6.840364+ 6.934365i
#> 19 -7.3016364 7.210190 0.36 0.36 -7.301636+ 7.210190i
#> 20 -7.8157594 7.546219 0.38 0.38 -7.815759+ 7.546219i
#> 21 -8.3916280 7.917765 0.40 0.40 -8.391628+ 7.917765i
#> 22 -8.8373949 8.202981 0.42 0.42 -8.837395+ 8.202981i
#> 23 -9.3480246 8.467271 0.44 0.44 -9.348025+ 8.467271i
#> 24 -9.8600659 8.843398 0.46 0.46 -9.860066+ 8.843398i
#> 25 -10.2853769 9.204868 0.48 0.48 -10.285377+ 9.204868i
#> 26 -10.7740361 9.626313 0.50 0.50 -10.774036+ 9.626313i
#> 27 -11.1578629 10.012611 0.52 0.52 -11.157863+10.012611i
#> 28 -11.7004352 10.512701 0.54 0.54 -11.700435+10.512701i
#> 29 -12.0227733 10.889435 0.56 0.56 -12.022773+10.889435i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_6 TrajSim_1_6
#> 2 -0.5052548+0.3670028i Traj_1 Sim_6 TrajSim_1_6
#> 3 -0.4877057+0.3235777i Traj_1 Sim_6 TrajSim_1_6
#> 4 -0.5131108+0.3183774i Traj_1 Sim_6 TrajSim_1_6
#> 5 -0.4267377+0.2628274i Traj_1 Sim_6 TrajSim_1_6
#> 6 -0.4249684+0.2519155i Traj_1 Sim_6 TrajSim_1_6
#> 7 -0.3357205+0.2532419i Traj_1 Sim_6 TrajSim_1_6
#> 8 -0.4526996+0.3308114i Traj_1 Sim_6 TrajSim_1_6
#> 9 -0.4403220+0.3923839i Traj_1 Sim_6 TrajSim_1_6
#> 10 -0.4516311+0.4141538i Traj_1 Sim_6 TrajSim_1_6
#> 11 -0.4670016+0.4120779i Traj_1 Sim_6 TrajSim_1_6
#> 12 -0.4374498+0.3823941i Traj_1 Sim_6 TrajSim_1_6
#> 13 -0.4109570+0.3302427i Traj_1 Sim_6 TrajSim_1_6
#> 14 -0.4565971+0.4187285i Traj_1 Sim_6 TrajSim_1_6
#> 15 -0.3955589+0.3701517i Traj_1 Sim_6 TrajSim_1_6
#> 16 -0.5382909+0.4465381i Traj_1 Sim_6 TrajSim_1_6
#> 17 -0.4153375+0.3239222i Traj_1 Sim_6 TrajSim_1_6
#> 18 -0.4364406+0.3092544i Traj_1 Sim_6 TrajSim_1_6
#> 19 -0.4612723+0.2758258i Traj_1 Sim_6 TrajSim_1_6
#> 20 -0.5141230+0.3360283i Traj_1 Sim_6 TrajSim_1_6
#> 21 -0.5758686+0.3715459i Traj_1 Sim_6 TrajSim_1_6
#> 22 -0.4457669+0.2852162i Traj_1 Sim_6 TrajSim_1_6
#> 23 -0.5106297+0.2642898i Traj_1 Sim_6 TrajSim_1_6
#> 24 -0.5120413+0.3761274i Traj_1 Sim_6 TrajSim_1_6
#> 25 -0.4253110+0.3614702i Traj_1 Sim_6 TrajSim_1_6
#> 26 -0.4886592+0.4214451i Traj_1 Sim_6 TrajSim_1_6
#> 27 -0.3838268+0.3862979i Traj_1 Sim_6 TrajSim_1_6
#> 28 -0.5425723+0.5000895i Traj_1 Sim_6 TrajSim_1_6
#> 29 -0.3223381+0.3767339i Traj_1 Sim_6 TrajSim_1_6
#>
#> [[6]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+1.693182i
#> 2 0.9680243 1.876784 0.02 0.02 0.968024+1.876784i
#> 3 1.6625080 1.978635 0.04 0.04 1.662508+1.978635i
#> 4 2.3764385 2.013788 0.06 0.06 2.376438+2.013788i
#> 5 3.0683029 1.987528 0.08 0.08 3.068303+1.987528i
#> 6 3.8206321 2.004759 0.10 0.10 3.820632+2.004759i
#> 7 4.5499161 2.063816 0.12 0.12 4.549916+2.063816i
#> 8 5.2138498 2.169842 0.14 0.14 5.213850+2.169842i
#> 9 5.9440217 2.359184 0.16 0.16 5.944022+2.359184i
#> 10 6.5808405 2.607065 0.18 0.18 6.580841+2.607065i
#> 11 7.1338402 2.770568 0.20 0.20 7.133840+2.770568i
#> 12 7.7552157 2.893485 0.22 0.22 7.755216+2.893485i
#> 13 8.3337888 2.922111 0.24 0.24 8.333789+2.922111i
#> 14 9.0613234 2.959481 0.26 0.26 9.061323+2.959481i
#> 15 9.7408747 3.078211 0.28 0.28 9.740875+3.078211i
#> 16 10.2866838 3.328343 0.30 0.30 10.286684+3.328343i
#> 17 10.7718642 3.682718 0.32 0.32 10.771864+3.682718i
#> 18 11.1921726 4.153721 0.34 0.34 11.192173+4.153721i
#> 19 11.4802250 4.559590 0.36 0.36 11.480225+4.559590i
#> 20 11.8762309 5.093376 0.38 0.38 11.876231+5.093376i
#> 21 12.3360854 5.452970 0.40 0.40 12.336085+5.452970i
#> 22 12.9591397 5.935536 0.42 0.42 12.959140+5.935536i
#> 23 13.5579430 6.431945 0.44 0.44 13.557943+6.431945i
#> 24 14.2415870 6.880366 0.46 0.46 14.241587+6.880366i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_6 TrajSim_2_6
#> 2 0.6033389+0.1836021i Traj_2 Sim_6 TrajSim_2_6
#> 3 0.6944837+0.1018511i Traj_2 Sim_6 TrajSim_2_6
#> 4 0.7139305+0.0351522i Traj_2 Sim_6 TrajSim_2_6
#> 5 0.6918644-0.0262596i Traj_2 Sim_6 TrajSim_2_6
#> 6 0.7523292+0.0172310i Traj_2 Sim_6 TrajSim_2_6
#> 7 0.7292840+0.0590572i Traj_2 Sim_6 TrajSim_2_6
#> 8 0.6639337+0.1060256i Traj_2 Sim_6 TrajSim_2_6
#> 9 0.7301719+0.1893420i Traj_2 Sim_6 TrajSim_2_6
#> 10 0.6368188+0.2478809i Traj_2 Sim_6 TrajSim_2_6
#> 11 0.5529997+0.1635037i Traj_2 Sim_6 TrajSim_2_6
#> 12 0.6213754+0.1229166i Traj_2 Sim_6 TrajSim_2_6
#> 13 0.5785731+0.0286258i Traj_2 Sim_6 TrajSim_2_6
#> 14 0.7275346+0.0373706i Traj_2 Sim_6 TrajSim_2_6
#> 15 0.6795513+0.1187293i Traj_2 Sim_6 TrajSim_2_6
#> 16 0.5458091+0.2501321i Traj_2 Sim_6 TrajSim_2_6
#> 17 0.4851804+0.3543751i Traj_2 Sim_6 TrajSim_2_6
#> 18 0.4203084+0.4710031i Traj_2 Sim_6 TrajSim_2_6
#> 19 0.2880523+0.4058685i Traj_2 Sim_6 TrajSim_2_6
#> 20 0.3960059+0.5337863i Traj_2 Sim_6 TrajSim_2_6
#> 21 0.4598545+0.3595941i Traj_2 Sim_6 TrajSim_2_6
#> 22 0.6230543+0.4825655i Traj_2 Sim_6 TrajSim_2_6
#> 23 0.5988033+0.4964097i Traj_2 Sim_6 TrajSim_2_6
#> 24 0.6836440+0.4484205i Traj_2 Sim_6 TrajSim_2_6
#>
#>
#> [[7]]
#> [[7]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763094 0.00 0.00 0.7554198+ 1.0267631i
#> 2 0.4480093 0.547302740 0.02 0.02 0.4480093+ 0.5473027i
#> 3 0.1382337 0.004782178 0.04 0.04 0.1382337+ 0.0047822i
#> 4 -0.2067378 -0.475975912 0.06 0.06 -0.2067378- 0.4759759i
#> 5 -0.5224560 -1.049055318 0.08 0.08 -0.5224560- 1.0490553i
#> 6 -0.9093550 -1.600047736 0.10 0.10 -0.9093550- 1.6000477i
#> 7 -1.2218611 -2.081015413 0.12 0.12 -1.2218611- 2.0810154i
#> 8 -1.5305243 -2.510024632 0.14 0.14 -1.5305243- 2.5100246i
#> 9 -1.8892190 -3.031029558 0.16 0.16 -1.8892190- 3.0310296i
#> 10 -2.2788576 -3.568626300 0.18 0.18 -2.2788576- 3.5686263i
#> 11 -2.5704539 -3.947458921 0.20 0.20 -2.5704539- 3.9474589i
#> 12 -2.8886798 -4.393394345 0.22 0.22 -2.8886798- 4.3933943i
#> 13 -3.3575308 -4.877913002 0.24 0.24 -3.3575308- 4.8779130i
#> 14 -3.7605546 -5.271616080 0.26 0.26 -3.7605546- 5.2716161i
#> 15 -4.2167788 -5.701376328 0.28 0.28 -4.2167788- 5.7013763i
#> 16 -4.5948054 -5.991416294 0.30 0.30 -4.5948054- 5.9914163i
#> 17 -5.0638051 -6.401131036 0.32 0.32 -5.0638051- 6.4011310i
#> 18 -5.4867960 -6.743306360 0.34 0.34 -5.4867960- 6.7433064i
#> 19 -5.9644899 -7.087375951 0.36 0.36 -5.9644899- 7.0873760i
#> 20 -6.4637047 -7.411253497 0.38 0.38 -6.4637047- 7.4112535i
#> 21 -7.0042013 -7.803398056 0.40 0.40 -7.0042013- 7.8033981i
#> 22 -7.4569151 -8.133120688 0.42 0.42 -7.4569151- 8.1331207i
#> 23 -7.8358419 -8.389718979 0.44 0.44 -7.8358419- 8.3897190i
#> 24 -8.2063687 -8.706583012 0.46 0.46 -8.2063687- 8.7065830i
#> 25 -8.5990961 -9.026730430 0.48 0.48 -8.5990961- 9.0267304i
#> 26 -9.0417407 -9.433022721 0.50 0.50 -9.0417407- 9.4330227i
#> 27 -9.5010688 -9.850861603 0.52 0.52 -9.5010688- 9.8508616i
#> 28 -9.9568597 -10.255701144 0.54 0.54 -9.9568597-10.2557011i
#> 29 -10.3734099 -10.636745794 0.56 0.56 -10.3734099-10.6367458i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_7 TrajSim_1_7
#> 2 -0.3074105-0.4794604i Traj_1 Sim_7 TrajSim_1_7
#> 3 -0.3097756-0.5425206i Traj_1 Sim_7 TrajSim_1_7
#> 4 -0.3449715-0.4807581i Traj_1 Sim_7 TrajSim_1_7
#> 5 -0.3157182-0.5730794i Traj_1 Sim_7 TrajSim_1_7
#> 6 -0.3868990-0.5509924i Traj_1 Sim_7 TrajSim_1_7
#> 7 -0.3125061-0.4809677i Traj_1 Sim_7 TrajSim_1_7
#> 8 -0.3086632-0.4290092i Traj_1 Sim_7 TrajSim_1_7
#> 9 -0.3586947-0.5210049i Traj_1 Sim_7 TrajSim_1_7
#> 10 -0.3896386-0.5375967i Traj_1 Sim_7 TrajSim_1_7
#> 11 -0.2915964-0.3788326i Traj_1 Sim_7 TrajSim_1_7
#> 12 -0.3182259-0.4459354i Traj_1 Sim_7 TrajSim_1_7
#> 13 -0.4688510-0.4845187i Traj_1 Sim_7 TrajSim_1_7
#> 14 -0.4030238-0.3937031i Traj_1 Sim_7 TrajSim_1_7
#> 15 -0.4562242-0.4297602i Traj_1 Sim_7 TrajSim_1_7
#> 16 -0.3780265-0.2900400i Traj_1 Sim_7 TrajSim_1_7
#> 17 -0.4689997-0.4097147i Traj_1 Sim_7 TrajSim_1_7
#> 18 -0.4229909-0.3421753i Traj_1 Sim_7 TrajSim_1_7
#> 19 -0.4776939-0.3440696i Traj_1 Sim_7 TrajSim_1_7
#> 20 -0.4992147-0.3238775i Traj_1 Sim_7 TrajSim_1_7
#> 21 -0.5404966-0.3921446i Traj_1 Sim_7 TrajSim_1_7
#> 22 -0.4527138-0.3297226i Traj_1 Sim_7 TrajSim_1_7
#> 23 -0.3789268-0.2565983i Traj_1 Sim_7 TrajSim_1_7
#> 24 -0.3705268-0.3168640i Traj_1 Sim_7 TrajSim_1_7
#> 25 -0.3927275-0.3201474i Traj_1 Sim_7 TrajSim_1_7
#> 26 -0.4426445-0.4062923i Traj_1 Sim_7 TrajSim_1_7
#> 27 -0.4593281-0.4178389i Traj_1 Sim_7 TrajSim_1_7
#> 28 -0.4557909-0.4048395i Traj_1 Sim_7 TrajSim_1_7
#> 29 -0.4165502-0.3810446i Traj_1 Sim_7 TrajSim_1_7
#>
#> [[7]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.6931823 0.00 0.00 0.364685+1.693182i
#> 2 0.8186104 1.1664053 0.02 0.02 0.818610+1.166405i
#> 3 1.1800709 0.7150627 0.04 0.04 1.180071+0.715063i
#> 4 1.6239893 0.1095189 0.06 0.06 1.623989+0.109519i
#> 5 2.1070146 -0.3318020 0.08 0.08 2.107015-0.331802i
#> 6 2.6261797 -0.7685301 0.10 0.10 2.626180-0.768530i
#> 7 3.0808166 -1.2469328 0.12 0.12 3.080817-1.246933i
#> 8 3.6960980 -1.6770372 0.14 0.14 3.696098-1.677037i
#> 9 4.3853397 -1.9786803 0.16 0.16 4.385340-1.978680i
#> 10 4.9093228 -2.1274296 0.18 0.18 4.909323-2.127430i
#> 11 5.4658506 -2.3451703 0.20 0.20 5.465851-2.345170i
#> 12 6.0658278 -2.5593967 0.22 0.22 6.065828-2.559397i
#> 13 6.6819860 -2.8000920 0.24 0.24 6.681986-2.800092i
#> 14 7.1988701 -3.0124710 0.26 0.26 7.198870-3.012471i
#> 15 7.8036131 -3.2042604 0.28 0.28 7.803613-3.204260i
#> 16 8.6705433 -3.4359455 0.30 0.30 8.670543-3.435946i
#> 17 9.3111670 -3.4941122 0.32 0.32 9.311167-3.494112i
#> 18 9.8408108 -3.5978629 0.34 0.34 9.840811-3.597863i
#> 19 10.4535810 -3.7418109 0.36 0.36 10.453581-3.741811i
#> 20 11.3467469 -3.9014438 0.38 0.38 11.346747-3.901444i
#> 21 11.7733186 -4.0428559 0.40 0.40 11.773319-4.042856i
#> 22 12.1923861 -4.2703891 0.42 0.42 12.192386-4.270389i
#> 23 12.7200890 -4.7080621 0.44 0.44 12.720089-4.708062i
#> 24 13.2820784 -5.0579195 0.46 0.46 13.282078-5.057919i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_7 TrajSim_2_7
#> 2 0.4539250-0.5267769i Traj_2 Sim_7 TrajSim_2_7
#> 3 0.3614605-0.4513426i Traj_2 Sim_7 TrajSim_2_7
#> 4 0.4439184-0.6055438i Traj_2 Sim_7 TrajSim_2_7
#> 5 0.4830254-0.4413209i Traj_2 Sim_7 TrajSim_2_7
#> 6 0.5191651-0.4367281i Traj_2 Sim_7 TrajSim_2_7
#> 7 0.4546370-0.4784027i Traj_2 Sim_7 TrajSim_2_7
#> 8 0.6152813-0.4301044i Traj_2 Sim_7 TrajSim_2_7
#> 9 0.6892417-0.3016431i Traj_2 Sim_7 TrajSim_2_7
#> 10 0.5239831-0.1487493i Traj_2 Sim_7 TrajSim_2_7
#> 11 0.5565278-0.2177407i Traj_2 Sim_7 TrajSim_2_7
#> 12 0.5999772-0.2142264i Traj_2 Sim_7 TrajSim_2_7
#> 13 0.6161582-0.2406953i Traj_2 Sim_7 TrajSim_2_7
#> 14 0.5168841-0.2123790i Traj_2 Sim_7 TrajSim_2_7
#> 15 0.6047430-0.1917895i Traj_2 Sim_7 TrajSim_2_7
#> 16 0.8669302-0.2316851i Traj_2 Sim_7 TrajSim_2_7
#> 17 0.6406237-0.0581666i Traj_2 Sim_7 TrajSim_2_7
#> 18 0.5296438-0.1037507i Traj_2 Sim_7 TrajSim_2_7
#> 19 0.6127703-0.1439481i Traj_2 Sim_7 TrajSim_2_7
#> 20 0.8931659-0.1596328i Traj_2 Sim_7 TrajSim_2_7
#> 21 0.4265716-0.1414121i Traj_2 Sim_7 TrajSim_2_7
#> 22 0.4190675-0.2275332i Traj_2 Sim_7 TrajSim_2_7
#> 23 0.5277030-0.4376730i Traj_2 Sim_7 TrajSim_2_7
#> 24 0.5619894-0.3498574i Traj_2 Sim_7 TrajSim_2_7
#>
#>
#> [[8]]
#> [[8]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+1.026763i
#> 2 0.1727461 1.271792 0.02 0.02 0.172746+1.271792i
#> 3 -0.4462253 1.583445 0.04 0.04 -0.446225+1.583445i
#> 4 -1.0166504 1.904171 0.06 0.06 -1.016650+1.904171i
#> 5 -1.6037481 2.233377 0.08 0.08 -1.603748+2.233377i
#> 6 -2.0769774 2.519004 0.10 0.10 -2.076977+2.519004i
#> 7 -2.5978297 2.799326 0.12 0.12 -2.597830+2.799326i
#> 8 -3.1038785 3.076522 0.14 0.14 -3.103879+3.076522i
#> 9 -3.6278496 3.388022 0.16 0.16 -3.627850+3.388022i
#> 10 -4.0680312 3.601707 0.18 0.18 -4.068031+3.601707i
#> 11 -4.6398516 3.857656 0.20 0.20 -4.639852+3.857656i
#> 12 -5.1714415 4.073533 0.22 0.22 -5.171442+4.073533i
#> 13 -5.6902774 4.211096 0.24 0.24 -5.690277+4.211096i
#> 14 -6.2725009 4.324717 0.26 0.26 -6.272501+4.324717i
#> 15 -6.8228971 4.433329 0.28 0.28 -6.822897+4.433329i
#> 16 -7.3407779 4.536511 0.30 0.30 -7.340778+4.536511i
#> 17 -7.8936188 4.703026 0.32 0.32 -7.893619+4.703026i
#> 18 -8.4255408 4.876708 0.34 0.34 -8.425541+4.876708i
#> 19 -8.9019925 5.038710 0.36 0.36 -8.901993+5.038710i
#> 20 -9.4656967 5.212396 0.38 0.38 -9.465697+5.212396i
#> 21 -10.0321993 5.362278 0.40 0.40 -10.032199+5.362278i
#> 22 -10.6525152 5.473958 0.42 0.42 -10.652515+5.473958i
#> 23 -11.1550025 5.579044 0.44 0.44 -11.155003+5.579044i
#> 24 -11.7309086 5.692526 0.46 0.46 -11.730909+5.692526i
#> 25 -12.2537363 5.780359 0.48 0.48 -12.253736+5.780359i
#> 26 -12.8093441 5.856644 0.50 0.50 -12.809344+5.856644i
#> 27 -13.3697775 5.941607 0.52 0.52 -13.369777+5.941607i
#> 28 -13.9480637 6.067339 0.54 0.54 -13.948064+6.067339i
#> 29 -14.4925352 6.231113 0.56 0.56 -14.492535+6.231113i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_8 TrajSim_1_8
#> 2 -0.5826737+0.2450285i Traj_1 Sim_8 TrajSim_1_8
#> 3 -0.6189714+0.3116530i Traj_1 Sim_8 TrajSim_1_8
#> 4 -0.5704251+0.3207260i Traj_1 Sim_8 TrajSim_1_8
#> 5 -0.5870978+0.3292061i Traj_1 Sim_8 TrajSim_1_8
#> 6 -0.4732293+0.2856272i Traj_1 Sim_8 TrajSim_1_8
#> 7 -0.5208523+0.2803217i Traj_1 Sim_8 TrajSim_1_8
#> 8 -0.5060488+0.2771967i Traj_1 Sim_8 TrajSim_1_8
#> 9 -0.5239711+0.3114997i Traj_1 Sim_8 TrajSim_1_8
#> 10 -0.4401816+0.2136847i Traj_1 Sim_8 TrajSim_1_8
#> 11 -0.5718204+0.2559494i Traj_1 Sim_8 TrajSim_1_8
#> 12 -0.5315899+0.2158768i Traj_1 Sim_8 TrajSim_1_8
#> 13 -0.5188359+0.1375636i Traj_1 Sim_8 TrajSim_1_8
#> 14 -0.5822236+0.1136209i Traj_1 Sim_8 TrajSim_1_8
#> 15 -0.5503961+0.1086113i Traj_1 Sim_8 TrajSim_1_8
#> 16 -0.5178808+0.1031826i Traj_1 Sim_8 TrajSim_1_8
#> 17 -0.5528409+0.1665143i Traj_1 Sim_8 TrajSim_1_8
#> 18 -0.5319221+0.1736828i Traj_1 Sim_8 TrajSim_1_8
#> 19 -0.4764517+0.1620017i Traj_1 Sim_8 TrajSim_1_8
#> 20 -0.5637041+0.1736858i Traj_1 Sim_8 TrajSim_1_8
#> 21 -0.5665026+0.1498821i Traj_1 Sim_8 TrajSim_1_8
#> 22 -0.6203160+0.1116797i Traj_1 Sim_8 TrajSim_1_8
#> 23 -0.5024873+0.1050866i Traj_1 Sim_8 TrajSim_1_8
#> 24 -0.5759061+0.1134815i Traj_1 Sim_8 TrajSim_1_8
#> 25 -0.5228277+0.0878335i Traj_1 Sim_8 TrajSim_1_8
#> 26 -0.5556078+0.0762850i Traj_1 Sim_8 TrajSim_1_8
#> 27 -0.5604334+0.0849628i Traj_1 Sim_8 TrajSim_1_8
#> 28 -0.5782862+0.1257320i Traj_1 Sim_8 TrajSim_1_8
#> 29 -0.5444715+0.1637740i Traj_1 Sim_8 TrajSim_1_8
#>
#> [[8]][[2]]
#> x y time displacementTime polar
#> 1 0.36468541 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.26154071 2.267233 0.02 0.02 0.261541+ 2.267233i
#> 3 0.07289861 2.909739 0.04 0.04 0.072899+ 2.909739i
#> 4 -0.08431470 3.495878 0.06 0.06 -0.084315+ 3.495878i
#> 5 -0.28216229 4.147213 0.08 0.08 -0.282162+ 4.147213i
#> 6 -0.38359288 4.781693 0.10 0.10 -0.383593+ 4.781693i
#> 7 -0.59075840 5.400648 0.12 0.12 -0.590758+ 5.400648i
#> 8 -0.81987357 5.911380 0.14 0.14 -0.819874+ 5.911380i
#> 9 -0.97444663 6.509192 0.16 0.16 -0.974447+ 6.509192i
#> 10 -1.19959700 7.092652 0.18 0.18 -1.199597+ 7.092652i
#> 11 -1.40382096 7.658005 0.20 0.20 -1.403821+ 7.658005i
#> 12 -1.54602263 8.436312 0.22 0.22 -1.546023+ 8.436312i
#> 13 -1.67257735 9.063002 0.24 0.24 -1.672577+ 9.063002i
#> 14 -1.70200593 9.782970 0.26 0.26 -1.702006+ 9.782970i
#> 15 -1.61373973 10.426194 0.28 0.28 -1.613740+10.426194i
#> 16 -1.54306207 10.951120 0.30 0.30 -1.543062+10.951120i
#> 17 -1.56568775 11.585064 0.32 0.32 -1.565688+11.585064i
#> 18 -1.66184331 12.269938 0.34 0.34 -1.661843+12.269938i
#> 19 -1.62040072 13.006428 0.36 0.36 -1.620401+13.006428i
#> 20 -1.61333668 13.607491 0.38 0.38 -1.613337+13.607491i
#> 21 -1.56475692 14.246860 0.40 0.40 -1.564757+14.246860i
#> 22 -1.49837791 14.984848 0.42 0.42 -1.498378+14.984848i
#> 23 -1.48986806 15.648046 0.44 0.44 -1.489868+15.648046i
#> 24 -1.52641588 16.412158 0.46 0.46 -1.526416+16.412158i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_8 TrajSim_2_8
#> 2 -0.1031447+0.5740509i Traj_2 Sim_8 TrajSim_2_8
#> 3 -0.1886421+0.6425063i Traj_2 Sim_8 TrajSim_2_8
#> 4 -0.1572133+0.5861390i Traj_2 Sim_8 TrajSim_2_8
#> 5 -0.1978476+0.6513348i Traj_2 Sim_8 TrajSim_2_8
#> 6 -0.1014306+0.6344793i Traj_2 Sim_8 TrajSim_2_8
#> 7 -0.2071655+0.6189559i Traj_2 Sim_8 TrajSim_2_8
#> 8 -0.2291152+0.5107319i Traj_2 Sim_8 TrajSim_2_8
#> 9 -0.1545731+0.5978112i Traj_2 Sim_8 TrajSim_2_8
#> 10 -0.2251504+0.5834607i Traj_2 Sim_8 TrajSim_2_8
#> 11 -0.2042240+0.5653531i Traj_2 Sim_8 TrajSim_2_8
#> 12 -0.1422017+0.7783066i Traj_2 Sim_8 TrajSim_2_8
#> 13 -0.1265547+0.6266903i Traj_2 Sim_8 TrajSim_2_8
#> 14 -0.0294286+0.7199676i Traj_2 Sim_8 TrajSim_2_8
#> 15 0.0882662+0.6432236i Traj_2 Sim_8 TrajSim_2_8
#> 16 0.0706777+0.5249269i Traj_2 Sim_8 TrajSim_2_8
#> 17 -0.0226257+0.6339433i Traj_2 Sim_8 TrajSim_2_8
#> 18 -0.0961556+0.6848747i Traj_2 Sim_8 TrajSim_2_8
#> 19 0.0414426+0.7364897i Traj_2 Sim_8 TrajSim_2_8
#> 20 0.0070640+0.6010625i Traj_2 Sim_8 TrajSim_2_8
#> 21 0.0485798+0.6393693i Traj_2 Sim_8 TrajSim_2_8
#> 22 0.0663790+0.7379883i Traj_2 Sim_8 TrajSim_2_8
#> 23 0.0085099+0.6631976i Traj_2 Sim_8 TrajSim_2_8
#> 24 -0.0365478+0.7641118i Traj_2 Sim_8 TrajSim_2_8
#>
#>
#> [[9]]
#> [[9]][[1]]
#> x y time displacementTime polar
#> 1 0.75541978 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.62699589 1.511241 0.02 0.02 0.626996+ 1.511241i
#> 3 0.46846661 2.105246 0.04 0.04 0.468467+ 2.105246i
#> 4 0.30409277 2.633167 0.06 0.06 0.304093+ 2.633167i
#> 5 0.14059232 3.132064 0.08 0.08 0.140592+ 3.132064i
#> 6 -0.05503368 3.747156 0.10 0.10 -0.055034+ 3.747156i
#> 7 -0.21411887 4.437555 0.12 0.12 -0.214119+ 4.437555i
#> 8 -0.34419320 5.077284 0.14 0.14 -0.344193+ 5.077284i
#> 9 -0.45014778 5.613039 0.16 0.16 -0.450148+ 5.613039i
#> 10 -0.53389421 6.204886 0.18 0.18 -0.533894+ 6.204886i
#> 11 -0.66135178 6.797627 0.20 0.20 -0.661352+ 6.797627i
#> 12 -0.80940778 7.431222 0.22 0.22 -0.809408+ 7.431222i
#> 13 -0.98573683 8.037233 0.24 0.24 -0.985737+ 8.037233i
#> 14 -1.10437580 8.597424 0.26 0.26 -1.104376+ 8.597424i
#> 15 -1.16300622 9.224078 0.28 0.28 -1.163006+ 9.224078i
#> 16 -1.25294956 9.846908 0.30 0.30 -1.252950+ 9.846908i
#> 17 -1.34792046 10.387887 0.32 0.32 -1.347920+10.387887i
#> 18 -1.46981305 10.917074 0.34 0.34 -1.469813+10.917074i
#> 19 -1.60161538 11.548087 0.36 0.36 -1.601615+11.548087i
#> 20 -1.71574617 12.098901 0.38 0.38 -1.715746+12.098901i
#> 21 -1.83035497 12.697014 0.40 0.40 -1.830355+12.697014i
#> 22 -1.98165089 13.289931 0.42 0.42 -1.981651+13.289931i
#> 23 -2.10703632 13.895178 0.44 0.44 -2.107036+13.895178i
#> 24 -2.24822933 14.541305 0.46 0.46 -2.248229+14.541305i
#> 25 -2.30082111 15.041048 0.48 0.48 -2.300821+15.041048i
#> 26 -2.40518260 15.717262 0.50 0.50 -2.405183+15.717262i
#> 27 -2.47277394 16.243759 0.52 0.52 -2.472774+16.243759i
#> 28 -2.52791364 16.774270 0.54 0.54 -2.527914+16.774270i
#> 29 -2.56542173 17.298997 0.56 0.56 -2.565422+17.298997i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_9 TrajSim_1_9
#> 2 -0.1284239+0.4844775i Traj_1 Sim_9 TrajSim_1_9
#> 3 -0.1585293+0.5940056i Traj_1 Sim_9 TrajSim_1_9
#> 4 -0.1643738+0.5279211i Traj_1 Sim_9 TrajSim_1_9
#> 5 -0.1635004+0.4988969i Traj_1 Sim_9 TrajSim_1_9
#> 6 -0.1956260+0.6150918i Traj_1 Sim_9 TrajSim_1_9
#> 7 -0.1590852+0.6903995i Traj_1 Sim_9 TrajSim_1_9
#> 8 -0.1300743+0.6397289i Traj_1 Sim_9 TrajSim_1_9
#> 9 -0.1059546+0.5357542i Traj_1 Sim_9 TrajSim_1_9
#> 10 -0.0837464+0.5918476i Traj_1 Sim_9 TrajSim_1_9
#> 11 -0.1274576+0.5927407i Traj_1 Sim_9 TrajSim_1_9
#> 12 -0.1480560+0.6335949i Traj_1 Sim_9 TrajSim_1_9
#> 13 -0.1763290+0.6060116i Traj_1 Sim_9 TrajSim_1_9
#> 14 -0.1186390+0.5601907i Traj_1 Sim_9 TrajSim_1_9
#> 15 -0.0586304+0.6266540i Traj_1 Sim_9 TrajSim_1_9
#> 16 -0.0899433+0.6228303i Traj_1 Sim_9 TrajSim_1_9
#> 17 -0.0949709+0.5409791i Traj_1 Sim_9 TrajSim_1_9
#> 18 -0.1218926+0.5291864i Traj_1 Sim_9 TrajSim_1_9
#> 19 -0.1318023+0.6310136i Traj_1 Sim_9 TrajSim_1_9
#> 20 -0.1141308+0.5508140i Traj_1 Sim_9 TrajSim_1_9
#> 21 -0.1146088+0.5981130i Traj_1 Sim_9 TrajSim_1_9
#> 22 -0.1512959+0.5929166i Traj_1 Sim_9 TrajSim_1_9
#> 23 -0.1253854+0.6052475i Traj_1 Sim_9 TrajSim_1_9
#> 24 -0.1411930+0.6461261i Traj_1 Sim_9 TrajSim_1_9
#> 25 -0.0525918+0.4997430i Traj_1 Sim_9 TrajSim_1_9
#> 26 -0.1043615+0.6762143i Traj_1 Sim_9 TrajSim_1_9
#> 27 -0.0675913+0.5264968i Traj_1 Sim_9 TrajSim_1_9
#> 28 -0.0551397+0.5305119i Traj_1 Sim_9 TrajSim_1_9
#> 29 -0.0375081+0.5247264i Traj_1 Sim_9 TrajSim_1_9
#>
#> [[9]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+1.693182i
#> 2 -0.2990409 1.882547 0.02 0.02 -0.299041+1.882547i
#> 3 -0.8732583 2.057109 0.04 0.04 -0.873258+2.057109i
#> 4 -1.5120528 2.146760 0.06 0.06 -1.512053+2.146760i
#> 5 -2.0598934 2.221366 0.08 0.08 -2.059893+2.221366i
#> 6 -2.7176125 2.255115 0.10 0.10 -2.717612+2.255115i
#> 7 -3.3477957 2.471758 0.12 0.12 -3.347796+2.471758i
#> 8 -3.8846568 2.645038 0.14 0.14 -3.884657+2.645038i
#> 9 -4.3736964 2.821535 0.16 0.16 -4.373696+2.821535i
#> 10 -4.9784787 3.020917 0.18 0.18 -4.978479+3.020917i
#> 11 -5.6287373 3.217285 0.20 0.20 -5.628737+3.217285i
#> 12 -6.3118313 3.397323 0.22 0.22 -6.311831+3.397323i
#> 13 -6.8770539 3.513761 0.24 0.24 -6.877054+3.513761i
#> 14 -7.7131758 3.563075 0.26 0.26 -7.713176+3.563075i
#> 15 -8.1998650 3.710645 0.28 0.28 -8.199865+3.710645i
#> 16 -8.8876655 3.843231 0.30 0.30 -8.887666+3.843231i
#> 17 -9.6353878 3.975751 0.32 0.32 -9.635388+3.975751i
#> 18 -10.2238046 4.051860 0.34 0.34 -10.223805+4.051860i
#> 19 -11.0900299 4.114076 0.36 0.36 -11.090030+4.114076i
#> 20 -11.7638758 4.228104 0.38 0.38 -11.763876+4.228104i
#> 21 -12.4512150 4.460815 0.40 0.40 -12.451215+4.460815i
#> 22 -13.0841545 4.590303 0.42 0.42 -13.084154+4.590303i
#> 23 -13.5717456 4.833895 0.44 0.44 -13.571746+4.833895i
#> 24 -14.2222651 5.001277 0.46 0.46 -14.222265+5.001277i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_9 TrajSim_2_9
#> 2 -0.6637263+0.1893644i Traj_2 Sim_9 TrajSim_2_9
#> 3 -0.5742174+0.1745625i Traj_2 Sim_9 TrajSim_2_9
#> 4 -0.6387945+0.0896512i Traj_2 Sim_9 TrajSim_2_9
#> 5 -0.5478406+0.0746054i Traj_2 Sim_9 TrajSim_2_9
#> 6 -0.6577190+0.0337495i Traj_2 Sim_9 TrajSim_2_9
#> 7 -0.6301832+0.2166427i Traj_2 Sim_9 TrajSim_2_9
#> 8 -0.5368611+0.1732797i Traj_2 Sim_9 TrajSim_2_9
#> 9 -0.4890396+0.1764973i Traj_2 Sim_9 TrajSim_2_9
#> 10 -0.6047823+0.1993815i Traj_2 Sim_9 TrajSim_2_9
#> 11 -0.6502586+0.1963689i Traj_2 Sim_9 TrajSim_2_9
#> 12 -0.6830940+0.1800378i Traj_2 Sim_9 TrajSim_2_9
#> 13 -0.5652226+0.1164377i Traj_2 Sim_9 TrajSim_2_9
#> 14 -0.8361219+0.0493140i Traj_2 Sim_9 TrajSim_2_9
#> 15 -0.4866893+0.1475697i Traj_2 Sim_9 TrajSim_2_9
#> 16 -0.6878005+0.1325861i Traj_2 Sim_9 TrajSim_2_9
#> 17 -0.7477223+0.1325203i Traj_2 Sim_9 TrajSim_2_9
#> 18 -0.5884168+0.0761095i Traj_2 Sim_9 TrajSim_2_9
#> 19 -0.8662253+0.0622153i Traj_2 Sim_9 TrajSim_2_9
#> 20 -0.6738459+0.1140288i Traj_2 Sim_9 TrajSim_2_9
#> 21 -0.6873392+0.2327104i Traj_2 Sim_9 TrajSim_2_9
#> 22 -0.6329395+0.1294878i Traj_2 Sim_9 TrajSim_2_9
#> 23 -0.4875912+0.2435923i Traj_2 Sim_9 TrajSim_2_9
#> 24 -0.6505194+0.1673822i Traj_2 Sim_9 TrajSim_2_9
#>
#>
#> [[10]]
#> [[10]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.02676309 0.00 0.00 0.755420+1.026763i
#> 2 1.1665694 0.78623156 0.02 0.02 1.166569+0.786232i
#> 3 1.6911412 0.54606215 0.04 0.04 1.691141+0.546062i
#> 4 2.2214233 0.34762644 0.06 0.06 2.221423+0.347626i
#> 5 2.8292661 0.12963717 0.08 0.08 2.829266+0.129637i
#> 6 3.3005253 -0.05509085 0.10 0.10 3.300525-0.055091i
#> 7 3.8148861 -0.24468540 0.12 0.12 3.814886-0.244685i
#> 8 4.4466644 -0.41726743 0.14 0.14 4.446664-0.417267i
#> 9 5.0028997 -0.61424917 0.16 0.16 5.002900-0.614249i
#> 10 5.5766766 -0.79895846 0.18 0.18 5.576677-0.798958i
#> 11 6.1720551 -0.96698404 0.20 0.20 6.172055-0.966984i
#> 12 6.7365007 -1.14062779 0.22 0.22 6.736501-1.140628i
#> 13 7.2952940 -1.27949945 0.24 0.24 7.295294-1.279499i
#> 14 7.8287854 -1.37936126 0.26 0.26 7.828785-1.379361i
#> 15 8.4096498 -1.52094055 0.28 0.28 8.409650-1.520941i
#> 16 8.9932947 -1.64024829 0.30 0.30 8.993295-1.640248i
#> 17 9.5730715 -1.72879643 0.32 0.32 9.573071-1.728796i
#> 18 10.2120539 -1.75872505 0.34 0.34 10.212054-1.758725i
#> 19 10.7074700 -1.75619523 0.36 0.36 10.707470-1.756195i
#> 20 11.3549028 -1.74258160 0.38 0.38 11.354903-1.742582i
#> 21 11.8722136 -1.78728034 0.40 0.40 11.872214-1.787280i
#> 22 12.4558511 -1.81169159 0.42 0.42 12.455851-1.811692i
#> 23 13.0746241 -1.82082795 0.44 0.44 13.074624-1.820828i
#> 24 13.5670714 -1.84064340 0.46 0.46 13.567071-1.840643i
#> 25 14.0953062 -1.84395275 0.48 0.48 14.095306-1.843953i
#> 26 14.6254262 -1.88062930 0.50 0.50 14.625426-1.880629i
#> 27 15.1430004 -1.90151484 0.52 0.52 15.143000-1.901515i
#> 28 15.7555674 -1.92460955 0.54 0.54 15.755567-1.924610i
#> 29 16.3720312 -1.91531691 0.56 0.56 16.372031-1.915317i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_10 TrajSim_1_10
#> 2 0.4111496-0.2405315i Traj_1 Sim_10 TrajSim_1_10
#> 3 0.5245718-0.2401694i Traj_1 Sim_10 TrajSim_1_10
#> 4 0.5302821-0.1984357i Traj_1 Sim_10 TrajSim_1_10
#> 5 0.6078428-0.2179893i Traj_1 Sim_10 TrajSim_1_10
#> 6 0.4712593-0.1847280i Traj_1 Sim_10 TrajSim_1_10
#> 7 0.5143607-0.1895945i Traj_1 Sim_10 TrajSim_1_10
#> 8 0.6317783-0.1725820i Traj_1 Sim_10 TrajSim_1_10
#> 9 0.5562353-0.1969817i Traj_1 Sim_10 TrajSim_1_10
#> 10 0.5737769-0.1847093i Traj_1 Sim_10 TrajSim_1_10
#> 11 0.5953784-0.1680256i Traj_1 Sim_10 TrajSim_1_10
#> 12 0.5644457-0.1736437i Traj_1 Sim_10 TrajSim_1_10
#> 13 0.5587932-0.1388717i Traj_1 Sim_10 TrajSim_1_10
#> 14 0.5334915-0.0998618i Traj_1 Sim_10 TrajSim_1_10
#> 15 0.5808643-0.1415793i Traj_1 Sim_10 TrajSim_1_10
#> 16 0.5836450-0.1193077i Traj_1 Sim_10 TrajSim_1_10
#> 17 0.5797767-0.0885481i Traj_1 Sim_10 TrajSim_1_10
#> 18 0.6389825-0.0299286i Traj_1 Sim_10 TrajSim_1_10
#> 19 0.4954161+0.0025298i Traj_1 Sim_10 TrajSim_1_10
#> 20 0.6474328+0.0136136i Traj_1 Sim_10 TrajSim_1_10
#> 21 0.5173108-0.0446987i Traj_1 Sim_10 TrajSim_1_10
#> 22 0.5836375-0.0244113i Traj_1 Sim_10 TrajSim_1_10
#> 23 0.6187730-0.0091364i Traj_1 Sim_10 TrajSim_1_10
#> 24 0.4924473-0.0198154i Traj_1 Sim_10 TrajSim_1_10
#> 25 0.5282348-0.0033093i Traj_1 Sim_10 TrajSim_1_10
#> 26 0.5301200-0.0366766i Traj_1 Sim_10 TrajSim_1_10
#> 27 0.5175742-0.0208855i Traj_1 Sim_10 TrajSim_1_10
#> 28 0.6125669-0.0230947i Traj_1 Sim_10 TrajSim_1_10
#> 29 0.6164639+0.0092926i Traj_1 Sim_10 TrajSim_1_10
#>
#> [[10]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.6931823 0.00 0.00 0.364685+1.693182i
#> 2 -0.1774133 2.0646128 0.02 0.02 -0.177413+2.064613i
#> 3 -0.6760822 2.3663367 0.04 0.04 -0.676082+2.366337i
#> 4 -1.4272788 2.7677069 0.06 0.06 -1.427279+2.767707i
#> 5 -2.0894220 3.0859684 0.08 0.08 -2.089422+3.085968i
#> 6 -2.6342548 3.3423220 0.10 0.10 -2.634255+3.342322i
#> 7 -3.2474627 3.6090672 0.12 0.12 -3.247463+3.609067i
#> 8 -3.8068076 3.8512089 0.14 0.14 -3.806808+3.851209i
#> 9 -4.4604296 4.0755243 0.16 0.16 -4.460430+4.075524i
#> 10 -5.2704319 4.3899237 0.18 0.18 -5.270432+4.389924i
#> 11 -5.8912147 4.5376907 0.20 0.20 -5.891215+4.537691i
#> 12 -6.4528923 4.5436428 0.22 0.22 -6.452892+4.543643i
#> 13 -6.7912271 4.4746150 0.24 0.24 -6.791227+4.474615i
#> 14 -7.4742401 4.2405482 0.26 0.26 -7.474240+4.240548i
#> 15 -7.9571534 4.0074455 0.28 0.28 -7.957153+4.007446i
#> 16 -8.5320614 3.5120050 0.30 0.30 -8.532061+3.512005i
#> 17 -9.0359627 3.0854340 0.32 0.32 -9.035963+3.085434i
#> 18 -9.3953597 2.5674867 0.34 0.34 -9.395360+2.567487i
#> 19 -9.8188442 2.0222199 0.36 0.36 -9.818844+2.022220i
#> 20 -10.3028668 1.5020730 0.38 0.38 -10.302867+1.502073i
#> 21 -10.7411877 0.9586836 0.40 0.40 -10.741188+0.958684i
#> 22 -11.1015076 0.6625242 0.42 0.42 -11.101508+0.662524i
#> 23 -11.7670585 0.2527907 0.44 0.44 -11.767058+0.252791i
#> 24 -12.1502142 -0.1386988 0.46 0.46 -12.150214-0.138699i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_10 TrajSim_2_10
#> 2 -0.5420987+0.3714305i Traj_2 Sim_10 TrajSim_2_10
#> 3 -0.4986690+0.3017239i Traj_2 Sim_10 TrajSim_2_10
#> 4 -0.7511965+0.4013702i Traj_2 Sim_10 TrajSim_2_10
#> 5 -0.6621433+0.3182615i Traj_2 Sim_10 TrajSim_2_10
#> 6 -0.5448328+0.2563536i Traj_2 Sim_10 TrajSim_2_10
#> 7 -0.6132079+0.2667452i Traj_2 Sim_10 TrajSim_2_10
#> 8 -0.5593449+0.2421417i Traj_2 Sim_10 TrajSim_2_10
#> 9 -0.6536221+0.2243154i Traj_2 Sim_10 TrajSim_2_10
#> 10 -0.8100023+0.3143994i Traj_2 Sim_10 TrajSim_2_10
#> 11 -0.6207828+0.1477670i Traj_2 Sim_10 TrajSim_2_10
#> 12 -0.5616776+0.0059521i Traj_2 Sim_10 TrajSim_2_10
#> 13 -0.3383349-0.0690279i Traj_2 Sim_10 TrajSim_2_10
#> 14 -0.6830130-0.2340668i Traj_2 Sim_10 TrajSim_2_10
#> 15 -0.4829133-0.2331026i Traj_2 Sim_10 TrajSim_2_10
#> 16 -0.5749080-0.4954405i Traj_2 Sim_10 TrajSim_2_10
#> 17 -0.5039013-0.4265710i Traj_2 Sim_10 TrajSim_2_10
#> 18 -0.3593970-0.5179473i Traj_2 Sim_10 TrajSim_2_10
#> 19 -0.4234845-0.5452669i Traj_2 Sim_10 TrajSim_2_10
#> 20 -0.4840226-0.5201469i Traj_2 Sim_10 TrajSim_2_10
#> 21 -0.4383210-0.5433893i Traj_2 Sim_10 TrajSim_2_10
#> 22 -0.3603199-0.2961594i Traj_2 Sim_10 TrajSim_2_10
#> 23 -0.6655509-0.4097335i Traj_2 Sim_10 TrajSim_2_10
#> 24 -0.3831558-0.3914895i Traj_2 Sim_10 TrajSim_2_10
sim_directed_paluxy <- simulate_track(PaluxyRiver, nsim = 100, model = "Directed")
print(sim_directed_paluxy[1:10])
#> [[1]]
#> [[1]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.7449315 1.525664 0.02 0.02 0.744932+ 1.525664i
#> 3 0.7147723 2.103576 0.04 0.04 0.714772+ 2.103576i
#> 4 0.7592317 2.656770 0.06 0.06 0.759232+ 2.656770i
#> 5 0.8430012 3.242721 0.08 0.08 0.843001+ 3.242721i
#> 6 0.9101161 3.772585 0.10 0.10 0.910116+ 3.772585i
#> 7 1.0309002 4.264878 0.12 0.12 1.030900+ 4.264878i
#> 8 1.1145271 4.838336 0.14 0.14 1.114527+ 4.838336i
#> 9 1.3540336 5.423097 0.16 0.16 1.354034+ 5.423097i
#> 10 1.4356909 5.976410 0.18 0.18 1.435691+ 5.976410i
#> 11 1.4649116 6.615164 0.20 0.20 1.464912+ 6.615164i
#> 12 1.4710648 7.089928 0.22 0.22 1.471065+ 7.089928i
#> 13 1.4942464 7.722643 0.24 0.24 1.494246+ 7.722643i
#> 14 1.5660430 8.293828 0.26 0.26 1.566043+ 8.293828i
#> 15 1.6498276 8.977115 0.28 0.28 1.649828+ 8.977115i
#> 16 1.7168541 9.547321 0.30 0.30 1.716854+ 9.547321i
#> 17 1.7961548 10.085396 0.32 0.32 1.796155+10.085396i
#> 18 1.8687076 10.755885 0.34 0.34 1.868708+10.755885i
#> 19 2.1048797 11.264610 0.36 0.36 2.104880+11.264610i
#> 20 2.0358626 11.841397 0.38 0.38 2.035863+11.841397i
#> 21 2.0736384 12.466511 0.40 0.40 2.073638+12.466511i
#> 22 2.1233792 13.139561 0.42 0.42 2.123379+13.139561i
#> 23 2.1474208 13.666002 0.44 0.44 2.147421+13.666002i
#> 24 2.2115618 14.291358 0.46 0.46 2.211562+14.291358i
#> 25 2.1328466 14.874026 0.48 0.48 2.132847+14.874026i
#> 26 2.1012344 15.390738 0.50 0.50 2.101234+15.390738i
#> 27 2.0063740 15.943714 0.52 0.52 2.006374+15.943714i
#> 28 2.1009873 16.450288 0.54 0.54 2.100987+16.450288i
#> 29 2.0504089 17.030302 0.56 0.56 2.050409+17.030302i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_1 TrajSim_1_1
#> 2 -0.0104883+0.4989009i Traj_1 Sim_1 TrajSim_1_1
#> 3 -0.0301592+0.5779122i Traj_1 Sim_1 TrajSim_1_1
#> 4 0.0444594+0.5531937i Traj_1 Sim_1 TrajSim_1_1
#> 5 0.0837695+0.5859507i Traj_1 Sim_1 TrajSim_1_1
#> 6 0.0671149+0.5298646i Traj_1 Sim_1 TrajSim_1_1
#> 7 0.1207841+0.4922931i Traj_1 Sim_1 TrajSim_1_1
#> 8 0.0836268+0.5734575i Traj_1 Sim_1 TrajSim_1_1
#> 9 0.2395066+0.5847618i Traj_1 Sim_1 TrajSim_1_1
#> 10 0.0816572+0.5533123i Traj_1 Sim_1 TrajSim_1_1
#> 11 0.0292207+0.6387542i Traj_1 Sim_1 TrajSim_1_1
#> 12 0.0061532+0.4747643i Traj_1 Sim_1 TrajSim_1_1
#> 13 0.0231816+0.6327150i Traj_1 Sim_1 TrajSim_1_1
#> 14 0.0717965+0.5711848i Traj_1 Sim_1 TrajSim_1_1
#> 15 0.0837846+0.6832871i Traj_1 Sim_1 TrajSim_1_1
#> 16 0.0670265+0.5702058i Traj_1 Sim_1 TrajSim_1_1
#> 17 0.0793007+0.5380752i Traj_1 Sim_1 TrajSim_1_1
#> 18 0.0725528+0.6704890i Traj_1 Sim_1 TrajSim_1_1
#> 19 0.2361721+0.5087248i Traj_1 Sim_1 TrajSim_1_1
#> 20 -0.0690171+0.5767864i Traj_1 Sim_1 TrajSim_1_1
#> 21 0.0377757+0.6251147i Traj_1 Sim_1 TrajSim_1_1
#> 22 0.0497409+0.6730493i Traj_1 Sim_1 TrajSim_1_1
#> 23 0.0240416+0.5264409i Traj_1 Sim_1 TrajSim_1_1
#> 24 0.0641410+0.6253563i Traj_1 Sim_1 TrajSim_1_1
#> 25 -0.0787152+0.5826681i Traj_1 Sim_1 TrajSim_1_1
#> 26 -0.0316122+0.5167123i Traj_1 Sim_1 TrajSim_1_1
#> 27 -0.0948604+0.5529759i Traj_1 Sim_1 TrajSim_1_1
#> 28 0.0946133+0.5065745i Traj_1 Sim_1 TrajSim_1_1
#> 29 -0.0505784+0.5800131i Traj_1 Sim_1 TrajSim_1_1
#>
#> [[1]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.4830039 2.331547 0.02 0.02 0.483004+ 2.331547i
#> 3 0.6417682 2.907997 0.04 0.04 0.641768+ 2.907997i
#> 4 0.7404796 3.594087 0.06 0.06 0.740480+ 3.594087i
#> 5 0.7089764 4.310618 0.08 0.08 0.708976+ 4.310618i
#> 6 0.6794413 5.034107 0.10 0.10 0.679441+ 5.034107i
#> 7 0.7160424 5.655188 0.12 0.12 0.716042+ 5.655188i
#> 8 0.6989837 6.249406 0.14 0.14 0.698984+ 6.249406i
#> 9 0.8257483 6.790469 0.16 0.16 0.825748+ 6.790469i
#> 10 0.8134363 7.543799 0.18 0.18 0.813436+ 7.543799i
#> 11 1.0080999 8.231488 0.20 0.20 1.008100+ 8.231488i
#> 12 1.0692213 8.897633 0.22 0.22 1.069221+ 8.897633i
#> 13 1.0181819 9.434231 0.24 0.24 1.018182+ 9.434231i
#> 14 1.1811183 9.986414 0.26 0.26 1.181118+ 9.986414i
#> 15 1.2328599 10.688446 0.28 0.28 1.232860+10.688446i
#> 16 1.3284035 11.363166 0.30 0.30 1.328403+11.363166i
#> 17 1.4315842 11.985215 0.32 0.32 1.431584+11.985215i
#> 18 1.5226908 12.609559 0.34 0.34 1.522691+12.609559i
#> 19 1.6668195 13.418542 0.36 0.36 1.666820+13.418542i
#> 20 1.8329803 13.980823 0.38 0.38 1.832980+13.980823i
#> 21 1.8428334 14.564483 0.40 0.40 1.842833+14.564483i
#> 22 1.9793333 15.261789 0.42 0.42 1.979333+15.261789i
#> 23 1.9546133 15.963110 0.44 0.44 1.954613+15.963110i
#> 24 1.8983214 16.579016 0.46 0.46 1.898321+16.579016i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_1 TrajSim_2_1
#> 2 0.1183185+0.6383651i Traj_2 Sim_1 TrajSim_2_1
#> 3 0.1587643+0.5764499i Traj_2 Sim_1 TrajSim_2_1
#> 4 0.0987115+0.6860896i Traj_2 Sim_1 TrajSim_2_1
#> 5 -0.0315032+0.7165310i Traj_2 Sim_1 TrajSim_2_1
#> 6 -0.0295352+0.7234888i Traj_2 Sim_1 TrajSim_2_1
#> 7 0.0366012+0.6210808i Traj_2 Sim_1 TrajSim_2_1
#> 8 -0.0170587+0.5942182i Traj_2 Sim_1 TrajSim_2_1
#> 9 0.1267646+0.5410629i Traj_2 Sim_1 TrajSim_2_1
#> 10 -0.0123120+0.7533307i Traj_2 Sim_1 TrajSim_2_1
#> 11 0.1946637+0.6876883i Traj_2 Sim_1 TrajSim_2_1
#> 12 0.0611214+0.6661457i Traj_2 Sim_1 TrajSim_2_1
#> 13 -0.0510394+0.5365983i Traj_2 Sim_1 TrajSim_2_1
#> 14 0.1629365+0.5521826i Traj_2 Sim_1 TrajSim_2_1
#> 15 0.0517415+0.7020317i Traj_2 Sim_1 TrajSim_2_1
#> 16 0.0955436+0.6747202i Traj_2 Sim_1 TrajSim_2_1
#> 17 0.1031807+0.6220488i Traj_2 Sim_1 TrajSim_2_1
#> 18 0.0911066+0.6243439i Traj_2 Sim_1 TrajSim_2_1
#> 19 0.1441287+0.8089834i Traj_2 Sim_1 TrajSim_2_1
#> 20 0.1661608+0.5622805i Traj_2 Sim_1 TrajSim_2_1
#> 21 0.0098531+0.5836604i Traj_2 Sim_1 TrajSim_2_1
#> 22 0.1364999+0.6973060i Traj_2 Sim_1 TrajSim_2_1
#> 23 -0.0247200+0.7013209i Traj_2 Sim_1 TrajSim_2_1
#> 24 -0.0562919+0.6159059i Traj_2 Sim_1 TrajSim_2_1
#>
#>
#> [[2]]
#> [[2]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.8985701 1.502296 0.02 0.02 0.898570+ 1.502296i
#> 3 1.0647678 2.133571 0.04 0.04 1.064768+ 2.133571i
#> 4 1.1501383 2.654851 0.06 0.06 1.150138+ 2.654851i
#> 5 1.1576352 3.163250 0.08 0.08 1.157635+ 3.163250i
#> 6 1.1756045 3.713925 0.10 0.10 1.175604+ 3.713925i
#> 7 1.2943104 4.253279 0.12 0.12 1.294310+ 4.253279i
#> 8 1.4820749 5.014507 0.14 0.14 1.482075+ 5.014507i
#> 9 1.4911377 5.584513 0.16 0.16 1.491138+ 5.584513i
#> 10 1.5397160 6.246626 0.18 0.18 1.539716+ 6.246626i
#> 11 1.6803996 6.738131 0.20 0.20 1.680400+ 6.738131i
#> 12 1.6613913 7.356396 0.22 0.22 1.661391+ 7.356396i
#> 13 1.7068339 8.033598 0.24 0.24 1.706834+ 8.033598i
#> 14 1.7034032 8.515625 0.26 0.26 1.703403+ 8.515625i
#> 15 1.6821508 9.025690 0.28 0.28 1.682151+ 9.025690i
#> 16 1.5785529 9.530174 0.30 0.30 1.578553+ 9.530174i
#> 17 1.6399675 10.165727 0.32 0.32 1.639967+10.165727i
#> 18 1.7685226 10.764752 0.34 0.34 1.768523+10.764752i
#> 19 1.7177351 11.379266 0.36 0.36 1.717735+11.379266i
#> 20 1.7923914 11.904936 0.38 0.38 1.792391+11.904936i
#> 21 1.8157677 12.421811 0.40 0.40 1.815768+12.421811i
#> 22 1.7958984 13.056483 0.42 0.42 1.795898+13.056483i
#> 23 1.7077809 13.542099 0.44 0.44 1.707781+13.542099i
#> 24 1.6696635 14.165039 0.46 0.46 1.669663+14.165039i
#> 25 1.7860399 14.724092 0.48 0.48 1.786040+14.724092i
#> 26 1.9524264 15.270153 0.50 0.50 1.952426+15.270153i
#> 27 2.0409358 15.897748 0.52 0.52 2.040936+15.897748i
#> 28 2.0240033 16.551777 0.54 0.54 2.024003+16.551777i
#> 29 1.9997131 17.132777 0.56 0.56 1.999713+17.132777i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_2 TrajSim_1_2
#> 2 0.1431503+0.4755326i Traj_1 Sim_2 TrajSim_1_2
#> 3 0.1661977+0.6312752i Traj_1 Sim_2 TrajSim_1_2
#> 4 0.0853705+0.5212805i Traj_1 Sim_2 TrajSim_1_2
#> 5 0.0074970+0.5083986i Traj_1 Sim_2 TrajSim_1_2
#> 6 0.0179693+0.5506751i Traj_1 Sim_2 TrajSim_1_2
#> 7 0.1187059+0.5393535i Traj_1 Sim_2 TrajSim_1_2
#> 8 0.1877645+0.7612284i Traj_1 Sim_2 TrajSim_1_2
#> 9 0.0090628+0.5700062i Traj_1 Sim_2 TrajSim_1_2
#> 10 0.0485783+0.6621130i Traj_1 Sim_2 TrajSim_1_2
#> 11 0.1406836+0.4915048i Traj_1 Sim_2 TrajSim_1_2
#> 12 -0.0190083+0.6182650i Traj_1 Sim_2 TrajSim_1_2
#> 13 0.0454426+0.6772016i Traj_1 Sim_2 TrajSim_1_2
#> 14 -0.0034307+0.4820273i Traj_1 Sim_2 TrajSim_1_2
#> 15 -0.0212524+0.5100655i Traj_1 Sim_2 TrajSim_1_2
#> 16 -0.1035980+0.5044839i Traj_1 Sim_2 TrajSim_1_2
#> 17 0.0614146+0.6355525i Traj_1 Sim_2 TrajSim_1_2
#> 18 0.1285551+0.5990251i Traj_1 Sim_2 TrajSim_1_2
#> 19 -0.0507875+0.6145144i Traj_1 Sim_2 TrajSim_1_2
#> 20 0.0746563+0.5256694i Traj_1 Sim_2 TrajSim_1_2
#> 21 0.0233762+0.5168751i Traj_1 Sim_2 TrajSim_1_2
#> 22 -0.0198693+0.6346726i Traj_1 Sim_2 TrajSim_1_2
#> 23 -0.0881174+0.4856151i Traj_1 Sim_2 TrajSim_1_2
#> 24 -0.0381174+0.6229400i Traj_1 Sim_2 TrajSim_1_2
#> 25 0.1163764+0.5590530i Traj_1 Sim_2 TrajSim_1_2
#> 26 0.1663865+0.5460619i Traj_1 Sim_2 TrajSim_1_2
#> 27 0.0885094+0.6275946i Traj_1 Sim_2 TrajSim_1_2
#> 28 -0.0169325+0.6540290i Traj_1 Sim_2 TrajSim_1_2
#> 29 -0.0242902+0.5809995i Traj_1 Sim_2 TrajSim_1_2
#>
#> [[2]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.5159521 2.223769 0.02 0.02 0.515952+ 2.223769i
#> 3 0.6556860 2.884328 0.04 0.04 0.655686+ 2.884328i
#> 4 0.7620681 3.509531 0.06 0.06 0.762068+ 3.509531i
#> 5 0.8406666 4.198761 0.08 0.08 0.840667+ 4.198761i
#> 6 0.8851519 4.920499 0.10 0.10 0.885152+ 4.920499i
#> 7 1.0055697 5.553173 0.12 0.12 1.005570+ 5.553173i
#> 8 1.2176456 6.177373 0.14 0.14 1.217646+ 6.177373i
#> 9 1.4560292 6.904400 0.16 0.16 1.456029+ 6.904400i
#> 10 1.5827371 7.595450 0.18 0.18 1.582737+ 7.595450i
#> 11 1.4907679 8.179854 0.20 0.20 1.490768+ 8.179854i
#> 12 1.5421868 8.971952 0.22 0.22 1.542187+ 8.971952i
#> 13 1.5463657 9.461661 0.24 0.24 1.546366+ 9.461661i
#> 14 1.5993539 10.110882 0.26 0.26 1.599354+10.110882i
#> 15 1.7716765 10.831590 0.28 0.28 1.771677+10.831590i
#> 16 1.9748835 11.345038 0.30 0.30 1.974883+11.345038i
#> 17 2.1402982 12.011720 0.32 0.32 2.140298+12.011720i
#> 18 2.2596745 12.649093 0.34 0.34 2.259674+12.649093i
#> 19 2.2640740 13.372421 0.36 0.36 2.264074+13.372421i
#> 20 2.4287989 13.851274 0.38 0.38 2.428799+13.851274i
#> 21 2.5088400 14.532441 0.40 0.40 2.508840+14.532441i
#> 22 2.5235381 15.341405 0.42 0.42 2.523538+15.341405i
#> 23 2.6283413 16.065235 0.44 0.44 2.628341+16.065235i
#> 24 2.6707062 16.615853 0.46 0.46 2.670706+16.615853i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_2 TrajSim_2_2
#> 2 0.1512666+0.5305866i Traj_2 Sim_2 TrajSim_2_2
#> 3 0.1397339+0.6605593i Traj_2 Sim_2 TrajSim_2_2
#> 4 0.1063821+0.6252026i Traj_2 Sim_2 TrajSim_2_2
#> 5 0.0785985+0.6892299i Traj_2 Sim_2 TrajSim_2_2
#> 6 0.0444853+0.7217387i Traj_2 Sim_2 TrajSim_2_2
#> 7 0.1204178+0.6326736i Traj_2 Sim_2 TrajSim_2_2
#> 8 0.2120759+0.6242004i Traj_2 Sim_2 TrajSim_2_2
#> 9 0.2383836+0.7270263i Traj_2 Sim_2 TrajSim_2_2
#> 10 0.1267079+0.6910504i Traj_2 Sim_2 TrajSim_2_2
#> 11 -0.0919693+0.5844041i Traj_2 Sim_2 TrajSim_2_2
#> 12 0.0514189+0.7920976i Traj_2 Sim_2 TrajSim_2_2
#> 13 0.0041788+0.4897093i Traj_2 Sim_2 TrajSim_2_2
#> 14 0.0529882+0.6492214i Traj_2 Sim_2 TrajSim_2_2
#> 15 0.1723226+0.7207074i Traj_2 Sim_2 TrajSim_2_2
#> 16 0.2032069+0.5134485i Traj_2 Sim_2 TrajSim_2_2
#> 17 0.1654147+0.6666821i Traj_2 Sim_2 TrajSim_2_2
#> 18 0.1193763+0.6373727i Traj_2 Sim_2 TrajSim_2_2
#> 19 0.0043995+0.7233276i Traj_2 Sim_2 TrajSim_2_2
#> 20 0.1647249+0.4788531i Traj_2 Sim_2 TrajSim_2_2
#> 21 0.0800411+0.6811672i Traj_2 Sim_2 TrajSim_2_2
#> 22 0.0146981+0.8089638i Traj_2 Sim_2 TrajSim_2_2
#> 23 0.1048032+0.7238308i Traj_2 Sim_2 TrajSim_2_2
#> 24 0.0423649+0.5506172i Traj_2 Sim_2 TrajSim_2_2
#>
#>
#> [[3]]
#> [[3]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.9157423 1.630651 0.02 0.02 0.915742+ 1.630651i
#> 3 0.9476519 2.239663 0.04 0.04 0.947652+ 2.239663i
#> 4 0.9424876 2.831069 0.06 0.06 0.942488+ 2.831069i
#> 5 0.8725270 3.458082 0.08 0.08 0.872527+ 3.458082i
#> 6 0.9170957 4.053151 0.10 0.10 0.917096+ 4.053151i
#> 7 0.9064710 4.705661 0.12 0.12 0.906471+ 4.705661i
#> 8 0.9480224 5.337906 0.14 0.14 0.948022+ 5.337906i
#> 9 1.0678531 5.906415 0.16 0.16 1.067853+ 5.906415i
#> 10 1.1724841 6.523268 0.18 0.18 1.172484+ 6.523268i
#> 11 1.2657015 7.085304 0.20 0.20 1.265701+ 7.085304i
#> 12 1.3148735 7.747757 0.22 0.22 1.314873+ 7.747757i
#> 13 1.5663785 8.406496 0.24 0.24 1.566378+ 8.406496i
#> 14 1.6586096 8.900121 0.26 0.26 1.658610+ 8.900121i
#> 15 1.7287989 9.650690 0.28 0.28 1.728799+ 9.650690i
#> 16 1.8918409 10.251631 0.30 0.30 1.891841+10.251631i
#> 17 1.9142798 10.929605 0.32 0.32 1.914280+10.929605i
#> 18 1.9087439 11.552860 0.34 0.34 1.908744+11.552860i
#> 19 1.9892218 12.178981 0.36 0.36 1.989222+12.178981i
#> 20 1.8516453 12.667789 0.38 0.38 1.851645+12.667789i
#> 21 1.9521230 13.268755 0.40 0.40 1.952123+13.268755i
#> 22 2.0437984 13.764076 0.42 0.42 2.043798+13.764076i
#> 23 2.1672938 14.431765 0.44 0.44 2.167294+14.431765i
#> 24 2.1741124 15.018386 0.46 0.46 2.174112+15.018386i
#> 25 2.2006098 15.592473 0.48 0.48 2.200610+15.592473i
#> 26 2.2078695 16.149118 0.50 0.50 2.207870+16.149118i
#> 27 2.3435121 16.714076 0.52 0.52 2.343512+16.714076i
#> 28 2.4220500 17.199999 0.54 0.54 2.422050+17.199999i
#> 29 2.4682356 17.865397 0.56 0.56 2.468236+17.865397i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_3 TrajSim_1_3
#> 2 0.1603225+0.6038877i Traj_1 Sim_3 TrajSim_1_3
#> 3 0.0319096+0.6090127i Traj_1 Sim_3 TrajSim_1_3
#> 4 -0.0051643+0.5914055i Traj_1 Sim_3 TrajSim_1_3
#> 5 -0.0699606+0.6270126i Traj_1 Sim_3 TrajSim_1_3
#> 6 0.0445687+0.5950700i Traj_1 Sim_3 TrajSim_1_3
#> 7 -0.0106248+0.6525093i Traj_1 Sim_3 TrajSim_1_3
#> 8 0.0415514+0.6322449i Traj_1 Sim_3 TrajSim_1_3
#> 9 0.1198308+0.5685095i Traj_1 Sim_3 TrajSim_1_3
#> 10 0.1046309+0.6168529i Traj_1 Sim_3 TrajSim_1_3
#> 11 0.0932174+0.5620357i Traj_1 Sim_3 TrajSim_1_3
#> 12 0.0491720+0.6624531i Traj_1 Sim_3 TrajSim_1_3
#> 13 0.2515050+0.6587392i Traj_1 Sim_3 TrajSim_1_3
#> 14 0.0922311+0.4936248i Traj_1 Sim_3 TrajSim_1_3
#> 15 0.0701893+0.7505693i Traj_1 Sim_3 TrajSim_1_3
#> 16 0.1630420+0.6009405i Traj_1 Sim_3 TrajSim_1_3
#> 17 0.0224388+0.6779743i Traj_1 Sim_3 TrajSim_1_3
#> 18 -0.0055359+0.6232553i Traj_1 Sim_3 TrajSim_1_3
#> 19 0.0804778+0.6261208i Traj_1 Sim_3 TrajSim_1_3
#> 20 -0.1375765+0.4888080i Traj_1 Sim_3 TrajSim_1_3
#> 21 0.1004777+0.6009659i Traj_1 Sim_3 TrajSim_1_3
#> 22 0.0916753+0.4953214i Traj_1 Sim_3 TrajSim_1_3
#> 23 0.1234954+0.6676883i Traj_1 Sim_3 TrajSim_1_3
#> 24 0.0068187+0.5866213i Traj_1 Sim_3 TrajSim_1_3
#> 25 0.0264974+0.5740869i Traj_1 Sim_3 TrajSim_1_3
#> 26 0.0072597+0.5566451i Traj_1 Sim_3 TrajSim_1_3
#> 27 0.1356426+0.5649577i Traj_1 Sim_3 TrajSim_1_3
#> 28 0.0785379+0.4859239i Traj_1 Sim_3 TrajSim_1_3
#> 29 0.0461855+0.6653971i Traj_1 Sim_3 TrajSim_1_3
#>
#> [[3]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.4094209 2.328294 0.02 0.02 0.409421+ 2.328294i
#> 3 0.4399235 3.039683 0.04 0.04 0.439924+ 3.039683i
#> 4 0.3681186 3.562286 0.06 0.06 0.368119+ 3.562286i
#> 5 0.3435324 4.298252 0.08 0.08 0.343532+ 4.298252i
#> 6 0.4109251 4.975561 0.10 0.10 0.410925+ 4.975561i
#> 7 0.6008461 5.740170 0.12 0.12 0.600846+ 5.740170i
#> 8 0.6123007 6.606620 0.14 0.14 0.612301+ 6.606620i
#> 9 0.6838774 7.260601 0.16 0.16 0.683877+ 7.260601i
#> 10 0.7257177 7.849851 0.18 0.18 0.725718+ 7.849851i
#> 11 0.7415940 8.450049 0.20 0.20 0.741594+ 8.450049i
#> 12 0.8344965 8.963580 0.22 0.22 0.834496+ 8.963580i
#> 13 0.8585600 9.659105 0.24 0.24 0.858560+ 9.659105i
#> 14 0.9543546 10.280478 0.26 0.26 0.954355+10.280478i
#> 15 1.0427999 10.793763 0.28 0.28 1.042800+10.793763i
#> 16 1.1093967 11.491961 0.30 0.30 1.109397+11.491961i
#> 17 1.2397125 12.087831 0.32 0.32 1.239713+12.087831i
#> 18 1.3176543 12.704910 0.34 0.34 1.317654+12.704910i
#> 19 1.4565176 13.341778 0.36 0.36 1.456518+13.341778i
#> 20 1.5899123 13.780413 0.38 0.38 1.589912+13.780413i
#> 21 1.6787742 14.480988 0.40 0.40 1.678774+14.480988i
#> 22 1.6817165 15.201249 0.42 0.42 1.681717+15.201249i
#> 23 1.7546330 15.759947 0.44 0.44 1.754633+15.759947i
#> 24 1.6299509 16.473811 0.46 0.46 1.629951+16.473811i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_3 TrajSim_2_3
#> 2 0.0447355+0.6351119i Traj_2 Sim_3 TrajSim_2_3
#> 3 0.0305027+0.7113892i Traj_2 Sim_3 TrajSim_2_3
#> 4 -0.0718050+0.5226028i Traj_2 Sim_3 TrajSim_2_3
#> 5 -0.0245862+0.7359661i Traj_2 Sim_3 TrajSim_2_3
#> 6 0.0673927+0.6773085i Traj_2 Sim_3 TrajSim_2_3
#> 7 0.1899210+0.7646092i Traj_2 Sim_3 TrajSim_2_3
#> 8 0.0114546+0.8664500i Traj_2 Sim_3 TrajSim_2_3
#> 9 0.0715767+0.6539812i Traj_2 Sim_3 TrajSim_2_3
#> 10 0.0418404+0.5892501i Traj_2 Sim_3 TrajSim_2_3
#> 11 0.0158763+0.6001975i Traj_2 Sim_3 TrajSim_2_3
#> 12 0.0929025+0.5135311i Traj_2 Sim_3 TrajSim_2_3
#> 13 0.0240635+0.6955254i Traj_2 Sim_3 TrajSim_2_3
#> 14 0.0957946+0.6213725i Traj_2 Sim_3 TrajSim_2_3
#> 15 0.0884453+0.5132855i Traj_2 Sim_3 TrajSim_2_3
#> 16 0.0665969+0.6981981i Traj_2 Sim_3 TrajSim_2_3
#> 17 0.1303158+0.5958692i Traj_2 Sim_3 TrajSim_2_3
#> 18 0.0779418+0.6170795i Traj_2 Sim_3 TrajSim_2_3
#> 19 0.1388633+0.6368676i Traj_2 Sim_3 TrajSim_2_3
#> 20 0.1333947+0.4386347i Traj_2 Sim_3 TrajSim_2_3
#> 21 0.0888620+0.7005759i Traj_2 Sim_3 TrajSim_2_3
#> 22 0.0029423+0.7202606i Traj_2 Sim_3 TrajSim_2_3
#> 23 0.0729165+0.5586984i Traj_2 Sim_3 TrajSim_2_3
#> 24 -0.1246822+0.7138632i Traj_2 Sim_3 TrajSim_2_3
#>
#>
#> [[4]]
#> [[4]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.8691427 1.518716 0.02 0.02 0.869143+ 1.518716i
#> 3 0.9120290 2.127689 0.04 0.04 0.912029+ 2.127689i
#> 4 0.9702957 2.655108 0.06 0.06 0.970296+ 2.655108i
#> 5 0.9577112 3.127678 0.08 0.08 0.957711+ 3.127678i
#> 6 0.9058112 3.757039 0.10 0.10 0.905811+ 3.757039i
#> 7 1.0615035 4.257931 0.12 0.12 1.061504+ 4.257931i
#> 8 1.0136550 4.868773 0.14 0.14 1.013655+ 4.868773i
#> 9 1.1998217 5.390161 0.16 0.16 1.199822+ 5.390161i
#> 10 1.4558749 5.886324 0.18 0.18 1.455875+ 5.886324i
#> 11 1.4087156 6.433216 0.20 0.20 1.408716+ 6.433216i
#> 12 1.3893090 7.064621 0.22 0.22 1.389309+ 7.064621i
#> 13 1.2965950 7.606670 0.24 0.24 1.296595+ 7.606670i
#> 14 1.4472512 8.239062 0.26 0.26 1.447251+ 8.239062i
#> 15 1.5099540 8.865921 0.28 0.28 1.509954+ 8.865921i
#> 16 1.4956200 9.437423 0.30 0.30 1.495620+ 9.437423i
#> 17 1.5416973 10.072262 0.32 0.32 1.541697+10.072262i
#> 18 1.4922538 10.753876 0.34 0.34 1.492254+10.753876i
#> 19 1.3936106 11.302051 0.36 0.36 1.393611+11.302051i
#> 20 1.3681010 11.739914 0.38 0.38 1.368101+11.739914i
#> 21 1.3924721 12.354850 0.40 0.40 1.392472+12.354850i
#> 22 1.3307945 12.897603 0.42 0.42 1.330795+12.897603i
#> 23 1.3858294 13.490243 0.44 0.44 1.385829+13.490243i
#> 24 1.3416075 14.182795 0.46 0.46 1.341608+14.182795i
#> 25 1.4150380 14.761205 0.48 0.48 1.415038+14.761205i
#> 26 1.5071003 15.342175 0.50 0.50 1.507100+15.342175i
#> 27 1.4731211 15.954410 0.52 0.52 1.473121+15.954410i
#> 28 1.5313514 16.505012 0.54 0.54 1.531351+16.505012i
#> 29 1.7627314 17.046077 0.56 0.56 1.762731+17.046077i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_4 TrajSim_1_4
#> 2 0.1137229+0.4919525i Traj_1 Sim_4 TrajSim_1_4
#> 3 0.0428863+0.6089733i Traj_1 Sim_4 TrajSim_1_4
#> 4 0.0582667+0.5274192i Traj_1 Sim_4 TrajSim_1_4
#> 5 -0.0125845+0.4725703i Traj_1 Sim_4 TrajSim_1_4
#> 6 -0.0518999+0.6293603i Traj_1 Sim_4 TrajSim_1_4
#> 7 0.1556923+0.5008922i Traj_1 Sim_4 TrajSim_1_4
#> 8 -0.0478486+0.6108421i Traj_1 Sim_4 TrajSim_1_4
#> 9 0.1861667+0.5213878i Traj_1 Sim_4 TrajSim_1_4
#> 10 0.2560533+0.4961629i Traj_1 Sim_4 TrajSim_1_4
#> 11 -0.0471594+0.5468923i Traj_1 Sim_4 TrajSim_1_4
#> 12 -0.0194065+0.6314050i Traj_1 Sim_4 TrajSim_1_4
#> 13 -0.0927140+0.5420492i Traj_1 Sim_4 TrajSim_1_4
#> 14 0.1506561+0.6323914i Traj_1 Sim_4 TrajSim_1_4
#> 15 0.0627028+0.6268590i Traj_1 Sim_4 TrajSim_1_4
#> 16 -0.0143340+0.5715023i Traj_1 Sim_4 TrajSim_1_4
#> 17 0.0460773+0.6348388i Traj_1 Sim_4 TrajSim_1_4
#> 18 -0.0494435+0.6816145i Traj_1 Sim_4 TrajSim_1_4
#> 19 -0.0986432+0.5481745i Traj_1 Sim_4 TrajSim_1_4
#> 20 -0.0255096+0.4378632i Traj_1 Sim_4 TrajSim_1_4
#> 21 0.0243710+0.6149362i Traj_1 Sim_4 TrajSim_1_4
#> 22 -0.0616775+0.5427529i Traj_1 Sim_4 TrajSim_1_4
#> 23 0.0550349+0.5926400i Traj_1 Sim_4 TrajSim_1_4
#> 24 -0.0442219+0.6925516i Traj_1 Sim_4 TrajSim_1_4
#> 25 0.0734305+0.5784107i Traj_1 Sim_4 TrajSim_1_4
#> 26 0.0920623+0.5809695i Traj_1 Sim_4 TrajSim_1_4
#> 27 -0.0339792+0.6122349i Traj_1 Sim_4 TrajSim_1_4
#> 28 0.0582303+0.5506021i Traj_1 Sim_4 TrajSim_1_4
#> 29 0.2313800+0.5410654i Traj_1 Sim_4 TrajSim_1_4
#>
#> [[4]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.5307148 2.445056 0.02 0.02 0.530715+ 2.445056i
#> 3 0.6404224 3.082032 0.04 0.04 0.640422+ 3.082032i
#> 4 0.8068146 3.685596 0.06 0.06 0.806815+ 3.685596i
#> 5 0.7314408 4.403384 0.08 0.08 0.731441+ 4.403384i
#> 6 0.5719612 4.966171 0.10 0.10 0.571961+ 4.966171i
#> 7 0.6383825 5.651734 0.12 0.12 0.638382+ 5.651734i
#> 8 0.7936251 6.342088 0.14 0.14 0.793625+ 6.342088i
#> 9 0.8397274 6.923870 0.16 0.16 0.839727+ 6.923870i
#> 10 0.9536227 7.611609 0.18 0.18 0.953623+ 7.611609i
#> 11 0.8655072 8.365163 0.20 0.20 0.865507+ 8.365163i
#> 12 0.9209470 8.962402 0.22 0.22 0.920947+ 8.962402i
#> 13 0.9106638 9.587062 0.24 0.24 0.910664+ 9.587062i
#> 14 1.0880527 10.191088 0.26 0.26 1.088053+10.191088i
#> 15 1.3569794 10.726614 0.28 0.28 1.356979+10.726614i
#> 16 1.6675058 11.339186 0.30 0.30 1.667506+11.339186i
#> 17 1.5856570 11.982222 0.32 0.32 1.585657+11.982222i
#> 18 1.8654757 12.578844 0.34 0.34 1.865476+12.578844i
#> 19 1.8843889 13.296312 0.36 0.36 1.884389+13.296312i
#> 20 1.9423399 13.920586 0.38 0.38 1.942340+13.920586i
#> 21 2.0520912 14.450579 0.40 0.40 2.052091+14.450579i
#> 22 2.1634799 15.104504 0.42 0.42 2.163480+15.104504i
#> 23 2.2456778 15.758793 0.44 0.44 2.245678+15.758793i
#> 24 2.3398931 16.298685 0.46 0.46 2.339893+16.298685i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_4 TrajSim_2_4
#> 2 0.1660294+0.7518739i Traj_2 Sim_4 TrajSim_2_4
#> 3 0.1097075+0.6369762i Traj_2 Sim_4 TrajSim_2_4
#> 4 0.1663923+0.6035638i Traj_2 Sim_4 TrajSim_2_4
#> 5 -0.0753738+0.7177880i Traj_2 Sim_4 TrajSim_2_4
#> 6 -0.1594796+0.5627865i Traj_2 Sim_4 TrajSim_2_4
#> 7 0.0664212+0.6855632i Traj_2 Sim_4 TrajSim_2_4
#> 8 0.1552427+0.6903540i Traj_2 Sim_4 TrajSim_2_4
#> 9 0.0461022+0.5817820i Traj_2 Sim_4 TrajSim_2_4
#> 10 0.1138954+0.6877393i Traj_2 Sim_4 TrajSim_2_4
#> 11 -0.0881155+0.7535542i Traj_2 Sim_4 TrajSim_2_4
#> 12 0.0554397+0.5972390i Traj_2 Sim_4 TrajSim_2_4
#> 13 -0.0102832+0.6246594i Traj_2 Sim_4 TrajSim_2_4
#> 14 0.1773890+0.6040262i Traj_2 Sim_4 TrajSim_2_4
#> 15 0.2689266+0.5355262i Traj_2 Sim_4 TrajSim_2_4
#> 16 0.3105264+0.6125724i Traj_2 Sim_4 TrajSim_2_4
#> 17 -0.0818487+0.6430360i Traj_2 Sim_4 TrajSim_2_4
#> 18 0.2798187+0.5966219i Traj_2 Sim_4 TrajSim_2_4
#> 19 0.0189131+0.7174674i Traj_2 Sim_4 TrajSim_2_4
#> 20 0.0579510+0.6242746i Traj_2 Sim_4 TrajSim_2_4
#> 21 0.1097513+0.5299929i Traj_2 Sim_4 TrajSim_2_4
#> 22 0.1113887+0.6539251i Traj_2 Sim_4 TrajSim_2_4
#> 23 0.0821979+0.6542885i Traj_2 Sim_4 TrajSim_2_4
#> 24 0.0942153+0.5398918i Traj_2 Sim_4 TrajSim_2_4
#>
#>
#> [[5]]
#> [[5]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.7698673 1.610789 0.02 0.02 0.769867+ 1.610789i
#> 3 0.9055428 2.215556 0.04 0.04 0.905543+ 2.215556i
#> 4 0.9591313 2.710852 0.06 0.06 0.959131+ 2.710852i
#> 5 1.0278678 3.412905 0.08 0.08 1.027868+ 3.412905i
#> 6 1.2976161 3.984585 0.10 0.10 1.297616+ 3.984585i
#> 7 1.3543485 4.524901 0.12 0.12 1.354348+ 4.524901i
#> 8 1.3824374 5.039878 0.14 0.14 1.382437+ 5.039878i
#> 9 1.4479135 5.613180 0.16 0.16 1.447914+ 5.613180i
#> 10 1.4908646 6.158983 0.18 0.18 1.490865+ 6.158983i
#> 11 1.5042719 6.826967 0.20 0.20 1.504272+ 6.826967i
#> 12 1.4364639 7.450867 0.22 0.22 1.436464+ 7.450867i
#> 13 1.5562782 8.045170 0.24 0.24 1.556278+ 8.045170i
#> 14 1.7441061 8.644442 0.26 0.26 1.744106+ 8.644442i
#> 15 1.7575200 9.339651 0.28 0.28 1.757520+ 9.339651i
#> 16 1.8204053 9.936860 0.30 0.30 1.820405+ 9.936860i
#> 17 1.8580391 10.480576 0.32 0.32 1.858039+10.480576i
#> 18 1.9254479 11.154745 0.34 0.34 1.925448+11.154745i
#> 19 2.0916260 11.714560 0.36 0.36 2.091626+11.714560i
#> 20 2.1731040 12.334663 0.38 0.38 2.173104+12.334663i
#> 21 2.1522025 12.864603 0.40 0.40 2.152202+12.864603i
#> 22 2.2628463 13.419617 0.42 0.42 2.262846+13.419617i
#> 23 2.2671988 14.064469 0.44 0.44 2.267199+14.064469i
#> 24 2.3896587 14.635901 0.46 0.46 2.389659+14.635901i
#> 25 2.3790076 15.180573 0.48 0.48 2.379008+15.180573i
#> 26 2.3380802 15.792943 0.50 0.50 2.338080+15.792943i
#> 27 2.5280905 16.454974 0.52 0.52 2.528090+16.454974i
#> 28 2.6360879 17.019935 0.54 0.54 2.636088+17.019935i
#> 29 2.7026864 17.559244 0.56 0.56 2.702686+17.559244i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_5 TrajSim_1_5
#> 2 0.0144476+0.5840258i Traj_1 Sim_5 TrajSim_1_5
#> 3 0.1356755+0.6047675i Traj_1 Sim_5 TrajSim_1_5
#> 4 0.0535885+0.4952957i Traj_1 Sim_5 TrajSim_1_5
#> 5 0.0687365+0.7020526i Traj_1 Sim_5 TrajSim_1_5
#> 6 0.2697483+0.5716808i Traj_1 Sim_5 TrajSim_1_5
#> 7 0.0567324+0.5403158i Traj_1 Sim_5 TrajSim_1_5
#> 8 0.0280890+0.5149765i Traj_1 Sim_5 TrajSim_1_5
#> 9 0.0654761+0.5733020i Traj_1 Sim_5 TrajSim_1_5
#> 10 0.0429510+0.5458035i Traj_1 Sim_5 TrajSim_1_5
#> 11 0.0134074+0.6679834i Traj_1 Sim_5 TrajSim_1_5
#> 12 -0.0678081+0.6239003i Traj_1 Sim_5 TrajSim_1_5
#> 13 0.1198144+0.5943024i Traj_1 Sim_5 TrajSim_1_5
#> 14 0.1878279+0.5992725i Traj_1 Sim_5 TrajSim_1_5
#> 15 0.0134138+0.6952091i Traj_1 Sim_5 TrajSim_1_5
#> 16 0.0628853+0.5972087i Traj_1 Sim_5 TrajSim_1_5
#> 17 0.0376338+0.5437162i Traj_1 Sim_5 TrajSim_1_5
#> 18 0.0674087+0.6741687i Traj_1 Sim_5 TrajSim_1_5
#> 19 0.1661781+0.5598150i Traj_1 Sim_5 TrajSim_1_5
#> 20 0.0814780+0.6201030i Traj_1 Sim_5 TrajSim_1_5
#> 21 -0.0209015+0.5299403i Traj_1 Sim_5 TrajSim_1_5
#> 22 0.1106438+0.5550137i Traj_1 Sim_5 TrajSim_1_5
#> 23 0.0043526+0.6448528i Traj_1 Sim_5 TrajSim_1_5
#> 24 0.1224599+0.5714313i Traj_1 Sim_5 TrajSim_1_5
#> 25 -0.0106512+0.5446727i Traj_1 Sim_5 TrajSim_1_5
#> 26 -0.0409274+0.6123693i Traj_1 Sim_5 TrajSim_1_5
#> 27 0.1900103+0.6620313i Traj_1 Sim_5 TrajSim_1_5
#> 28 0.1079974+0.5649615i Traj_1 Sim_5 TrajSim_1_5
#> 29 0.0665985+0.5393083i Traj_1 Sim_5 TrajSim_1_5
#>
#> [[5]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.3765108 2.283558 0.02 0.02 0.376511+ 2.283558i
#> 3 0.5798539 2.928230 0.04 0.04 0.579854+ 2.928230i
#> 4 0.6484571 3.714294 0.06 0.06 0.648457+ 3.714294i
#> 5 0.6891841 4.405426 0.08 0.08 0.689184+ 4.405426i
#> 6 0.7904251 4.994522 0.10 0.10 0.790425+ 4.994522i
#> 7 0.8227188 5.619039 0.12 0.12 0.822719+ 5.619039i
#> 8 0.7420928 6.497986 0.14 0.14 0.742093+ 6.497986i
#> 9 0.7535557 7.226247 0.16 0.16 0.753556+ 7.226247i
#> 10 0.6938339 7.975059 0.18 0.18 0.693834+ 7.975059i
#> 11 0.7701977 8.527965 0.20 0.20 0.770198+ 8.527965i
#> 12 0.6616663 9.256328 0.22 0.22 0.661666+ 9.256328i
#> 13 0.7234762 9.906882 0.24 0.24 0.723476+ 9.906882i
#> 14 0.7718773 10.579419 0.26 0.26 0.771877+10.579419i
#> 15 0.9526680 11.207090 0.28 0.28 0.952668+11.207090i
#> 16 1.0701650 11.920634 0.30 0.30 1.070165+11.920634i
#> 17 1.0590184 12.580230 0.32 0.32 1.059018+12.580230i
#> 18 1.0927110 13.260985 0.34 0.34 1.092711+13.260985i
#> 19 0.9978364 13.866308 0.36 0.36 0.997836+13.866308i
#> 20 0.9857043 14.484023 0.38 0.38 0.985704+14.484023i
#> 21 0.8868846 15.062475 0.40 0.40 0.886885+15.062475i
#> 22 0.8751976 15.681870 0.42 0.42 0.875198+15.681870i
#> 23 0.9440336 16.152818 0.44 0.44 0.944034+16.152818i
#> 24 0.9142588 16.905582 0.46 0.46 0.914259+16.905582i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_5 TrajSim_2_5
#> 2 0.0118254+0.5903757i Traj_2 Sim_5 TrajSim_2_5
#> 3 0.2033431+0.6446721i Traj_2 Sim_5 TrajSim_2_5
#> 4 0.0686031+0.7860641i Traj_2 Sim_5 TrajSim_2_5
#> 5 0.0407271+0.6911322i Traj_2 Sim_5 TrajSim_2_5
#> 6 0.1012410+0.5890955i Traj_2 Sim_5 TrajSim_2_5
#> 7 0.0322937+0.6245168i Traj_2 Sim_5 TrajSim_2_5
#> 8 -0.0806260+0.8789470i Traj_2 Sim_5 TrajSim_2_5
#> 9 0.0114629+0.7282613i Traj_2 Sim_5 TrajSim_2_5
#> 10 -0.0597217+0.7488119i Traj_2 Sim_5 TrajSim_2_5
#> 11 0.0763637+0.5529060i Traj_2 Sim_5 TrajSim_2_5
#> 12 -0.1085314+0.7283627i Traj_2 Sim_5 TrajSim_2_5
#> 13 0.0618099+0.6505546i Traj_2 Sim_5 TrajSim_2_5
#> 14 0.0484011+0.6725365i Traj_2 Sim_5 TrajSim_2_5
#> 15 0.1807908+0.6276713i Traj_2 Sim_5 TrajSim_2_5
#> 16 0.1174969+0.7135440i Traj_2 Sim_5 TrajSim_2_5
#> 17 -0.0111465+0.6595963i Traj_2 Sim_5 TrajSim_2_5
#> 18 0.0336925+0.6807553i Traj_2 Sim_5 TrajSim_2_5
#> 19 -0.0948746+0.6053227i Traj_2 Sim_5 TrajSim_2_5
#> 20 -0.0121321+0.6177143i Traj_2 Sim_5 TrajSim_2_5
#> 21 -0.0988197+0.5784526i Traj_2 Sim_5 TrajSim_2_5
#> 22 -0.0116871+0.6193950i Traj_2 Sim_5 TrajSim_2_5
#> 23 0.0688360+0.4709475i Traj_2 Sim_5 TrajSim_2_5
#> 24 -0.0297748+0.7527648i Traj_2 Sim_5 TrajSim_2_5
#>
#>
#> [[6]]
#> [[6]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.6356529 1.673836 0.02 0.02 0.635653+ 1.673836i
#> 3 0.6055835 2.275100 0.04 0.04 0.605583+ 2.275100i
#> 4 0.7233451 2.895176 0.06 0.06 0.723345+ 2.895176i
#> 5 0.7058786 3.429876 0.08 0.08 0.705879+ 3.429876i
#> 6 0.7475522 3.992483 0.10 0.10 0.747552+ 3.992483i
#> 7 0.8922870 4.510155 0.12 0.12 0.892287+ 4.510155i
#> 8 1.1096110 5.018050 0.14 0.14 1.109611+ 5.018050i
#> 9 1.1509694 5.497984 0.16 0.16 1.150969+ 5.497984i
#> 10 1.2941096 6.063467 0.18 0.18 1.294110+ 6.063467i
#> 11 1.2438788 6.670671 0.20 0.20 1.243879+ 6.670671i
#> 12 1.2054591 7.259218 0.22 0.22 1.205459+ 7.259218i
#> 13 1.2340735 7.825671 0.24 0.24 1.234073+ 7.825671i
#> 14 1.3009702 8.331750 0.26 0.26 1.300970+ 8.331750i
#> 15 1.3200617 8.844236 0.28 0.28 1.320062+ 8.844236i
#> 16 1.3746813 9.306925 0.30 0.30 1.374681+ 9.306925i
#> 17 1.4553820 9.796171 0.32 0.32 1.455382+ 9.796171i
#> 18 1.4683574 10.429880 0.34 0.34 1.468357+10.429880i
#> 19 1.6377614 11.074387 0.36 0.36 1.637761+11.074387i
#> 20 1.5827666 11.566566 0.38 0.38 1.582767+11.566566i
#> 21 1.5842870 12.187109 0.40 0.40 1.584287+12.187109i
#> 22 1.5439603 12.865222 0.42 0.42 1.543960+12.865222i
#> 23 1.5159237 13.445035 0.44 0.44 1.515924+13.445035i
#> 24 1.5566058 13.915889 0.46 0.46 1.556606+13.915889i
#> 25 1.7043921 14.397674 0.48 0.48 1.704392+14.397674i
#> 26 1.7489690 14.929567 0.50 0.50 1.748969+14.929567i
#> 27 1.8075265 15.493855 0.52 0.52 1.807527+15.493855i
#> 28 1.9104471 15.980359 0.54 0.54 1.910447+15.980359i
#> 29 1.8753233 16.628732 0.56 0.56 1.875323+16.628732i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_6 TrajSim_1_6
#> 2 -0.1197669+0.6470726i Traj_1 Sim_6 TrajSim_1_6
#> 3 -0.0300694+0.6012638i Traj_1 Sim_6 TrajSim_1_6
#> 4 0.1177616+0.6200762i Traj_1 Sim_6 TrajSim_1_6
#> 5 -0.0174665+0.5347006i Traj_1 Sim_6 TrajSim_1_6
#> 6 0.0416735+0.5626068i Traj_1 Sim_6 TrajSim_1_6
#> 7 0.1447348+0.5176713i Traj_1 Sim_6 TrajSim_1_6
#> 8 0.2173241+0.5078953i Traj_1 Sim_6 TrajSim_1_6
#> 9 0.0413584+0.4799339i Traj_1 Sim_6 TrajSim_1_6
#> 10 0.1431402+0.5654830i Traj_1 Sim_6 TrajSim_1_6
#> 11 -0.0502307+0.6072038i Traj_1 Sim_6 TrajSim_1_6
#> 12 -0.0384198+0.5885477i Traj_1 Sim_6 TrajSim_1_6
#> 13 0.0286144+0.5664527i Traj_1 Sim_6 TrajSim_1_6
#> 14 0.0668967+0.5060792i Traj_1 Sim_6 TrajSim_1_6
#> 15 0.0190915+0.5124857i Traj_1 Sim_6 TrajSim_1_6
#> 16 0.0546196+0.4626895i Traj_1 Sim_6 TrajSim_1_6
#> 17 0.0807007+0.4892459i Traj_1 Sim_6 TrajSim_1_6
#> 18 0.0129754+0.6337083i Traj_1 Sim_6 TrajSim_1_6
#> 19 0.1694039+0.6445073i Traj_1 Sim_6 TrajSim_1_6
#> 20 -0.0549948+0.4921796i Traj_1 Sim_6 TrajSim_1_6
#> 21 0.0015205+0.6205423i Traj_1 Sim_6 TrajSim_1_6
#> 22 -0.0403267+0.6781135i Traj_1 Sim_6 TrajSim_1_6
#> 23 -0.0280367+0.5798127i Traj_1 Sim_6 TrajSim_1_6
#> 24 0.0406821+0.4708537i Traj_1 Sim_6 TrajSim_1_6
#> 25 0.1477864+0.4817857i Traj_1 Sim_6 TrajSim_1_6
#> 26 0.0445769+0.5318929i Traj_1 Sim_6 TrajSim_1_6
#> 27 0.0585575+0.5642882i Traj_1 Sim_6 TrajSim_1_6
#> 28 0.1029206+0.4865037i Traj_1 Sim_6 TrajSim_1_6
#> 29 -0.0351238+0.6483730i Traj_1 Sim_6 TrajSim_1_6
#>
#> [[6]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.4314572 2.270705 0.02 0.02 0.431457+ 2.270705i
#> 3 0.4519778 2.796541 0.04 0.04 0.451978+ 2.796541i
#> 4 0.5271885 3.596125 0.06 0.06 0.527189+ 3.596125i
#> 5 0.6556536 4.248962 0.08 0.08 0.655654+ 4.248962i
#> 6 0.6176353 5.022798 0.10 0.10 0.617635+ 5.022798i
#> 7 0.6791013 5.562873 0.12 0.12 0.679101+ 5.562873i
#> 8 0.6757919 6.050155 0.14 0.14 0.675792+ 6.050155i
#> 9 0.8165268 6.722127 0.16 0.16 0.816527+ 6.722127i
#> 10 0.8133589 7.411552 0.18 0.18 0.813359+ 7.411552i
#> 11 0.9051567 8.122130 0.20 0.20 0.905157+ 8.122130i
#> 12 1.0426773 8.717082 0.22 0.22 1.042677+ 8.717082i
#> 13 1.1215390 9.444025 0.24 0.24 1.121539+ 9.444025i
#> 14 1.3059164 9.994699 0.26 0.26 1.305916+ 9.994699i
#> 15 1.3081198 10.658956 0.28 0.28 1.308120+10.658956i
#> 16 1.3848741 11.390765 0.30 0.30 1.384874+11.390765i
#> 17 1.3572070 11.976534 0.32 0.32 1.357207+11.976534i
#> 18 1.4229261 12.666804 0.34 0.34 1.422926+12.666804i
#> 19 1.4666782 13.278127 0.36 0.36 1.466678+13.278127i
#> 20 1.4849415 13.766744 0.38 0.38 1.484941+13.766744i
#> 21 1.6057160 14.335174 0.40 0.40 1.605716+14.335174i
#> 22 1.6831118 14.969079 0.42 0.42 1.683112+14.969079i
#> 23 1.7299276 15.750313 0.44 0.44 1.729928+15.750313i
#> 24 1.7918994 16.479953 0.46 0.46 1.791899+16.479953i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_6 TrajSim_2_6
#> 2 0.0667718+0.5775231i Traj_2 Sim_6 TrajSim_2_6
#> 3 0.0205206+0.5258351i Traj_2 Sim_6 TrajSim_2_6
#> 4 0.0752107+0.7995840i Traj_2 Sim_6 TrajSim_2_6
#> 5 0.1284651+0.6528378i Traj_2 Sim_6 TrajSim_2_6
#> 6 -0.0380182+0.7738357i Traj_2 Sim_6 TrajSim_2_6
#> 7 0.0614660+0.5400754i Traj_2 Sim_6 TrajSim_2_6
#> 8 -0.0033094+0.4872819i Traj_2 Sim_6 TrajSim_2_6
#> 9 0.1407348+0.6719719i Traj_2 Sim_6 TrajSim_2_6
#> 10 -0.0031679+0.6894247i Traj_2 Sim_6 TrajSim_2_6
#> 11 0.0917978+0.7105779i Traj_2 Sim_6 TrajSim_2_6
#> 12 0.1375206+0.5949525i Traj_2 Sim_6 TrajSim_2_6
#> 13 0.0788617+0.7269429i Traj_2 Sim_6 TrajSim_2_6
#> 14 0.1843774+0.5506736i Traj_2 Sim_6 TrajSim_2_6
#> 15 0.0022034+0.6642567i Traj_2 Sim_6 TrajSim_2_6
#> 16 0.0767543+0.7318096i Traj_2 Sim_6 TrajSim_2_6
#> 17 -0.0276671+0.5857693i Traj_2 Sim_6 TrajSim_2_6
#> 18 0.0657191+0.6902697i Traj_2 Sim_6 TrajSim_2_6
#> 19 0.0437521+0.6113229i Traj_2 Sim_6 TrajSim_2_6
#> 20 0.0182633+0.4886166i Traj_2 Sim_6 TrajSim_2_6
#> 21 0.1207745+0.5684300i Traj_2 Sim_6 TrajSim_2_6
#> 22 0.0773958+0.6339058i Traj_2 Sim_6 TrajSim_2_6
#> 23 0.0468158+0.7812340i Traj_2 Sim_6 TrajSim_2_6
#> 24 0.0619718+0.7296398i Traj_2 Sim_6 TrajSim_2_6
#>
#>
#> [[7]]
#> [[7]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.9345873 1.670792 0.02 0.02 0.934587+ 1.670792i
#> 3 0.8390897 2.355123 0.04 0.04 0.839090+ 2.355123i
#> 4 0.9344087 2.921299 0.06 0.06 0.934409+ 2.921299i
#> 5 0.9630033 3.475685 0.08 0.08 0.963003+ 3.475685i
#> 6 1.1147277 4.026627 0.10 0.10 1.114728+ 4.026627i
#> 7 1.0975679 4.678646 0.12 0.12 1.097568+ 4.678646i
#> 8 1.2321304 5.336953 0.14 0.14 1.232130+ 5.336953i
#> 9 1.2850820 5.908498 0.16 0.16 1.285082+ 5.908498i
#> 10 1.4280875 6.540014 0.18 0.18 1.428087+ 6.540014i
#> 11 1.5434794 7.125279 0.20 0.20 1.543479+ 7.125279i
#> 12 1.5923639 7.768976 0.22 0.22 1.592364+ 7.768976i
#> 13 1.5437868 8.250646 0.24 0.24 1.543787+ 8.250646i
#> 14 1.5198576 8.778828 0.26 0.26 1.519858+ 8.778828i
#> 15 1.6853171 9.369474 0.28 0.28 1.685317+ 9.369474i
#> 16 1.8961732 9.997490 0.30 0.30 1.896173+ 9.997490i
#> 17 2.0542323 10.392762 0.32 0.32 2.054232+10.392762i
#> 18 2.1598304 11.031949 0.34 0.34 2.159830+11.031949i
#> 19 2.2564595 11.638909 0.36 0.36 2.256459+11.638909i
#> 20 2.2994792 12.133106 0.38 0.38 2.299479+12.133106i
#> 21 2.5723642 12.664850 0.40 0.40 2.572364+12.664850i
#> 22 2.7742449 13.205065 0.42 0.42 2.774245+13.205065i
#> 23 2.7562133 13.834552 0.44 0.44 2.756213+13.834552i
#> 24 2.9340015 14.338358 0.46 0.46 2.934002+14.338358i
#> 25 3.0251402 14.981185 0.48 0.48 3.025140+14.981185i
#> 26 3.1037983 15.498653 0.50 0.50 3.103798+15.498653i
#> 27 3.3164552 16.160169 0.52 0.52 3.316455+16.160169i
#> 28 3.2072391 16.807802 0.54 0.54 3.207239+16.807802i
#> 29 3.1409495 17.306492 0.56 0.56 3.140950+17.306492i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_7 TrajSim_1_7
#> 2 0.1791675+0.6440292i Traj_1 Sim_7 TrajSim_1_7
#> 3 -0.0954976+0.6843305i Traj_1 Sim_7 TrajSim_1_7
#> 4 0.0953190+0.5661766i Traj_1 Sim_7 TrajSim_1_7
#> 5 0.0285946+0.5543859i Traj_1 Sim_7 TrajSim_1_7
#> 6 0.1517244+0.5509421i Traj_1 Sim_7 TrajSim_1_7
#> 7 -0.0171598+0.6520182i Traj_1 Sim_7 TrajSim_1_7
#> 8 0.1345624+0.6583079i Traj_1 Sim_7 TrajSim_1_7
#> 9 0.0529517+0.5715451i Traj_1 Sim_7 TrajSim_1_7
#> 10 0.1430055+0.6315158i Traj_1 Sim_7 TrajSim_1_7
#> 11 0.1153919+0.5852652i Traj_1 Sim_7 TrajSim_1_7
#> 12 0.0488845+0.6436964i Traj_1 Sim_7 TrajSim_1_7
#> 13 -0.0485771+0.4816705i Traj_1 Sim_7 TrajSim_1_7
#> 14 -0.0239291+0.5281814i Traj_1 Sim_7 TrajSim_1_7
#> 15 0.1654595+0.5906467i Traj_1 Sim_7 TrajSim_1_7
#> 16 0.2108561+0.6280159i Traj_1 Sim_7 TrajSim_1_7
#> 17 0.1580590+0.3952721i Traj_1 Sim_7 TrajSim_1_7
#> 18 0.1055982+0.6391870i Traj_1 Sim_7 TrajSim_1_7
#> 19 0.0966291+0.6069599i Traj_1 Sim_7 TrajSim_1_7
#> 20 0.0430197+0.4941968i Traj_1 Sim_7 TrajSim_1_7
#> 21 0.2728849+0.5317435i Traj_1 Sim_7 TrajSim_1_7
#> 22 0.2018808+0.5402149i Traj_1 Sim_7 TrajSim_1_7
#> 23 -0.0180316+0.6294878i Traj_1 Sim_7 TrajSim_1_7
#> 24 0.1777882+0.5038056i Traj_1 Sim_7 TrajSim_1_7
#> 25 0.0911386+0.6428269i Traj_1 Sim_7 TrajSim_1_7
#> 26 0.0786581+0.5174675i Traj_1 Sim_7 TrajSim_1_7
#> 27 0.2126569+0.6615160i Traj_1 Sim_7 TrajSim_1_7
#> 28 -0.1092160+0.6476334i Traj_1 Sim_7 TrajSim_1_7
#> 29 -0.0662896+0.4986898i Traj_1 Sim_7 TrajSim_1_7
#>
#> [[7]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.4932930 2.307830 0.02 0.02 0.493293+ 2.307830i
#> 3 0.5007188 2.919629 0.04 0.04 0.500719+ 2.919629i
#> 4 0.5836597 3.573499 0.06 0.06 0.583660+ 3.573499i
#> 5 0.7271253 4.192086 0.08 0.08 0.727125+ 4.192086i
#> 6 0.9625074 4.886965 0.10 0.10 0.962507+ 4.886965i
#> 7 1.0579545 5.631986 0.12 0.12 1.057954+ 5.631986i
#> 8 1.1771694 6.390789 0.14 0.14 1.177169+ 6.390789i
#> 9 1.1850045 6.965157 0.16 0.16 1.185005+ 6.965157i
#> 10 1.1705527 7.497271 0.18 0.18 1.170553+ 7.497271i
#> 11 1.3242396 8.181527 0.20 0.20 1.324240+ 8.181527i
#> 12 1.3512115 8.887873 0.22 0.22 1.351212+ 8.887873i
#> 13 1.3421993 9.546439 0.24 0.24 1.342199+ 9.546439i
#> 14 1.3959998 10.213825 0.26 0.26 1.396000+10.213825i
#> 15 1.6486770 10.918018 0.28 0.28 1.648677+10.918018i
#> 16 1.7657083 11.418209 0.30 0.30 1.765708+11.418209i
#> 17 1.9716541 12.139262 0.32 0.32 1.971654+12.139262i
#> 18 2.0785305 12.632075 0.34 0.34 2.078530+12.632075i
#> 19 2.0119686 13.294361 0.36 0.36 2.011969+13.294361i
#> 20 2.1293770 13.970412 0.38 0.38 2.129377+13.970412i
#> 21 2.2167509 14.643421 0.40 0.40 2.216751+14.643421i
#> 22 2.2739132 15.313160 0.42 0.42 2.273913+15.313160i
#> 23 2.3719213 16.143966 0.44 0.44 2.371921+16.143966i
#> 24 2.4768083 16.731067 0.46 0.46 2.476808+16.731067i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_7 TrajSim_2_7
#> 2 0.1286076+0.6146476i Traj_2 Sim_7 TrajSim_2_7
#> 3 0.0074258+0.6117995i Traj_2 Sim_7 TrajSim_2_7
#> 4 0.0829409+0.6538700i Traj_2 Sim_7 TrajSim_2_7
#> 5 0.1434656+0.6185870i Traj_2 Sim_7 TrajSim_2_7
#> 6 0.2353821+0.6948785i Traj_2 Sim_7 TrajSim_2_7
#> 7 0.0954471+0.7450215i Traj_2 Sim_7 TrajSim_2_7
#> 8 0.1192149+0.7588029i Traj_2 Sim_7 TrajSim_2_7
#> 9 0.0078351+0.5743679i Traj_2 Sim_7 TrajSim_2_7
#> 10 -0.0144519+0.5321137i Traj_2 Sim_7 TrajSim_2_7
#> 11 0.1536869+0.6842562i Traj_2 Sim_7 TrajSim_2_7
#> 12 0.0269719+0.7063461i Traj_2 Sim_7 TrajSim_2_7
#> 13 -0.0090122+0.6585657i Traj_2 Sim_7 TrajSim_2_7
#> 14 0.0538004+0.6673859i Traj_2 Sim_7 TrajSim_2_7
#> 15 0.2526772+0.7041937i Traj_2 Sim_7 TrajSim_2_7
#> 16 0.1170314+0.5001908i Traj_2 Sim_7 TrajSim_2_7
#> 17 0.2059458+0.7210527i Traj_2 Sim_7 TrajSim_2_7
#> 18 0.1068763+0.4928133i Traj_2 Sim_7 TrajSim_2_7
#> 19 -0.0665619+0.6622855i Traj_2 Sim_7 TrajSim_2_7
#> 20 0.1174084+0.6760519i Traj_2 Sim_7 TrajSim_2_7
#> 21 0.0873739+0.6730084i Traj_2 Sim_7 TrajSim_2_7
#> 22 0.0571623+0.6697391i Traj_2 Sim_7 TrajSim_2_7
#> 23 0.0980081+0.8308063i Traj_2 Sim_7 TrajSim_2_7
#> 24 0.1048870+0.5871007i Traj_2 Sim_7 TrajSim_2_7
#>
#>
#> [[8]]
#> [[8]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.6841785 1.512244 0.02 0.02 0.684178+ 1.512244i
#> 3 0.8364154 2.048464 0.04 0.04 0.836415+ 2.048464i
#> 4 0.8959909 2.672851 0.06 0.06 0.895991+ 2.672851i
#> 5 0.9839921 3.255102 0.08 0.08 0.983992+ 3.255102i
#> 6 1.1044713 3.862421 0.10 0.10 1.104471+ 3.862421i
#> 7 1.1599621 4.431479 0.12 0.12 1.159962+ 4.431479i
#> 8 1.1327981 4.908553 0.14 0.14 1.132798+ 4.908553i
#> 9 1.2679909 5.529728 0.16 0.16 1.267991+ 5.529728i
#> 10 1.3670155 6.205391 0.18 0.18 1.367015+ 6.205391i
#> 11 1.4318455 6.884630 0.20 0.20 1.431845+ 6.884630i
#> 12 1.4477196 7.341471 0.22 0.22 1.447720+ 7.341471i
#> 13 1.6210173 7.856441 0.24 0.24 1.621017+ 7.856441i
#> 14 1.5444632 8.415867 0.26 0.26 1.544463+ 8.415867i
#> 15 1.6324312 8.980568 0.28 0.28 1.632431+ 8.980568i
#> 16 1.6459815 9.512735 0.30 0.30 1.645982+ 9.512735i
#> 17 1.6490005 10.110471 0.32 0.32 1.649001+10.110471i
#> 18 1.5557258 10.731731 0.34 0.34 1.555726+10.731731i
#> 19 1.5939415 11.290684 0.36 0.36 1.593941+11.290684i
#> 20 1.6126111 11.905647 0.38 0.38 1.612611+11.905647i
#> 21 1.6277304 12.518054 0.40 0.40 1.627730+12.518054i
#> 22 1.6485589 13.110208 0.42 0.42 1.648559+13.110208i
#> 23 1.7490222 13.532724 0.44 0.44 1.749022+13.532724i
#> 24 1.6738760 14.079580 0.46 0.46 1.673876+14.079580i
#> 25 1.9359026 14.736817 0.48 0.48 1.935903+14.736817i
#> 26 1.8314949 15.355962 0.50 0.50 1.831495+15.355962i
#> 27 1.8284126 15.881887 0.52 0.52 1.828413+15.881887i
#> 28 2.0272473 16.488928 0.54 0.54 2.027247+16.488928i
#> 29 2.1202940 17.111822 0.56 0.56 2.120294+17.111822i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_8 TrajSim_1_8
#> 2 -0.0712413+0.4854805i Traj_1 Sim_8 TrajSim_1_8
#> 3 0.1522369+0.5362208i Traj_1 Sim_8 TrajSim_1_8
#> 4 0.0595754+0.6243864i Traj_1 Sim_8 TrajSim_1_8
#> 5 0.0880012+0.5822514i Traj_1 Sim_8 TrajSim_1_8
#> 6 0.1204792+0.6073185i Traj_1 Sim_8 TrajSim_1_8
#> 7 0.0554909+0.5690587i Traj_1 Sim_8 TrajSim_1_8
#> 8 -0.0271640+0.4770732i Traj_1 Sim_8 TrajSim_1_8
#> 9 0.1351927+0.6211754i Traj_1 Sim_8 TrajSim_1_8
#> 10 0.0990246+0.6756627i Traj_1 Sim_8 TrajSim_1_8
#> 11 0.0648300+0.6792395i Traj_1 Sim_8 TrajSim_1_8
#> 12 0.0158741+0.4568408i Traj_1 Sim_8 TrajSim_1_8
#> 13 0.1732977+0.5149702i Traj_1 Sim_8 TrajSim_1_8
#> 14 -0.0765541+0.5594261i Traj_1 Sim_8 TrajSim_1_8
#> 15 0.0879680+0.5647005i Traj_1 Sim_8 TrajSim_1_8
#> 16 0.0135504+0.5321668i Traj_1 Sim_8 TrajSim_1_8
#> 17 0.0030190+0.5977366i Traj_1 Sim_8 TrajSim_1_8
#> 18 -0.0932747+0.6212598i Traj_1 Sim_8 TrajSim_1_8
#> 19 0.0382157+0.5589531i Traj_1 Sim_8 TrajSim_1_8
#> 20 0.0186696+0.6149625i Traj_1 Sim_8 TrajSim_1_8
#> 21 0.0151193+0.6124075i Traj_1 Sim_8 TrajSim_1_8
#> 22 0.0208285+0.5921541i Traj_1 Sim_8 TrajSim_1_8
#> 23 0.1004633+0.4225161i Traj_1 Sim_8 TrajSim_1_8
#> 24 -0.0751462+0.5468559i Traj_1 Sim_8 TrajSim_1_8
#> 25 0.2620266+0.6572370i Traj_1 Sim_8 TrajSim_1_8
#> 26 -0.1044077+0.6191449i Traj_1 Sim_8 TrajSim_1_8
#> 27 -0.0030823+0.5259244i Traj_1 Sim_8 TrajSim_1_8
#> 28 0.1988347+0.6070415i Traj_1 Sim_8 TrajSim_1_8
#> 29 0.0930467+0.6228937i Traj_1 Sim_8 TrajSim_1_8
#>
#> [[8]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.4671673 2.362388 0.02 0.02 0.467167+ 2.362388i
#> 3 0.4812128 3.016996 0.04 0.04 0.481213+ 3.016996i
#> 4 0.3862115 3.734139 0.06 0.06 0.386212+ 3.734139i
#> 5 0.4756005 4.371306 0.08 0.08 0.475601+ 4.371306i
#> 6 0.4262570 5.162027 0.10 0.10 0.426257+ 5.162027i
#> 7 0.4477792 5.925613 0.12 0.12 0.447779+ 5.925613i
#> 8 0.5156071 6.442676 0.14 0.14 0.515607+ 6.442676i
#> 9 0.6192458 7.201544 0.16 0.16 0.619246+ 7.201544i
#> 10 0.6460357 7.840605 0.18 0.18 0.646036+ 7.840605i
#> 11 0.7103568 8.528007 0.20 0.20 0.710357+ 8.528007i
#> 12 0.9447388 9.133764 0.22 0.22 0.944739+ 9.133764i
#> 13 0.8397617 9.806727 0.24 0.24 0.839762+ 9.806727i
#> 14 1.1207279 10.496377 0.26 0.26 1.120728+10.496377i
#> 15 1.2242642 11.050458 0.28 0.28 1.224264+11.050458i
#> 16 1.2285826 11.742227 0.30 0.30 1.228583+11.742227i
#> 17 1.2352140 12.491467 0.32 0.32 1.235214+12.491467i
#> 18 1.4711109 12.933436 0.34 0.34 1.471111+12.933436i
#> 19 1.4254696 13.463168 0.36 0.36 1.425470+13.463168i
#> 20 1.4426314 14.038566 0.38 0.38 1.442631+14.038566i
#> 21 1.6059828 14.728041 0.40 0.40 1.605983+14.728041i
#> 22 1.5578513 15.419747 0.42 0.42 1.557851+15.419747i
#> 23 1.6963707 16.058586 0.44 0.44 1.696371+16.058586i
#> 24 1.8177696 16.877818 0.46 0.46 1.817770+16.877818i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_8 TrajSim_2_8
#> 2 0.1024819+0.6692059i Traj_2 Sim_8 TrajSim_2_8
#> 3 0.0140455+0.6546080i Traj_2 Sim_8 TrajSim_2_8
#> 4 -0.0950013+0.7171428i Traj_2 Sim_8 TrajSim_2_8
#> 5 0.0893890+0.6371669i Traj_2 Sim_8 TrajSim_2_8
#> 6 -0.0493435+0.7907208i Traj_2 Sim_8 TrajSim_2_8
#> 7 0.0215221+0.7635866i Traj_2 Sim_8 TrajSim_2_8
#> 8 0.0678280+0.5170624i Traj_2 Sim_8 TrajSim_2_8
#> 9 0.1036387+0.7588681i Traj_2 Sim_8 TrajSim_2_8
#> 10 0.0267900+0.6390609i Traj_2 Sim_8 TrajSim_2_8
#> 11 0.0643210+0.6874018i Traj_2 Sim_8 TrajSim_2_8
#> 12 0.2343820+0.6057575i Traj_2 Sim_8 TrajSim_2_8
#> 13 -0.1049771+0.6729625i Traj_2 Sim_8 TrajSim_2_8
#> 14 0.2809662+0.6896501i Traj_2 Sim_8 TrajSim_2_8
#> 15 0.1035363+0.5540813i Traj_2 Sim_8 TrajSim_2_8
#> 16 0.0043184+0.6917686i Traj_2 Sim_8 TrajSim_2_8
#> 17 0.0066314+0.7492406i Traj_2 Sim_8 TrajSim_2_8
#> 18 0.2358969+0.4419692i Traj_2 Sim_8 TrajSim_2_8
#> 19 -0.0456413+0.5297314i Traj_2 Sim_8 TrajSim_2_8
#> 20 0.0171618+0.5753988i Traj_2 Sim_8 TrajSim_2_8
#> 21 0.1633514+0.6894745i Traj_2 Sim_8 TrajSim_2_8
#> 22 -0.0481315+0.6917064i Traj_2 Sim_8 TrajSim_2_8
#> 23 0.1385193+0.6388387i Traj_2 Sim_8 TrajSim_2_8
#> 24 0.1213990+0.8192315i Traj_2 Sim_8 TrajSim_2_8
#>
#>
#> [[9]]
#> [[9]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.8076474 1.616571 0.02 0.02 0.807647+ 1.616571i
#> 3 0.9380687 2.212116 0.04 0.04 0.938069+ 2.212116i
#> 4 0.8877884 2.735757 0.06 0.06 0.887788+ 2.735757i
#> 5 1.0680010 3.173444 0.08 0.08 1.068001+ 3.173444i
#> 6 1.1279407 3.919805 0.10 0.10 1.127941+ 3.919805i
#> 7 1.0819592 4.453598 0.12 0.12 1.081959+ 4.453598i
#> 8 1.1998793 4.922394 0.14 0.14 1.199879+ 4.922394i
#> 9 1.3013645 5.545593 0.16 0.16 1.301365+ 5.545593i
#> 10 1.2595630 6.114808 0.18 0.18 1.259563+ 6.114808i
#> 11 1.3761806 6.767130 0.20 0.20 1.376181+ 6.767130i
#> 12 1.4071367 7.289407 0.22 0.22 1.407137+ 7.289407i
#> 13 1.4415543 7.890166 0.24 0.24 1.441554+ 7.890166i
#> 14 1.5310697 8.542926 0.26 0.26 1.531070+ 8.542926i
#> 15 1.5623843 9.112015 0.28 0.28 1.562384+ 9.112015i
#> 16 1.6468783 9.759142 0.30 0.30 1.646878+ 9.759142i
#> 17 1.6891728 10.275283 0.32 0.32 1.689173+10.275283i
#> 18 1.5766064 10.862448 0.34 0.34 1.576606+10.862448i
#> 19 1.6894215 11.359112 0.36 0.36 1.689421+11.359112i
#> 20 1.8252911 11.778327 0.38 0.38 1.825291+11.778327i
#> 21 1.9661165 12.450974 0.40 0.40 1.966116+12.450974i
#> 22 1.9773620 13.006890 0.42 0.42 1.977362+13.006890i
#> 23 1.9813596 13.600102 0.44 0.44 1.981360+13.600102i
#> 24 1.9604533 14.212547 0.46 0.46 1.960453+14.212547i
#> 25 2.0667342 14.904663 0.48 0.48 2.066734+14.904663i
#> 26 2.1192502 15.435712 0.50 0.50 2.119250+15.435712i
#> 27 2.2924971 16.015082 0.52 0.52 2.292497+16.015082i
#> 28 2.4345763 16.565729 0.54 0.54 2.434576+16.565729i
#> 29 2.4184368 17.130154 0.56 0.56 2.418437+17.130154i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_9 TrajSim_1_9
#> 2 0.0522276+0.5898084i Traj_1 Sim_9 TrajSim_1_9
#> 3 0.1304213+0.5955445i Traj_1 Sim_9 TrajSim_1_9
#> 4 -0.0502803+0.5236410i Traj_1 Sim_9 TrajSim_1_9
#> 5 0.1802126+0.4376871i Traj_1 Sim_9 TrajSim_1_9
#> 6 0.0599396+0.7463613i Traj_1 Sim_9 TrajSim_1_9
#> 7 -0.0459815+0.5337926i Traj_1 Sim_9 TrajSim_1_9
#> 8 0.1179200+0.4687963i Traj_1 Sim_9 TrajSim_1_9
#> 9 0.1014853+0.6231988i Traj_1 Sim_9 TrajSim_1_9
#> 10 -0.0418015+0.5692151i Traj_1 Sim_9 TrajSim_1_9
#> 11 0.1166175+0.6523216i Traj_1 Sim_9 TrajSim_1_9
#> 12 0.0309562+0.5222768i Traj_1 Sim_9 TrajSim_1_9
#> 13 0.0344176+0.6007591i Traj_1 Sim_9 TrajSim_1_9
#> 14 0.0895154+0.6527603i Traj_1 Sim_9 TrajSim_1_9
#> 15 0.0313146+0.5690885i Traj_1 Sim_9 TrajSim_1_9
#> 16 0.0844941+0.6471269i Traj_1 Sim_9 TrajSim_1_9
#> 17 0.0422944+0.5161416i Traj_1 Sim_9 TrajSim_1_9
#> 18 -0.1125663+0.5871645i Traj_1 Sim_9 TrajSim_1_9
#> 19 0.1128150+0.4966638i Traj_1 Sim_9 TrajSim_1_9
#> 20 0.1358696+0.4192157i Traj_1 Sim_9 TrajSim_1_9
#> 21 0.1408254+0.6726470i Traj_1 Sim_9 TrajSim_1_9
#> 22 0.0112455+0.5559158i Traj_1 Sim_9 TrajSim_1_9
#> 23 0.0039977+0.5932115i Traj_1 Sim_9 TrajSim_1_9
#> 24 -0.0209063+0.6124459i Traj_1 Sim_9 TrajSim_1_9
#> 25 0.1062809+0.6921151i Traj_1 Sim_9 TrajSim_1_9
#> 26 0.0525160+0.5310494i Traj_1 Sim_9 TrajSim_1_9
#> 27 0.1732469+0.5793696i Traj_1 Sim_9 TrajSim_1_9
#> 28 0.1420792+0.5506474i Traj_1 Sim_9 TrajSim_1_9
#> 29 -0.0161394+0.5644251i Traj_1 Sim_9 TrajSim_1_9
#>
#> [[9]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.3532260 2.362465 0.02 0.02 0.353226+ 2.362465i
#> 3 0.3391204 3.001730 0.04 0.04 0.339120+ 3.001730i
#> 4 0.4211400 3.823702 0.06 0.06 0.421140+ 3.823702i
#> 5 0.4513742 4.509077 0.08 0.08 0.451374+ 4.509077i
#> 6 0.5341750 5.162372 0.10 0.10 0.534175+ 5.162372i
#> 7 0.6759044 5.719766 0.12 0.12 0.675904+ 5.719766i
#> 8 0.8811161 6.279774 0.14 0.14 0.881116+ 6.279774i
#> 9 0.9441022 6.949909 0.16 0.16 0.944102+ 6.949909i
#> 10 1.1735306 7.666791 0.18 0.18 1.173531+ 7.666791i
#> 11 1.3758064 8.362983 0.20 0.20 1.375806+ 8.362983i
#> 12 1.5974230 9.116666 0.22 0.22 1.597423+ 9.116666i
#> 13 1.8077525 9.825437 0.24 0.24 1.807752+ 9.825437i
#> 14 1.8921384 10.480721 0.26 0.26 1.892138+10.480721i
#> 15 1.8063615 11.065532 0.28 0.28 1.806361+11.065532i
#> 16 1.9204396 11.817289 0.30 0.30 1.920440+11.817289i
#> 17 1.8630592 12.403664 0.32 0.32 1.863059+12.403664i
#> 18 2.1828352 13.050117 0.34 0.34 2.182835+13.050117i
#> 19 2.2416073 13.466860 0.36 0.36 2.241607+13.466860i
#> 20 2.1898648 14.082049 0.38 0.38 2.189865+14.082049i
#> 21 2.2435964 14.689323 0.40 0.40 2.243596+14.689323i
#> 22 2.3974152 15.317799 0.42 0.42 2.397415+15.317799i
#> 23 2.5635474 15.915038 0.44 0.44 2.563547+15.915038i
#> 24 2.6234511 16.598341 0.46 0.46 2.623451+16.598341i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_9 TrajSim_2_9
#> 2 -0.0114594+0.6692827i Traj_2 Sim_9 TrajSim_2_9
#> 3 -0.0141056+0.6392653i Traj_2 Sim_9 TrajSim_2_9
#> 4 0.0820196+0.8219713i Traj_2 Sim_9 TrajSim_2_9
#> 5 0.0302342+0.6853753i Traj_2 Sim_9 TrajSim_2_9
#> 6 0.0828008+0.6532950i Traj_2 Sim_9 TrajSim_2_9
#> 7 0.1417294+0.5573937i Traj_2 Sim_9 TrajSim_2_9
#> 8 0.2052117+0.5600087i Traj_2 Sim_9 TrajSim_2_9
#> 9 0.0629861+0.6701344i Traj_2 Sim_9 TrajSim_2_9
#> 10 0.2294284+0.7168823i Traj_2 Sim_9 TrajSim_2_9
#> 11 0.2022758+0.6961918i Traj_2 Sim_9 TrajSim_2_9
#> 12 0.2216166+0.7536835i Traj_2 Sim_9 TrajSim_2_9
#> 13 0.2103294+0.7087710i Traj_2 Sim_9 TrajSim_2_9
#> 14 0.0843859+0.6552839i Traj_2 Sim_9 TrajSim_2_9
#> 15 -0.0857769+0.5848114i Traj_2 Sim_9 TrajSim_2_9
#> 16 0.1140781+0.7517570i Traj_2 Sim_9 TrajSim_2_9
#> 17 -0.0573804+0.5863742i Traj_2 Sim_9 TrajSim_2_9
#> 18 0.3197760+0.6464532i Traj_2 Sim_9 TrajSim_2_9
#> 19 0.0587721+0.4167436i Traj_2 Sim_9 TrajSim_2_9
#> 20 -0.0517425+0.6151882i Traj_2 Sim_9 TrajSim_2_9
#> 21 0.0537317+0.6072741i Traj_2 Sim_9 TrajSim_2_9
#> 22 0.1538187+0.6284762i Traj_2 Sim_9 TrajSim_2_9
#> 23 0.1661323+0.5972386i Traj_2 Sim_9 TrajSim_2_9
#> 24 0.0599037+0.6833032i Traj_2 Sim_9 TrajSim_2_9
#>
#>
#> [[10]]
#> [[10]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.8223574 1.640658 0.02 0.02 0.822357+ 1.640658i
#> 3 0.9449441 2.147729 0.04 0.04 0.944944+ 2.147729i
#> 4 0.9310306 2.715668 0.06 0.06 0.931031+ 2.715668i
#> 5 0.9275402 3.218948 0.08 0.08 0.927540+ 3.218948i
#> 6 1.0408698 3.790227 0.10 0.10 1.040870+ 3.790227i
#> 7 1.1014733 4.317521 0.12 0.12 1.101473+ 4.317521i
#> 8 1.1188445 4.994885 0.14 0.14 1.118844+ 4.994885i
#> 9 1.0872215 5.583656 0.16 0.16 1.087221+ 5.583656i
#> 10 1.2645593 6.076201 0.18 0.18 1.264559+ 6.076201i
#> 11 1.3242206 6.635018 0.20 0.20 1.324221+ 6.635018i
#> 12 1.3103172 7.110778 0.22 0.22 1.310317+ 7.110778i
#> 13 1.3778594 7.691451 0.24 0.24 1.377859+ 7.691451i
#> 14 1.5672833 8.308689 0.26 0.26 1.567283+ 8.308689i
#> 15 1.4817206 8.865886 0.28 0.28 1.481721+ 8.865886i
#> 16 1.4536241 9.429102 0.30 0.30 1.453624+ 9.429102i
#> 17 1.5270021 10.019415 0.32 0.32 1.527002+10.019415i
#> 18 1.5781036 10.562286 0.34 0.34 1.578104+10.562286i
#> 19 1.6883145 11.280684 0.36 0.36 1.688315+11.280684i
#> 20 1.7884153 11.906200 0.38 0.38 1.788415+11.906200i
#> 21 1.7341655 12.480712 0.40 0.40 1.734166+12.480712i
#> 22 1.7335231 13.124529 0.42 0.42 1.733523+13.124529i
#> 23 1.9007303 13.717532 0.44 0.44 1.900730+13.717532i
#> 24 2.1287088 14.298174 0.46 0.46 2.128709+14.298174i
#> 25 2.2517258 14.919199 0.48 0.48 2.251726+14.919199i
#> 26 2.4295790 15.538237 0.50 0.50 2.429579+15.538237i
#> 27 2.5102855 16.099520 0.52 0.52 2.510285+16.099520i
#> 28 2.3384176 16.692805 0.54 0.54 2.338418+16.692805i
#> 29 2.2607125 17.202668 0.56 0.56 2.260713+17.202668i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_10 TrajSim_1_10
#> 2 0.0669376+0.6138949i Traj_1 Sim_10 TrajSim_1_10
#> 3 0.1225867+0.5070713i Traj_1 Sim_10 TrajSim_1_10
#> 4 -0.0139135+0.5679387i Traj_1 Sim_10 TrajSim_1_10
#> 5 -0.0034904+0.5032798i Traj_1 Sim_10 TrajSim_1_10
#> 6 0.1133296+0.5712795i Traj_1 Sim_10 TrajSim_1_10
#> 7 0.0606034+0.5272938i Traj_1 Sim_10 TrajSim_1_10
#> 8 0.0173712+0.6773639i Traj_1 Sim_10 TrajSim_1_10
#> 9 -0.0316230+0.5887711i Traj_1 Sim_10 TrajSim_1_10
#> 10 0.1773378+0.4925452i Traj_1 Sim_10 TrajSim_1_10
#> 11 0.0596613+0.5588163i Traj_1 Sim_10 TrajSim_1_10
#> 12 -0.0139033+0.4757608i Traj_1 Sim_10 TrajSim_1_10
#> 13 0.0675422+0.5806728i Traj_1 Sim_10 TrajSim_1_10
#> 14 0.1894239+0.6172383i Traj_1 Sim_10 TrajSim_1_10
#> 15 -0.0855627+0.5571971i Traj_1 Sim_10 TrajSim_1_10
#> 16 -0.0280964+0.5632159i Traj_1 Sim_10 TrajSim_1_10
#> 17 0.0733780+0.5903130i Traj_1 Sim_10 TrajSim_1_10
#> 18 0.0511015+0.5428703i Traj_1 Sim_10 TrajSim_1_10
#> 19 0.1102109+0.7183980i Traj_1 Sim_10 TrajSim_1_10
#> 20 0.1001008+0.6255163i Traj_1 Sim_10 TrajSim_1_10
#> 21 -0.0542498+0.5745115i Traj_1 Sim_10 TrajSim_1_10
#> 22 -0.0006424+0.6438176i Traj_1 Sim_10 TrajSim_1_10
#> 23 0.1672072+0.5930027i Traj_1 Sim_10 TrajSim_1_10
#> 24 0.2279785+0.5806425i Traj_1 Sim_10 TrajSim_1_10
#> 25 0.1230170+0.6210245i Traj_1 Sim_10 TrajSim_1_10
#> 26 0.1778531+0.6190383i Traj_1 Sim_10 TrajSim_1_10
#> 27 0.0807065+0.5612831i Traj_1 Sim_10 TrajSim_1_10
#> 28 -0.1718679+0.5932843i Traj_1 Sim_10 TrajSim_1_10
#> 29 -0.0777050+0.5098633i Traj_1 Sim_10 TrajSim_1_10
#>
#> [[10]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.3730605 2.392225 0.02 0.02 0.373060+ 2.392225i
#> 3 0.3300856 3.162339 0.04 0.04 0.330086+ 3.162339i
#> 4 0.4494749 3.890475 0.06 0.06 0.449475+ 3.890475i
#> 5 0.4975645 4.461302 0.08 0.08 0.497564+ 4.461302i
#> 6 0.7048461 5.002374 0.10 0.10 0.704846+ 5.002374i
#> 7 0.7394756 5.667370 0.12 0.12 0.739476+ 5.667370i
#> 8 0.7830414 6.296602 0.14 0.14 0.783041+ 6.296602i
#> 9 0.8242383 7.066318 0.16 0.16 0.824238+ 7.066318i
#> 10 1.0001915 7.657523 0.18 0.18 1.000192+ 7.657523i
#> 11 1.0432497 8.206697 0.20 0.20 1.043250+ 8.206697i
#> 12 1.1738545 8.638578 0.22 0.22 1.173854+ 8.638578i
#> 13 1.2007728 9.302457 0.24 0.24 1.200773+ 9.302457i
#> 14 1.1194961 9.966884 0.26 0.26 1.119496+ 9.966884i
#> 15 1.1657411 10.590832 0.28 0.28 1.165741+10.590832i
#> 16 1.4500577 11.247082 0.30 0.30 1.450058+11.247082i
#> 17 1.4405549 11.800983 0.32 0.32 1.440555+11.800983i
#> 18 1.5517895 12.413013 0.34 0.34 1.551790+12.413013i
#> 19 1.5826255 13.101692 0.36 0.36 1.582625+13.101692i
#> 20 1.5712293 13.632835 0.38 0.38 1.571229+13.632835i
#> 21 1.6098917 14.189495 0.40 0.40 1.609892+14.189495i
#> 22 1.6801606 14.880839 0.42 0.42 1.680161+14.880839i
#> 23 1.8010899 15.643421 0.44 0.44 1.801090+15.643421i
#> 24 1.7709842 16.239233 0.46 0.46 1.770984+16.239233i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_10 TrajSim_2_10
#> 2 0.0083751+0.6990426i Traj_2 Sim_10 TrajSim_2_10
#> 3 -0.0429749+0.7701139i Traj_2 Sim_10 TrajSim_2_10
#> 4 0.1193893+0.7281358i Traj_2 Sim_10 TrajSim_2_10
#> 5 0.0480895+0.5708279i Traj_2 Sim_10 TrajSim_2_10
#> 6 0.2072817+0.5410712i Traj_2 Sim_10 TrajSim_2_10
#> 7 0.0346295+0.6649959i Traj_2 Sim_10 TrajSim_2_10
#> 8 0.0435658+0.6292323i Traj_2 Sim_10 TrajSim_2_10
#> 9 0.0411969+0.7697161i Traj_2 Sim_10 TrajSim_2_10
#> 10 0.1759533+0.5912047i Traj_2 Sim_10 TrajSim_2_10
#> 11 0.0430582+0.5491740i Traj_2 Sim_10 TrajSim_2_10
#> 12 0.1306048+0.4318811i Traj_2 Sim_10 TrajSim_2_10
#> 13 0.0269183+0.6638794i Traj_2 Sim_10 TrajSim_2_10
#> 14 -0.0812767+0.6644266i Traj_2 Sim_10 TrajSim_2_10
#> 15 0.0462451+0.6239482i Traj_2 Sim_10 TrajSim_2_10
#> 16 0.2843166+0.6562497i Traj_2 Sim_10 TrajSim_2_10
#> 17 -0.0095028+0.5539012i Traj_2 Sim_10 TrajSim_2_10
#> 18 0.1112346+0.6120297i Traj_2 Sim_10 TrajSim_2_10
#> 19 0.0308360+0.6886794i Traj_2 Sim_10 TrajSim_2_10
#> 20 -0.0113962+0.5311430i Traj_2 Sim_10 TrajSim_2_10
#> 21 0.0386624+0.5566601i Traj_2 Sim_10 TrajSim_2_10
#> 22 0.0702690+0.6913437i Traj_2 Sim_10 TrajSim_2_10
#> 23 0.1209292+0.7625819i Traj_2 Sim_10 TrajSim_2_10
#> 24 -0.0301056+0.5958129i Traj_2 Sim_10 TrajSim_2_10
sim_constrained_paluxy <- simulate_track(PaluxyRiver, nsim = 100, model = "Constrained")
print(sim_constrained_paluxy[1:10])
#> [[1]]
#> [[1]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.7428786 1.681141 0.02 0.02 0.742879+ 1.681141i
#> 3 0.8133153 2.197412 0.04 0.04 0.813315+ 2.197412i
#> 4 0.8399314 2.749028 0.06 0.06 0.839931+ 2.749028i
#> 5 0.9079823 3.395082 0.08 0.08 0.907982+ 3.395082i
#> 6 1.0266284 3.919202 0.10 0.10 1.026628+ 3.919202i
#> 7 1.0920596 4.471407 0.12 0.12 1.092060+ 4.471407i
#> 8 1.1492592 5.028968 0.14 0.14 1.149259+ 5.028968i
#> 9 1.2424714 5.604546 0.16 0.16 1.242471+ 5.604546i
#> 10 1.3331822 6.223733 0.18 0.18 1.333182+ 6.223733i
#> 11 1.4359461 6.876151 0.20 0.20 1.435946+ 6.876151i
#> 12 1.5803827 7.428723 0.22 0.22 1.580383+ 7.428723i
#> 13 1.7046967 8.032167 0.24 0.24 1.704697+ 8.032167i
#> 14 1.8703011 8.607810 0.26 0.26 1.870301+ 8.607810i
#> 15 2.0507242 9.200570 0.28 0.28 2.050724+ 9.200570i
#> 16 2.1939298 9.750783 0.30 0.30 2.193930+ 9.750783i
#> 17 2.3655929 10.203790 0.32 0.32 2.365593+10.203790i
#> 18 2.5871037 10.734966 0.34 0.34 2.587104+10.734966i
#> 19 2.7293095 11.290881 0.36 0.36 2.729309+11.290881i
#> 20 2.8510010 11.888714 0.38 0.38 2.851001+11.888714i
#> 21 3.0331678 12.490261 0.40 0.40 3.033168+12.490261i
#> 22 3.1771373 12.967772 0.42 0.42 3.177137+12.967772i
#> 23 3.3398076 13.554526 0.44 0.44 3.339808+13.554526i
#> 24 3.5431066 14.110672 0.46 0.46 3.543107+14.110672i
#> 25 3.7605425 14.713551 0.48 0.48 3.760542+14.713551i
#> 26 3.8966645 15.209640 0.50 0.50 3.896665+15.209640i
#> 27 4.0939462 15.834518 0.52 0.52 4.093946+15.834518i
#> 28 4.3101993 16.412424 0.54 0.54 4.310199+16.412424i
#> 29 4.5503439 16.953419 0.56 0.56 4.550344+16.953419i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_1 TrajSim_1_1
#> 2 -0.0125411+0.6543784i Traj_1 Sim_1 TrajSim_1_1
#> 3 0.0704366+0.5162701i Traj_1 Sim_1 TrajSim_1_1
#> 4 0.0266161+0.5516168i Traj_1 Sim_1 TrajSim_1_1
#> 5 0.0680510+0.6460536i Traj_1 Sim_1 TrajSim_1_1
#> 6 0.1186461+0.5241198i Traj_1 Sim_1 TrajSim_1_1
#> 7 0.0654312+0.5522048i Traj_1 Sim_1 TrajSim_1_1
#> 8 0.0571997+0.5575612i Traj_1 Sim_1 TrajSim_1_1
#> 9 0.0932122+0.5755786i Traj_1 Sim_1 TrajSim_1_1
#> 10 0.0907108+0.6191870i Traj_1 Sim_1 TrajSim_1_1
#> 11 0.1027639+0.6524172i Traj_1 Sim_1 TrajSim_1_1
#> 12 0.1444366+0.5525721i Traj_1 Sim_1 TrajSim_1_1
#> 13 0.1243139+0.6034442i Traj_1 Sim_1 TrajSim_1_1
#> 14 0.1656044+0.5756434i Traj_1 Sim_1 TrajSim_1_1
#> 15 0.1804231+0.5927596i Traj_1 Sim_1 TrajSim_1_1
#> 16 0.1432057+0.5502131i Traj_1 Sim_1 TrajSim_1_1
#> 17 0.1716630+0.4530071i Traj_1 Sim_1 TrajSim_1_1
#> 18 0.2215108+0.5311759i Traj_1 Sim_1 TrajSim_1_1
#> 19 0.1422058+0.5559153i Traj_1 Sim_1 TrajSim_1_1
#> 20 0.1216915+0.5978328i Traj_1 Sim_1 TrajSim_1_1
#> 21 0.1821668+0.6015463i Traj_1 Sim_1 TrajSim_1_1
#> 22 0.1439696+0.4775113i Traj_1 Sim_1 TrajSim_1_1
#> 23 0.1626702+0.5867537i Traj_1 Sim_1 TrajSim_1_1
#> 24 0.2032990+0.5561464i Traj_1 Sim_1 TrajSim_1_1
#> 25 0.2174359+0.6028788i Traj_1 Sim_1 TrajSim_1_1
#> 26 0.1361220+0.4960890i Traj_1 Sim_1 TrajSim_1_1
#> 27 0.1972817+0.6248788i Traj_1 Sim_1 TrajSim_1_1
#> 28 0.2162531+0.5779054i Traj_1 Sim_1 TrajSim_1_1
#> 29 0.2401446+0.5409952i Traj_1 Sim_1 TrajSim_1_1
#>
#> [[1]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.3815554 2.318976 0.02 0.02 0.381555+ 2.318976i
#> 3 0.4347023 2.877914 0.04 0.04 0.434702+ 2.877914i
#> 4 0.6224467 3.414340 0.06 0.06 0.622447+ 3.414340i
#> 5 0.9839790 4.141565 0.08 0.08 0.983979+ 4.141565i
#> 6 1.3953086 4.771957 0.10 0.10 1.395309+ 4.771957i
#> 7 1.6522803 5.292164 0.12 0.12 1.652280+ 5.292164i
#> 8 1.9088920 5.957444 0.14 0.14 1.908892+ 5.957444i
#> 9 2.1003369 6.561857 0.16 0.16 2.100337+ 6.561857i
#> 10 2.3765152 7.188343 0.18 0.18 2.376515+ 7.188343i
#> 11 2.6264565 7.787647 0.20 0.20 2.626457+ 7.787647i
#> 12 2.9243456 8.328290 0.22 0.22 2.924346+ 8.328290i
#> 13 3.1083067 8.829745 0.24 0.24 3.108307+ 8.829745i
#> 14 3.3379707 9.406827 0.26 0.26 3.337971+ 9.406827i
#> 15 3.5318425 9.876092 0.28 0.28 3.531843+ 9.876092i
#> 16 3.8561214 10.537194 0.30 0.30 3.856121+10.537194i
#> 17 4.1469980 11.153915 0.32 0.32 4.146998+11.153915i
#> 18 4.4893457 11.709692 0.34 0.34 4.489346+11.709692i
#> 19 4.8015948 12.174607 0.36 0.36 4.801595+12.174607i
#> 20 5.1018438 12.946083 0.38 0.38 5.101844+12.946083i
#> 21 5.4127843 13.412202 0.40 0.40 5.412784+13.412202i
#> 22 5.6298480 13.905581 0.42 0.42 5.629848+13.905581i
#> 23 5.9189769 14.548083 0.44 0.44 5.918977+14.548083i
#> 24 6.2058405 15.158544 0.46 0.46 6.205840+15.158544i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_1 TrajSim_2_1
#> 2 0.0168700+0.6257942i Traj_2 Sim_1 TrajSim_2_1
#> 3 0.0531470+0.5589372i Traj_2 Sim_1 TrajSim_2_1
#> 4 0.1877443+0.5364261i Traj_2 Sim_1 TrajSim_2_1
#> 5 0.3615324+0.7272251i Traj_2 Sim_1 TrajSim_2_1
#> 6 0.4113296+0.6303918i Traj_2 Sim_1 TrajSim_2_1
#> 7 0.2569716+0.5202073i Traj_2 Sim_1 TrajSim_2_1
#> 8 0.2566118+0.6652798i Traj_2 Sim_1 TrajSim_2_1
#> 9 0.1914449+0.6044134i Traj_2 Sim_1 TrajSim_2_1
#> 10 0.2761783+0.6264860i Traj_2 Sim_1 TrajSim_2_1
#> 11 0.2499413+0.5993040i Traj_2 Sim_1 TrajSim_2_1
#> 12 0.2978890+0.5406427i Traj_2 Sim_1 TrajSim_2_1
#> 13 0.1839612+0.5014552i Traj_2 Sim_1 TrajSim_2_1
#> 14 0.2296640+0.5770820i Traj_2 Sim_1 TrajSim_2_1
#> 15 0.1938718+0.4692646i Traj_2 Sim_1 TrajSim_2_1
#> 16 0.3242789+0.6611018i Traj_2 Sim_1 TrajSim_2_1
#> 17 0.2908767+0.6167214i Traj_2 Sim_1 TrajSim_2_1
#> 18 0.3423477+0.5557768i Traj_2 Sim_1 TrajSim_2_1
#> 19 0.3122490+0.4649156i Traj_2 Sim_1 TrajSim_2_1
#> 20 0.3002491+0.7714759i Traj_2 Sim_1 TrajSim_2_1
#> 21 0.3109405+0.4661186i Traj_2 Sim_1 TrajSim_2_1
#> 22 0.2170637+0.4933795i Traj_2 Sim_1 TrajSim_2_1
#> 23 0.2891288+0.6425012i Traj_2 Sim_1 TrajSim_2_1
#> 24 0.2868636+0.6104612i Traj_2 Sim_1 TrajSim_2_1
#>
#>
#> [[2]]
#> [[2]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.7893155 1.670631 0.02 0.02 0.789315+ 1.670631i
#> 3 0.8327677 2.282928 0.04 0.04 0.832768+ 2.282928i
#> 4 0.8812457 2.930729 0.06 0.06 0.881246+ 2.930729i
#> 5 0.9219345 3.552402 0.08 0.08 0.921935+ 3.552402i
#> 6 0.9539636 4.178890 0.10 0.10 0.953964+ 4.178890i
#> 7 1.0127491 4.762233 0.12 0.12 1.012749+ 4.762233i
#> 8 1.1348633 5.296267 0.14 0.14 1.134863+ 5.296267i
#> 9 1.2542114 5.693515 0.16 0.16 1.254211+ 5.693515i
#> 10 1.4809237 6.296950 0.18 0.18 1.480924+ 6.296950i
#> 11 1.6562939 6.849499 0.20 0.20 1.656294+ 6.849499i
#> 12 1.8339144 7.351049 0.22 0.22 1.833914+ 7.351049i
#> 13 2.0342726 7.844832 0.24 0.24 2.034273+ 7.844832i
#> 14 2.2697083 8.396147 0.26 0.26 2.269708+ 8.396147i
#> 15 2.5169308 9.023270 0.28 0.28 2.516931+ 9.023270i
#> 16 2.7712433 9.567983 0.30 0.30 2.771243+ 9.567983i
#> 17 3.0970531 10.084995 0.32 0.32 3.097053+10.084995i
#> 18 3.4034860 10.553446 0.34 0.34 3.403486+10.553446i
#> 19 3.6956925 10.970638 0.36 0.36 3.695692+10.970638i
#> 20 4.0262024 11.472071 0.38 0.38 4.026202+11.472071i
#> 21 4.3814315 12.039587 0.40 0.40 4.381432+12.039587i
#> 22 4.7219709 12.560956 0.42 0.42 4.721971+12.560956i
#> 23 5.0300297 13.053355 0.44 0.44 5.030030+13.053355i
#> 24 5.2894254 13.420970 0.46 0.46 5.289425+13.420970i
#> 25 5.6594379 13.920362 0.48 0.48 5.659438+13.920362i
#> 26 6.0122128 14.314391 0.50 0.50 6.012213+14.314391i
#> 27 6.3957989 14.831868 0.52 0.52 6.395799+14.831868i
#> 28 6.8316861 15.382097 0.54 0.54 6.831686+15.382097i
#> 29 7.1289861 15.839532 0.56 0.56 7.128986+15.839532i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_2 TrajSim_1_2
#> 2 0.0338957+0.6438675i Traj_1 Sim_2 TrajSim_1_2
#> 3 0.0434522+0.6122973i Traj_1 Sim_2 TrajSim_1_2
#> 4 0.0484781+0.6478009i Traj_1 Sim_2 TrajSim_1_2
#> 5 0.0406888+0.6216734i Traj_1 Sim_2 TrajSim_1_2
#> 6 0.0320291+0.6264874i Traj_1 Sim_2 TrajSim_1_2
#> 7 0.0587855+0.5833431i Traj_1 Sim_2 TrajSim_1_2
#> 8 0.1221141+0.5340347i Traj_1 Sim_2 TrajSim_1_2
#> 9 0.1193481+0.3972481i Traj_1 Sim_2 TrajSim_1_2
#> 10 0.2267123+0.6034348i Traj_1 Sim_2 TrajSim_1_2
#> 11 0.1753702+0.5525486i Traj_1 Sim_2 TrajSim_1_2
#> 12 0.1776205+0.5015506i Traj_1 Sim_2 TrajSim_1_2
#> 13 0.2003582+0.4937827i Traj_1 Sim_2 TrajSim_1_2
#> 14 0.2354357+0.5513148i Traj_1 Sim_2 TrajSim_1_2
#> 15 0.2472224+0.6271229i Traj_1 Sim_2 TrajSim_1_2
#> 16 0.2543125+0.5447130i Traj_1 Sim_2 TrajSim_1_2
#> 17 0.3258098+0.5170126i Traj_1 Sim_2 TrajSim_1_2
#> 18 0.3064329+0.4684510i Traj_1 Sim_2 TrajSim_1_2
#> 19 0.2922065+0.4171917i Traj_1 Sim_2 TrajSim_1_2
#> 20 0.3305100+0.5014327i Traj_1 Sim_2 TrajSim_1_2
#> 21 0.3552291+0.5675167i Traj_1 Sim_2 TrajSim_1_2
#> 22 0.3405394+0.5213690i Traj_1 Sim_2 TrajSim_1_2
#> 23 0.3080588+0.4923983i Traj_1 Sim_2 TrajSim_1_2
#> 24 0.2593957+0.3676154i Traj_1 Sim_2 TrajSim_1_2
#> 25 0.3700125+0.4993918i Traj_1 Sim_2 TrajSim_1_2
#> 26 0.3527749+0.3940297i Traj_1 Sim_2 TrajSim_1_2
#> 27 0.3835860+0.5174763i Traj_1 Sim_2 TrajSim_1_2
#> 28 0.4358872+0.5502294i Traj_1 Sim_2 TrajSim_1_2
#> 29 0.2973000+0.4574353i Traj_1 Sim_2 TrajSim_1_2
#>
#> [[2]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.3734330 2.313124 0.02 0.02 0.373433+ 2.313124i
#> 3 0.4126457 2.896390 0.04 0.04 0.412646+ 2.896390i
#> 4 0.4957314 3.532259 0.06 0.06 0.495731+ 3.532259i
#> 5 0.7842366 4.258209 0.08 0.08 0.784237+ 4.258209i
#> 6 1.0333810 4.832343 0.10 0.10 1.033381+ 4.832343i
#> 7 1.2355223 5.555868 0.12 0.12 1.235522+ 5.555868i
#> 8 1.4740701 6.220968 0.14 0.14 1.474070+ 6.220968i
#> 9 1.6788979 6.917798 0.16 0.16 1.678898+ 6.917798i
#> 10 1.8906335 7.564508 0.18 0.18 1.890633+ 7.564508i
#> 11 2.2502586 8.196244 0.20 0.20 2.250259+ 8.196244i
#> 12 2.5281675 8.656101 0.22 0.22 2.528167+ 8.656101i
#> 13 2.8318202 9.333128 0.24 0.24 2.831820+ 9.333128i
#> 14 3.0264497 10.045942 0.26 0.26 3.026450+10.045942i
#> 15 3.2075453 10.612263 0.28 0.28 3.207545+10.612263i
#> 16 3.4345174 11.106845 0.30 0.30 3.434517+11.106845i
#> 17 3.6813856 11.673749 0.32 0.32 3.681386+11.673749i
#> 18 4.0599770 12.297550 0.34 0.34 4.059977+12.297550i
#> 19 4.4605097 12.959030 0.36 0.36 4.460510+12.959030i
#> 20 4.6956249 13.354520 0.38 0.38 4.695625+13.354520i
#> 21 5.0199040 13.796952 0.40 0.40 5.019904+13.796952i
#> 22 5.4012797 14.281406 0.42 0.42 5.401280+14.281406i
#> 23 5.7701903 14.860033 0.44 0.44 5.770190+14.860033i
#> 24 6.0261559 15.314011 0.46 0.46 6.026156+15.314011i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_2 TrajSim_2_2
#> 2 0.0087476+0.6199416i Traj_2 Sim_2 TrajSim_2_2
#> 3 0.0392127+0.5832664i Traj_2 Sim_2 TrajSim_2_2
#> 4 0.0830856+0.6358692i Traj_2 Sim_2 TrajSim_2_2
#> 5 0.2885052+0.7259499i Traj_2 Sim_2 TrajSim_2_2
#> 6 0.2491443+0.5741338i Traj_2 Sim_2 TrajSim_2_2
#> 7 0.2021414+0.7235247i Traj_2 Sim_2 TrajSim_2_2
#> 8 0.2385478+0.6651000i Traj_2 Sim_2 TrajSim_2_2
#> 9 0.2048278+0.6968300i Traj_2 Sim_2 TrajSim_2_2
#> 10 0.2117355+0.6467098i Traj_2 Sim_2 TrajSim_2_2
#> 11 0.3596251+0.6317363i Traj_2 Sim_2 TrajSim_2_2
#> 12 0.2779089+0.4598572i Traj_2 Sim_2 TrajSim_2_2
#> 13 0.3036528+0.6770266i Traj_2 Sim_2 TrajSim_2_2
#> 14 0.1946295+0.7128140i Traj_2 Sim_2 TrajSim_2_2
#> 15 0.1810955+0.5663214i Traj_2 Sim_2 TrajSim_2_2
#> 16 0.2269722+0.4945822i Traj_2 Sim_2 TrajSim_2_2
#> 17 0.2468682+0.5669037i Traj_2 Sim_2 TrajSim_2_2
#> 18 0.3785914+0.6238013i Traj_2 Sim_2 TrajSim_2_2
#> 19 0.4005327+0.6614798i Traj_2 Sim_2 TrajSim_2_2
#> 20 0.2351152+0.3954897i Traj_2 Sim_2 TrajSim_2_2
#> 21 0.3242791+0.4424320i Traj_2 Sim_2 TrajSim_2_2
#> 22 0.3813757+0.4844547i Traj_2 Sim_2 TrajSim_2_2
#> 23 0.3689105+0.5786262i Traj_2 Sim_2 TrajSim_2_2
#> 24 0.2559656+0.4539784i Traj_2 Sim_2 TrajSim_2_2
#>
#>
#> [[3]]
#> [[3]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.7964259 1.615840 0.02 0.02 0.796426+ 1.615840i
#> 3 0.8003580 2.165471 0.04 0.04 0.800358+ 2.165471i
#> 4 0.7837786 2.654139 0.06 0.06 0.783779+ 2.654139i
#> 5 0.7916782 3.216179 0.08 0.08 0.791678+ 3.216179i
#> 6 0.8458489 3.919962 0.10 0.10 0.845849+ 3.919962i
#> 7 0.9047509 4.534130 0.12 0.12 0.904751+ 4.534130i
#> 8 0.9142867 5.152027 0.14 0.14 0.914287+ 5.152027i
#> 9 0.9751215 5.719766 0.16 0.16 0.975121+ 5.719766i
#> 10 1.0414935 6.264774 0.18 0.18 1.041494+ 6.264774i
#> 11 1.1408775 6.732373 0.20 0.20 1.140877+ 6.732373i
#> 12 1.2113488 7.232633 0.22 0.22 1.211349+ 7.232633i
#> 13 1.3051482 7.759097 0.24 0.24 1.305148+ 7.759097i
#> 14 1.3789852 8.245594 0.26 0.26 1.378985+ 8.245594i
#> 15 1.4807817 8.807756 0.28 0.28 1.480782+ 8.807756i
#> 16 1.6039214 9.379777 0.30 0.30 1.603921+ 9.379777i
#> 17 1.7457471 9.978893 0.32 0.32 1.745747+ 9.978893i
#> 18 1.8467582 10.633175 0.34 0.34 1.846758+10.633175i
#> 19 1.9169515 11.163506 0.36 0.36 1.916951+11.163506i
#> 20 1.9559421 11.639741 0.38 0.38 1.955942+11.639741i
#> 21 2.0159842 12.117727 0.40 0.40 2.015984+12.117727i
#> 22 2.1222254 12.618489 0.42 0.42 2.122225+12.618489i
#> 23 2.3137778 13.182773 0.44 0.44 2.313778+13.182773i
#> 24 2.4982878 13.741404 0.46 0.46 2.498288+13.741404i
#> 25 2.6836430 14.288644 0.48 0.48 2.683643+14.288644i
#> 26 2.8736401 14.749748 0.50 0.50 2.873640+14.749748i
#> 27 3.1479626 15.298211 0.52 0.52 3.147963+15.298211i
#> 28 3.5029264 15.935578 0.54 0.54 3.502926+15.935578i
#> 29 3.7613180 16.452369 0.56 0.56 3.761318+16.452369i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_3 TrajSim_1_3
#> 2 0.0410061+0.5890764i Traj_1 Sim_3 TrajSim_1_3
#> 3 0.0039322+0.5496313i Traj_1 Sim_3 TrajSim_1_3
#> 4 -0.0165795+0.4886686i Traj_1 Sim_3 TrajSim_1_3
#> 5 0.0078997+0.5620393i Traj_1 Sim_3 TrajSim_1_3
#> 6 0.0541707+0.7037835i Traj_1 Sim_3 TrajSim_1_3
#> 7 0.0589019+0.6141679i Traj_1 Sim_3 TrajSim_1_3
#> 8 0.0095358+0.6178970i Traj_1 Sim_3 TrajSim_1_3
#> 9 0.0608348+0.5677387i Traj_1 Sim_3 TrajSim_1_3
#> 10 0.0663720+0.5450079i Traj_1 Sim_3 TrajSim_1_3
#> 11 0.0993840+0.4675995i Traj_1 Sim_3 TrajSim_1_3
#> 12 0.0704713+0.5002597i Traj_1 Sim_3 TrajSim_1_3
#> 13 0.0937994+0.5264641i Traj_1 Sim_3 TrajSim_1_3
#> 14 0.0738370+0.4864968i Traj_1 Sim_3 TrajSim_1_3
#> 15 0.1017965+0.5621621i Traj_1 Sim_3 TrajSim_1_3
#> 16 0.1231397+0.5720209i Traj_1 Sim_3 TrajSim_1_3
#> 17 0.1418257+0.5991166i Traj_1 Sim_3 TrajSim_1_3
#> 18 0.1010111+0.6542816i Traj_1 Sim_3 TrajSim_1_3
#> 19 0.0701933+0.5303307i Traj_1 Sim_3 TrajSim_1_3
#> 20 0.0389906+0.4762357i Traj_1 Sim_3 TrajSim_1_3
#> 21 0.0600420+0.4779860i Traj_1 Sim_3 TrajSim_1_3
#> 22 0.1062412+0.5007612i Traj_1 Sim_3 TrajSim_1_3
#> 23 0.1915524+0.5642843i Traj_1 Sim_3 TrajSim_1_3
#> 24 0.1845100+0.5586316i Traj_1 Sim_3 TrajSim_1_3
#> 25 0.1853553+0.5472392i Traj_1 Sim_3 TrajSim_1_3
#> 26 0.1899971+0.4611039i Traj_1 Sim_3 TrajSim_1_3
#> 27 0.2743225+0.5484633i Traj_1 Sim_3 TrajSim_1_3
#> 28 0.3549638+0.6373670i Traj_1 Sim_3 TrajSim_1_3
#> 29 0.2583916+0.5167910i Traj_1 Sim_3 TrajSim_1_3
#>
#> [[3]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.5683184 2.149149 0.02 0.02 0.568318+ 2.149149i
#> 3 0.8081596 2.712577 0.04 0.04 0.808160+ 2.712577i
#> 4 1.1721997 3.274005 0.06 0.06 1.172200+ 3.274005i
#> 5 1.4102870 3.801421 0.08 0.08 1.410287+ 3.801421i
#> 6 1.7974793 4.396439 0.10 0.10 1.797479+ 4.396439i
#> 7 2.2142534 4.978010 0.12 0.12 2.214253+ 4.978010i
#> 8 2.6451224 5.598373 0.14 0.14 2.645122+ 5.598373i
#> 9 3.0658470 6.208315 0.16 0.16 3.065847+ 6.208315i
#> 10 3.4053475 6.628814 0.18 0.18 3.405347+ 6.628814i
#> 11 3.7942605 7.238760 0.20 0.20 3.794261+ 7.238760i
#> 12 4.2086132 7.728764 0.22 0.22 4.208613+ 7.728764i
#> 13 4.5795644 8.443706 0.24 0.24 4.579564+ 8.443706i
#> 14 4.9149360 8.977540 0.26 0.26 4.914936+ 8.977540i
#> 15 5.3017011 9.544209 0.28 0.28 5.301701+ 9.544209i
#> 16 5.7215369 10.154015 0.30 0.30 5.721537+10.154015i
#> 17 6.1165987 10.685897 0.32 0.32 6.116599+10.685897i
#> 18 6.4625491 11.258461 0.34 0.34 6.462549+11.258461i
#> 19 6.8641203 11.924156 0.36 0.36 6.864120+11.924156i
#> 20 7.0712976 12.609379 0.38 0.38 7.071298+12.609379i
#> 21 7.1959388 13.368084 0.40 0.40 7.195939+13.368084i
#> 22 7.3861049 14.042856 0.42 0.42 7.386105+14.042856i
#> 23 7.3540549 14.789047 0.44 0.44 7.354055+14.789047i
#> 24 7.3476865 15.448137 0.46 0.46 7.347687+15.448137i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_3 TrajSim_2_3
#> 2 0.2036330+0.4559671i Traj_2 Sim_3 TrajSim_2_3
#> 3 0.2398412+0.5634276i Traj_2 Sim_3 TrajSim_2_3
#> 4 0.3640401+0.5614281i Traj_2 Sim_3 TrajSim_2_3
#> 5 0.2380873+0.5274158i Traj_2 Sim_3 TrajSim_2_3
#> 6 0.3871923+0.5950181i Traj_2 Sim_3 TrajSim_2_3
#> 7 0.4167741+0.5815713i Traj_2 Sim_3 TrajSim_2_3
#> 8 0.4308690+0.6203630i Traj_2 Sim_3 TrajSim_2_3
#> 9 0.4207246+0.6099421i Traj_2 Sim_3 TrajSim_2_3
#> 10 0.3395005+0.4204990i Traj_2 Sim_3 TrajSim_2_3
#> 11 0.3889130+0.6099456i Traj_2 Sim_3 TrajSim_2_3
#> 12 0.4143527+0.4900035i Traj_2 Sim_3 TrajSim_2_3
#> 13 0.3709512+0.7149428i Traj_2 Sim_3 TrajSim_2_3
#> 14 0.3353716+0.5338333i Traj_2 Sim_3 TrajSim_2_3
#> 15 0.3867651+0.5666694i Traj_2 Sim_3 TrajSim_2_3
#> 16 0.4198358+0.6098063i Traj_2 Sim_3 TrajSim_2_3
#> 17 0.3950618+0.5318811i Traj_2 Sim_3 TrajSim_2_3
#> 18 0.3459504+0.5725644i Traj_2 Sim_3 TrajSim_2_3
#> 19 0.4015711+0.6656954i Traj_2 Sim_3 TrajSim_2_3
#> 20 0.2071774+0.6852224i Traj_2 Sim_3 TrajSim_2_3
#> 21 0.1246412+0.7587048i Traj_2 Sim_3 TrajSim_2_3
#> 22 0.1901661+0.6747727i Traj_2 Sim_3 TrajSim_2_3
#> 23 -0.0320500+0.7461911i Traj_2 Sim_3 TrajSim_2_3
#> 24 -0.0063684+0.6590895i Traj_2 Sim_3 TrajSim_2_3
#>
#>
#> [[4]]
#> [[4]][[1]]
#> x y time displacementTime polar
#> 1 0.75541978 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.75375755 1.515247 0.02 0.02 0.753758+ 1.515247i
#> 3 0.70967742 2.089651 0.04 0.04 0.709677+ 2.089651i
#> 4 0.62344092 2.677849 0.06 0.06 0.623441+ 2.677849i
#> 5 0.49204190 3.264248 0.08 0.08 0.492042+ 3.264248i
#> 6 0.26370817 3.881680 0.10 0.10 0.263708+ 3.881680i
#> 7 0.08629395 4.416554 0.12 0.12 0.086294+ 4.416554i
#> 8 -0.05862824 4.947417 0.14 0.14 -0.058628+ 4.947417i
#> 9 -0.23063150 5.539757 0.16 0.16 -0.230632+ 5.539757i
#> 10 -0.34696290 5.991108 0.18 0.18 -0.346963+ 5.991108i
#> 11 -0.49319424 6.610651 0.20 0.20 -0.493194+ 6.610651i
#> 12 -0.62020309 7.193491 0.22 0.22 -0.620203+ 7.193491i
#> 13 -0.67483500 7.848078 0.24 0.24 -0.674835+ 7.848078i
#> 14 -0.70124730 8.342341 0.26 0.26 -0.701247+ 8.342341i
#> 15 -0.73535268 9.049513 0.28 0.28 -0.735353+ 9.049513i
#> 16 -0.78905544 9.618025 0.30 0.30 -0.789055+ 9.618025i
#> 17 -0.88770733 10.232662 0.32 0.32 -0.887707+10.232662i
#> 18 -0.96233512 10.813921 0.34 0.34 -0.962335+10.813921i
#> 19 -1.01949599 11.373016 0.36 0.36 -1.019496+11.373016i
#> 20 -1.10865337 11.927716 0.38 0.38 -1.108653+11.927716i
#> 21 -1.12748381 12.464735 0.40 0.40 -1.127484+12.464735i
#> 22 -1.12876710 13.006604 0.42 0.42 -1.128767+13.006604i
#> 23 -1.15414314 13.570177 0.44 0.44 -1.154143+13.570177i
#> 24 -1.11704737 14.098982 0.46 0.46 -1.117047+14.098982i
#> 25 -1.06808100 14.757689 0.48 0.48 -1.068081+14.757689i
#> 26 -1.03350660 15.399641 0.50 0.50 -1.033507+15.399641i
#> 27 -1.01760693 16.015420 0.52 0.52 -1.017607+16.015420i
#> 28 -0.94525664 16.709627 0.54 0.54 -0.945257+16.709627i
#> 29 -0.86616030 17.281820 0.56 0.56 -0.866160+17.281820i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_4 TrajSim_1_4
#> 2 -0.0016622+0.4884840i Traj_1 Sim_4 TrajSim_1_4
#> 3 -0.0440801+0.5744035i Traj_1 Sim_4 TrajSim_1_4
#> 4 -0.0862365+0.5881980i Traj_1 Sim_4 TrajSim_1_4
#> 5 -0.1313990+0.5863996i Traj_1 Sim_4 TrajSim_1_4
#> 6 -0.2283337+0.6174320i Traj_1 Sim_4 TrajSim_1_4
#> 7 -0.1774142+0.5348738i Traj_1 Sim_4 TrajSim_1_4
#> 8 -0.1449222+0.5308633i Traj_1 Sim_4 TrajSim_1_4
#> 9 -0.1720033+0.5923397i Traj_1 Sim_4 TrajSim_1_4
#> 10 -0.1163314+0.4513512i Traj_1 Sim_4 TrajSim_1_4
#> 11 -0.1462313+0.6195431i Traj_1 Sim_4 TrajSim_1_4
#> 12 -0.1270088+0.5828394i Traj_1 Sim_4 TrajSim_1_4
#> 13 -0.0546319+0.6545873i Traj_1 Sim_4 TrajSim_1_4
#> 14 -0.0264123+0.4942633i Traj_1 Sim_4 TrajSim_1_4
#> 15 -0.0341054+0.7071716i Traj_1 Sim_4 TrajSim_1_4
#> 16 -0.0537028+0.5685124i Traj_1 Sim_4 TrajSim_1_4
#> 17 -0.0986519+0.6146368i Traj_1 Sim_4 TrajSim_1_4
#> 18 -0.0746278+0.5812591i Traj_1 Sim_4 TrajSim_1_4
#> 19 -0.0571609+0.5590950i Traj_1 Sim_4 TrajSim_1_4
#> 20 -0.0891574+0.5547003i Traj_1 Sim_4 TrajSim_1_4
#> 21 -0.0188304+0.5370186i Traj_1 Sim_4 TrajSim_1_4
#> 22 -0.0012833+0.5418693i Traj_1 Sim_4 TrajSim_1_4
#> 23 -0.0253760+0.5635727i Traj_1 Sim_4 TrajSim_1_4
#> 24 0.0370958+0.5288051i Traj_1 Sim_4 TrajSim_1_4
#> 25 0.0489664+0.6587069i Traj_1 Sim_4 TrajSim_1_4
#> 26 0.0345744+0.6419523i Traj_1 Sim_4 TrajSim_1_4
#> 27 0.0158997+0.6157783i Traj_1 Sim_4 TrajSim_1_4
#> 28 0.0723503+0.6942075i Traj_1 Sim_4 TrajSim_1_4
#> 29 0.0790963+0.5721932i Traj_1 Sim_4 TrajSim_1_4
#>
#> [[4]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.4350501 2.409769 0.02 0.02 0.435050+ 2.409769i
#> 3 0.5931379 3.025181 0.04 0.04 0.593138+ 3.025181i
#> 4 0.7947648 3.529504 0.06 0.06 0.794765+ 3.529504i
#> 5 1.1543273 4.220203 0.08 0.08 1.154327+ 4.220203i
#> 6 1.4385259 4.794161 0.10 0.10 1.438526+ 4.794161i
#> 7 1.7915618 5.467912 0.12 0.12 1.791562+ 5.467912i
#> 8 2.1198468 6.242601 0.14 0.14 2.119847+ 6.242601i
#> 9 2.3833205 6.896327 0.16 0.16 2.383320+ 6.896327i
#> 10 2.4714030 7.471906 0.18 0.18 2.471403+ 7.471906i
#> 11 2.5414079 8.137508 0.20 0.20 2.541408+ 8.137508i
#> 12 2.5145113 8.837849 0.22 0.22 2.514511+ 8.837849i
#> 13 2.4781254 9.412442 0.24 0.24 2.478125+ 9.412442i
#> 14 2.4242670 10.113983 0.26 0.26 2.424267+10.113983i
#> 15 2.4710779 10.715444 0.28 0.28 2.471078+10.715444i
#> 16 2.6916605 11.575187 0.30 0.30 2.691661+11.575187i
#> 17 2.9351948 12.184867 0.32 0.32 2.935195+12.184867i
#> 18 3.2133695 12.886115 0.34 0.34 3.213369+12.886115i
#> 19 3.4014419 13.585561 0.36 0.36 3.401442+13.585561i
#> 20 3.6989147 14.337305 0.38 0.38 3.698915+14.337305i
#> 21 3.9680522 14.840197 0.40 0.40 3.968052+14.840197i
#> 22 4.2026495 15.472235 0.42 0.42 4.202650+15.472235i
#> 23 4.5142818 15.976766 0.44 0.44 4.514282+15.976766i
#> 24 4.9108745 16.492507 0.46 0.46 4.910875+16.492507i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_4 TrajSim_2_4
#> 2 0.0703647+0.7165866i Traj_2 Sim_4 TrajSim_2_4
#> 3 0.1580878+0.6154123i Traj_2 Sim_4 TrajSim_2_4
#> 4 0.2016269+0.5043224i Traj_2 Sim_4 TrajSim_2_4
#> 5 0.3595625+0.6906999i Traj_2 Sim_4 TrajSim_2_4
#> 6 0.2841987+0.5739580i Traj_2 Sim_4 TrajSim_2_4
#> 7 0.3530359+0.6737508i Traj_2 Sim_4 TrajSim_2_4
#> 8 0.3282850+0.7746888i Traj_2 Sim_4 TrajSim_2_4
#> 9 0.2634737+0.6537257i Traj_2 Sim_4 TrajSim_2_4
#> 10 0.0880825+0.5755792i Traj_2 Sim_4 TrajSim_2_4
#> 11 0.0700049+0.6656021i Traj_2 Sim_4 TrajSim_2_4
#> 12 -0.0268966+0.7003409i Traj_2 Sim_4 TrajSim_2_4
#> 13 -0.0363859+0.5745933i Traj_2 Sim_4 TrajSim_2_4
#> 14 -0.0538584+0.7015411i Traj_2 Sim_4 TrajSim_2_4
#> 15 0.0468109+0.6014608i Traj_2 Sim_4 TrajSim_2_4
#> 16 0.2205826+0.8597429i Traj_2 Sim_4 TrajSim_2_4
#> 17 0.2435343+0.6096796i Traj_2 Sim_4 TrajSim_2_4
#> 18 0.2781747+0.7012478i Traj_2 Sim_4 TrajSim_2_4
#> 19 0.1880724+0.6994462i Traj_2 Sim_4 TrajSim_2_4
#> 20 0.2974728+0.7517445i Traj_2 Sim_4 TrajSim_2_4
#> 21 0.2691375+0.5028918i Traj_2 Sim_4 TrajSim_2_4
#> 22 0.2345973+0.6320377i Traj_2 Sim_4 TrajSim_2_4
#> 23 0.3116323+0.5045311i Traj_2 Sim_4 TrajSim_2_4
#> 24 0.3965927+0.5157413i Traj_2 Sim_4 TrajSim_2_4
#>
#>
#> [[5]]
#> [[5]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.8643577 1.608126 0.02 0.02 0.864358+ 1.608126i
#> 3 0.9742010 2.235978 0.04 0.04 0.974201+ 2.235978i
#> 4 1.0401288 2.666597 0.06 0.06 1.040129+ 2.666597i
#> 5 1.1502058 3.321255 0.08 0.08 1.150206+ 3.321255i
#> 6 1.3223728 3.977762 0.10 0.10 1.322373+ 3.977762i
#> 7 1.4293407 4.518155 0.12 0.12 1.429341+ 4.518155i
#> 8 1.6023340 5.114231 0.14 0.14 1.602334+ 5.114231i
#> 9 1.7557394 5.653888 0.16 0.16 1.755739+ 5.653888i
#> 10 1.8821614 6.191814 0.18 0.18 1.882161+ 6.191814i
#> 11 2.0774978 6.886625 0.20 0.20 2.077498+ 6.886625i
#> 12 2.2345684 7.372596 0.22 0.22 2.234568+ 7.372596i
#> 13 2.4580872 7.955246 0.24 0.24 2.458087+ 7.955246i
#> 14 2.6477736 8.525440 0.26 0.26 2.647774+ 8.525440i
#> 15 2.8155670 9.003939 0.28 0.28 2.815567+ 9.003939i
#> 16 3.0981874 9.653959 0.30 0.30 3.098187+ 9.653959i
#> 17 3.2885062 10.060227 0.32 0.32 3.288506+10.060227i
#> 18 3.4675942 10.575211 0.34 0.34 3.467594+10.575211i
#> 19 3.6794643 11.038225 0.36 0.36 3.679464+11.038225i
#> 20 3.9010173 11.612598 0.38 0.38 3.901017+11.612598i
#> 21 4.1353429 12.210032 0.40 0.40 4.135343+12.210032i
#> 22 4.3776998 12.815096 0.42 0.42 4.377700+12.815096i
#> 23 4.5806402 13.293019 0.44 0.44 4.580640+13.293019i
#> 24 4.8078867 13.877793 0.46 0.46 4.807887+13.877793i
#> 25 5.0555888 14.430581 0.48 0.48 5.055589+14.430581i
#> 26 5.2305515 14.930135 0.50 0.50 5.230552+14.930135i
#> 27 5.3275586 15.460222 0.52 0.52 5.327559+15.460222i
#> 28 5.4462969 15.925999 0.54 0.54 5.446297+15.925999i
#> 29 5.6122949 16.446833 0.56 0.56 5.612295+16.446833i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_5 TrajSim_1_5
#> 2 0.1089379+0.5813634i Traj_1 Sim_5 TrajSim_1_5
#> 3 0.1098433+0.6278516i Traj_1 Sim_5 TrajSim_1_5
#> 4 0.0659277+0.4306187i Traj_1 Sim_5 TrajSim_1_5
#> 5 0.1100770+0.6546587i Traj_1 Sim_5 TrajSim_1_5
#> 6 0.1721670+0.6565069i Traj_1 Sim_5 TrajSim_1_5
#> 7 0.1069679+0.5403929i Traj_1 Sim_5 TrajSim_1_5
#> 8 0.1729933+0.5960755i Traj_1 Sim_5 TrajSim_1_5
#> 9 0.1534053+0.5396567i Traj_1 Sim_5 TrajSim_1_5
#> 10 0.1264221+0.5379262i Traj_1 Sim_5 TrajSim_1_5
#> 11 0.1953364+0.6948107i Traj_1 Sim_5 TrajSim_1_5
#> 12 0.1570706+0.4859719i Traj_1 Sim_5 TrajSim_1_5
#> 13 0.2235187+0.5826496i Traj_1 Sim_5 TrajSim_1_5
#> 14 0.1896865+0.5701945i Traj_1 Sim_5 TrajSim_1_5
#> 15 0.1677934+0.4784986i Traj_1 Sim_5 TrajSim_1_5
#> 16 0.2826203+0.6500199i Traj_1 Sim_5 TrajSim_1_5
#> 17 0.1903189+0.4062680i Traj_1 Sim_5 TrajSim_1_5
#> 18 0.1790880+0.5149839i Traj_1 Sim_5 TrajSim_1_5
#> 19 0.2118701+0.4630146i Traj_1 Sim_5 TrajSim_1_5
#> 20 0.2215530+0.5743721i Traj_1 Sim_5 TrajSim_1_5
#> 21 0.2343256+0.5974343i Traj_1 Sim_5 TrajSim_1_5
#> 22 0.2423569+0.6050640i Traj_1 Sim_5 TrajSim_1_5
#> 23 0.2029404+0.4779228i Traj_1 Sim_5 TrajSim_1_5
#> 24 0.2272465+0.5847740i Traj_1 Sim_5 TrajSim_1_5
#> 25 0.2477020+0.5527883i Traj_1 Sim_5 TrajSim_1_5
#> 26 0.1749628+0.4995538i Traj_1 Sim_5 TrajSim_1_5
#> 27 0.0970071+0.5300874i Traj_1 Sim_5 TrajSim_1_5
#> 28 0.1187383+0.4657774i Traj_1 Sim_5 TrajSim_1_5
#> 29 0.1659980+0.5208331i Traj_1 Sim_5 TrajSim_1_5
#>
#> [[5]][[2]]
#> x y time displacementTime polar
#> 1 0.36468541 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.45831567 2.557700 0.02 0.02 0.458316+ 2.557700i
#> 3 0.49716186 3.033772 0.04 0.04 0.497162+ 3.033772i
#> 4 0.52212342 3.625731 0.06 0.06 0.522123+ 3.625731i
#> 5 0.47512029 4.243297 0.08 0.08 0.475120+ 4.243297i
#> 6 0.52706030 4.828353 0.10 0.10 0.527060+ 4.828353i
#> 7 0.41350914 5.526563 0.12 0.12 0.413509+ 5.526563i
#> 8 0.40490931 6.170417 0.14 0.14 0.404909+ 6.170417i
#> 9 0.36020560 6.826291 0.16 0.16 0.360206+ 6.826291i
#> 10 0.27641506 7.416553 0.18 0.18 0.276415+ 7.416553i
#> 11 0.03143588 7.936534 0.20 0.20 0.031436+ 7.936534i
#> 12 -0.10189985 8.611861 0.22 0.22 -0.101900+ 8.611861i
#> 13 -0.30811818 9.350760 0.24 0.24 -0.308118+ 9.350760i
#> 14 -0.47317612 10.014604 0.26 0.26 -0.473176+10.014604i
#> 15 -0.56845225 10.599688 0.28 0.28 -0.568452+10.599688i
#> 16 -0.60643518 11.254748 0.30 0.30 -0.606435+11.254748i
#> 17 -0.54751946 11.918814 0.32 0.32 -0.547519+11.918814i
#> 18 -0.42171426 12.656643 0.34 0.34 -0.421714+12.656643i
#> 19 -0.16242742 13.209827 0.36 0.36 -0.162427+13.209827i
#> 20 0.02507881 13.705824 0.38 0.38 0.025079+13.705824i
#> 21 0.15708842 14.290954 0.40 0.40 0.157088+14.290954i
#> 22 0.30375395 14.805829 0.42 0.42 0.303754+14.805829i
#> 23 0.45339965 15.589808 0.44 0.44 0.453400+15.589808i
#> 24 0.40096655 16.277803 0.46 0.46 0.400967+16.277803i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_5 TrajSim_2_5
#> 2 0.0936303+0.8645176i Traj_2 Sim_5 TrajSim_2_5
#> 3 0.0388462+0.4760725i Traj_2 Sim_5 TrajSim_2_5
#> 4 0.0249616+0.5919584i Traj_2 Sim_5 TrajSim_2_5
#> 5 -0.0470031+0.6175658i Traj_2 Sim_5 TrajSim_2_5
#> 6 0.0519400+0.5850565i Traj_2 Sim_5 TrajSim_2_5
#> 7 -0.1135512+0.6982098i Traj_2 Sim_5 TrajSim_2_5
#> 8 -0.0085998+0.6438544i Traj_2 Sim_5 TrajSim_2_5
#> 9 -0.0447037+0.6558739i Traj_2 Sim_5 TrajSim_2_5
#> 10 -0.0837905+0.5902620i Traj_2 Sim_5 TrajSim_2_5
#> 11 -0.2449792+0.5199813i Traj_2 Sim_5 TrajSim_2_5
#> 12 -0.1333357+0.6753267i Traj_2 Sim_5 TrajSim_2_5
#> 13 -0.2062183+0.7388984i Traj_2 Sim_5 TrajSim_2_5
#> 14 -0.1650579+0.6638449i Traj_2 Sim_5 TrajSim_2_5
#> 15 -0.0952761+0.5850839i Traj_2 Sim_5 TrajSim_2_5
#> 16 -0.0379829+0.6550593i Traj_2 Sim_5 TrajSim_2_5
#> 17 0.0589157+0.6640661i Traj_2 Sim_5 TrajSim_2_5
#> 18 0.1258052+0.7378299i Traj_2 Sim_5 TrajSim_2_5
#> 19 0.2592868+0.5531836i Traj_2 Sim_5 TrajSim_2_5
#> 20 0.1875062+0.4959965i Traj_2 Sim_5 TrajSim_2_5
#> 21 0.1320096+0.5851305i Traj_2 Sim_5 TrajSim_2_5
#> 22 0.1466655+0.5148745i Traj_2 Sim_5 TrajSim_2_5
#> 23 0.1496457+0.7839794i Traj_2 Sim_5 TrajSim_2_5
#> 24 -0.0524331+0.6879952i Traj_2 Sim_5 TrajSim_2_5
#>
#>
#> [[6]]
#> [[6]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.8407205 1.541579 0.02 0.02 0.840720+ 1.541579i
#> 3 0.9099182 2.139493 0.04 0.04 0.909918+ 2.139493i
#> 4 0.9284858 2.721354 0.06 0.06 0.928486+ 2.721354i
#> 5 0.9477841 3.251858 0.08 0.08 0.947784+ 3.251858i
#> 6 1.0215354 3.657051 0.10 0.10 1.021535+ 3.657051i
#> 7 1.0916521 4.233819 0.12 0.12 1.091652+ 4.233819i
#> 8 1.0884701 4.800602 0.14 0.14 1.088470+ 4.800602i
#> 9 1.0922258 5.416141 0.16 0.16 1.092226+ 5.416141i
#> 10 1.0420352 5.980428 0.18 0.18 1.042035+ 5.980428i
#> 11 1.0025030 6.514858 0.20 0.20 1.002503+ 6.514858i
#> 12 0.9243445 7.079861 0.22 0.22 0.924344+ 7.079861i
#> 13 0.8448270 7.680506 0.24 0.24 0.844827+ 7.680506i
#> 14 0.7354294 8.199223 0.26 0.26 0.735429+ 8.199223i
#> 15 0.5934328 8.778655 0.28 0.28 0.593433+ 8.778655i
#> 16 0.4613471 9.374367 0.30 0.30 0.461347+ 9.374367i
#> 17 0.3221293 10.007563 0.32 0.32 0.322129+10.007563i
#> 18 0.2056830 10.543481 0.34 0.34 0.205683+10.543481i
#> 19 0.0129549 11.171925 0.36 0.36 0.012955+11.171925i
#> 20 -0.1009240 11.686395 0.38 0.38 -0.100924+11.686395i
#> 21 -0.1984703 12.191332 0.40 0.40 -0.198470+12.191332i
#> 22 -0.3284540 12.855396 0.42 0.42 -0.328454+12.855396i
#> 23 -0.4723190 13.423186 0.44 0.44 -0.472319+13.423186i
#> 24 -0.5634641 14.056533 0.46 0.46 -0.563464+14.056533i
#> 25 -0.6298923 14.647473 0.48 0.48 -0.629892+14.647473i
#> 26 -0.6603889 15.141153 0.50 0.50 -0.660389+15.141153i
#> 27 -0.6767710 15.705774 0.52 0.52 -0.676771+15.705774i
#> 28 -0.6381327 16.428076 0.54 0.54 -0.638133+16.428076i
#> 29 -0.5938822 17.037706 0.56 0.56 -0.593882+17.037706i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_6 TrajSim_1_6
#> 2 0.0853007+0.5148156i Traj_1 Sim_6 TrajSim_1_6
#> 3 0.0691978+0.5979148i Traj_1 Sim_6 TrajSim_1_6
#> 4 0.0185675+0.5818604i Traj_1 Sim_6 TrajSim_1_6
#> 5 0.0192983+0.5305045i Traj_1 Sim_6 TrajSim_1_6
#> 6 0.0737513+0.4051924i Traj_1 Sim_6 TrajSim_1_6
#> 7 0.0701167+0.5767680i Traj_1 Sim_6 TrajSim_1_6
#> 8 -0.0031820+0.5667833i Traj_1 Sim_6 TrajSim_1_6
#> 9 0.0037557+0.6155388i Traj_1 Sim_6 TrajSim_1_6
#> 10 -0.0501906+0.5642872i Traj_1 Sim_6 TrajSim_1_6
#> 11 -0.0395322+0.5344298i Traj_1 Sim_6 TrajSim_1_6
#> 12 -0.0781585+0.5650030i Traj_1 Sim_6 TrajSim_1_6
#> 13 -0.0795175+0.6006449i Traj_1 Sim_6 TrajSim_1_6
#> 14 -0.1093976+0.5187167i Traj_1 Sim_6 TrajSim_1_6
#> 15 -0.1419966+0.5794325i Traj_1 Sim_6 TrajSim_1_6
#> 16 -0.1320858+0.5957121i Traj_1 Sim_6 TrajSim_1_6
#> 17 -0.1392177+0.6331958i Traj_1 Sim_6 TrajSim_1_6
#> 18 -0.1164464+0.5359183i Traj_1 Sim_6 TrajSim_1_6
#> 19 -0.1927281+0.6284439i Traj_1 Sim_6 TrajSim_1_6
#> 20 -0.1138789+0.5144702i Traj_1 Sim_6 TrajSim_1_6
#> 21 -0.0975463+0.5049365i Traj_1 Sim_6 TrajSim_1_6
#> 22 -0.1299837+0.6640643i Traj_1 Sim_6 TrajSim_1_6
#> 23 -0.1438650+0.5677896i Traj_1 Sim_6 TrajSim_1_6
#> 24 -0.0911452+0.6333470i Traj_1 Sim_6 TrajSim_1_6
#> 25 -0.0664282+0.5909405i Traj_1 Sim_6 TrajSim_1_6
#> 26 -0.0304966+0.4936795i Traj_1 Sim_6 TrajSim_1_6
#> 27 -0.0163821+0.5646209i Traj_1 Sim_6 TrajSim_1_6
#> 28 0.0386383+0.7223027i Traj_1 Sim_6 TrajSim_1_6
#> 29 0.0442505+0.6096297i Traj_1 Sim_6 TrajSim_1_6
#>
#> [[6]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+1.693182i
#> 2 0.5361428 2.433478 0.02 0.02 0.536143+2.433478i
#> 3 0.7972673 2.938327 0.04 0.04 0.797267+2.938327i
#> 4 1.1004460 3.585075 0.06 0.06 1.100446+3.585075i
#> 5 1.5037664 4.247030 0.08 0.08 1.503766+4.247030i
#> 6 1.9565916 4.675115 0.10 0.10 1.956592+4.675115i
#> 7 2.5456039 5.200263 0.12 0.12 2.545604+5.200263i
#> 8 3.1089566 5.718321 0.14 0.14 3.108957+5.718321i
#> 9 3.7232737 6.186963 0.16 0.16 3.723274+6.186963i
#> 10 4.2074809 6.564998 0.18 0.18 4.207481+6.564998i
#> 11 4.8484405 6.900940 0.20 0.20 4.848440+6.900940i
#> 12 5.5829439 7.106414 0.22 0.22 5.582944+7.106414i
#> 13 6.4504022 7.347048 0.24 0.24 6.450402+7.347048i
#> 14 7.1442163 7.465639 0.26 0.26 7.144216+7.465639i
#> 15 7.9099710 7.585182 0.28 0.28 7.909971+7.585182i
#> 16 8.6345197 7.626895 0.30 0.30 8.634520+7.626895i
#> 17 9.2630572 7.610661 0.32 0.32 9.263057+7.610661i
#> 18 9.9042796 7.503639 0.34 0.34 9.904280+7.503639i
#> 19 10.6650522 7.474421 0.36 0.36 10.665052+7.474421i
#> 20 11.4685911 7.528857 0.38 0.38 11.468591+7.528857i
#> 21 12.1929891 7.486894 0.40 0.40 12.192989+7.486894i
#> 22 12.8910848 7.411111 0.42 0.42 12.891085+7.411111i
#> 23 13.5236972 7.365728 0.44 0.44 13.523697+7.365728i
#> 24 14.2006550 7.373230 0.46 0.46 14.200655+7.373230i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_6 TrajSim_2_6
#> 2 0.1714574+0.7402958i Traj_2 Sim_6 TrajSim_2_6
#> 3 0.2611245+0.5048487i Traj_2 Sim_6 TrajSim_2_6
#> 4 0.3031787+0.6467484i Traj_2 Sim_6 TrajSim_2_6
#> 5 0.4033204+0.6619549i Traj_2 Sim_6 TrajSim_2_6
#> 6 0.4528252+0.4280847i Traj_2 Sim_6 TrajSim_2_6
#> 7 0.5890124+0.5251481i Traj_2 Sim_6 TrajSim_2_6
#> 8 0.5633527+0.5180581i Traj_2 Sim_6 TrajSim_2_6
#> 9 0.6143171+0.4686424i Traj_2 Sim_6 TrajSim_2_6
#> 10 0.4842071+0.3780350i Traj_2 Sim_6 TrajSim_2_6
#> 11 0.6409596+0.3359413i Traj_2 Sim_6 TrajSim_2_6
#> 12 0.7345035+0.2054745i Traj_2 Sim_6 TrajSim_2_6
#> 13 0.8674583+0.2406335i Traj_2 Sim_6 TrajSim_2_6
#> 14 0.6938141+0.1185914i Traj_2 Sim_6 TrajSim_2_6
#> 15 0.7657547+0.1195428i Traj_2 Sim_6 TrajSim_2_6
#> 16 0.7245488+0.0417131i Traj_2 Sim_6 TrajSim_2_6
#> 17 0.6285375-0.0162338i Traj_2 Sim_6 TrajSim_2_6
#> 18 0.6412224-0.1070218i Traj_2 Sim_6 TrajSim_2_6
#> 19 0.7607726-0.0292184i Traj_2 Sim_6 TrajSim_2_6
#> 20 0.8035389+0.0544358i Traj_2 Sim_6 TrajSim_2_6
#> 21 0.7243980-0.0419630i Traj_2 Sim_6 TrajSim_2_6
#> 22 0.6980957-0.0757832i Traj_2 Sim_6 TrajSim_2_6
#> 23 0.6326124-0.0453826i Traj_2 Sim_6 TrajSim_2_6
#> 24 0.6769578+0.0075022i Traj_2 Sim_6 TrajSim_2_6
#>
#>
#> [[7]]
#> [[7]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.8004841 1.588744 0.02 0.02 0.800484+ 1.588744i
#> 3 0.8919235 2.167904 0.04 0.04 0.891923+ 2.167904i
#> 4 1.0689501 2.775302 0.06 0.06 1.068950+ 2.775302i
#> 5 1.2364264 3.354256 0.08 0.08 1.236426+ 3.354256i
#> 6 1.4018053 3.815381 0.10 0.10 1.401805+ 3.815381i
#> 7 1.6066405 4.392011 0.12 0.12 1.606640+ 4.392011i
#> 8 1.8037478 4.973917 0.14 0.14 1.803748+ 4.973917i
#> 9 2.0509052 5.558829 0.16 0.16 2.050905+ 5.558829i
#> 10 2.3460546 6.098565 0.18 0.18 2.346055+ 6.098565i
#> 11 2.7420661 6.605368 0.20 0.20 2.742066+ 6.605368i
#> 12 3.1040199 7.055484 0.22 0.22 3.104020+ 7.055484i
#> 13 3.4214306 7.489197 0.24 0.24 3.421431+ 7.489197i
#> 14 3.7741948 7.940944 0.26 0.26 3.774195+ 7.940944i
#> 15 4.1604969 8.433653 0.28 0.28 4.160497+ 8.433653i
#> 16 4.6066374 8.959909 0.30 0.30 4.606637+ 8.959909i
#> 17 4.9860984 9.485644 0.32 0.32 4.986098+ 9.485644i
#> 18 5.2588907 9.903307 0.34 0.34 5.258891+ 9.903307i
#> 19 5.5667479 10.334093 0.36 0.36 5.566748+10.334093i
#> 20 5.8458614 10.750931 0.38 0.38 5.845861+10.750931i
#> 21 6.1373892 11.169296 0.40 0.40 6.137389+11.169296i
#> 22 6.4940100 11.684748 0.42 0.42 6.494010+11.684748i
#> 23 6.8090038 12.127838 0.44 0.44 6.809004+12.127838i
#> 24 7.1884049 12.651461 0.46 0.46 7.188405+12.651461i
#> 25 7.5592670 13.136222 0.48 0.48 7.559267+13.136222i
#> 26 7.9893728 13.579924 0.50 0.50 7.989373+13.579924i
#> 27 8.3777401 13.947081 0.52 0.52 8.377740+13.947081i
#> 28 8.8465485 14.353284 0.54 0.54 8.846549+14.353284i
#> 29 9.3573605 14.725170 0.56 0.56 9.357361+14.725170i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_7 TrajSim_1_7
#> 2 0.0450643+0.5619807i Traj_1 Sim_7 TrajSim_1_7
#> 3 0.0914394+0.5791599i Traj_1 Sim_7 TrajSim_1_7
#> 4 0.1770267+0.6073986i Traj_1 Sim_7 TrajSim_1_7
#> 5 0.1674763+0.5789540i Traj_1 Sim_7 TrajSim_1_7
#> 6 0.1653789+0.4611251i Traj_1 Sim_7 TrajSim_1_7
#> 7 0.2048352+0.5766293i Traj_1 Sim_7 TrajSim_1_7
#> 8 0.1971073+0.5819067i Traj_1 Sim_7 TrajSim_1_7
#> 9 0.2471574+0.5849112i Traj_1 Sim_7 TrajSim_1_7
#> 10 0.2951494+0.5397363i Traj_1 Sim_7 TrajSim_1_7
#> 11 0.3960116+0.5068028i Traj_1 Sim_7 TrajSim_1_7
#> 12 0.3619538+0.4501163i Traj_1 Sim_7 TrajSim_1_7
#> 13 0.3174107+0.4337130i Traj_1 Sim_7 TrajSim_1_7
#> 14 0.3527641+0.4517472i Traj_1 Sim_7 TrajSim_1_7
#> 15 0.3863021+0.4927085i Traj_1 Sim_7 TrajSim_1_7
#> 16 0.4461405+0.5262562i Traj_1 Sim_7 TrajSim_1_7
#> 17 0.3794611+0.5257350i Traj_1 Sim_7 TrajSim_1_7
#> 18 0.2727922+0.4176631i Traj_1 Sim_7 TrajSim_1_7
#> 19 0.3078573+0.4307856i Traj_1 Sim_7 TrajSim_1_7
#> 20 0.2791134+0.4168382i Traj_1 Sim_7 TrajSim_1_7
#> 21 0.2915279+0.4183649i Traj_1 Sim_7 TrajSim_1_7
#> 22 0.3566208+0.5154522i Traj_1 Sim_7 TrajSim_1_7
#> 23 0.3149937+0.4430903i Traj_1 Sim_7 TrajSim_1_7
#> 24 0.3794011+0.5236227i Traj_1 Sim_7 TrajSim_1_7
#> 25 0.3708621+0.4847610i Traj_1 Sim_7 TrajSim_1_7
#> 26 0.4301057+0.4437016i Traj_1 Sim_7 TrajSim_1_7
#> 27 0.3883674+0.3671577i Traj_1 Sim_7 TrajSim_1_7
#> 28 0.4688084+0.4062029i Traj_1 Sim_7 TrajSim_1_7
#> 29 0.5108120+0.3718858i Traj_1 Sim_7 TrajSim_1_7
#>
#> [[7]][[2]]
#> x y time displacementTime polar
#> 1 0.36468541 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.45170932 2.412848 0.02 0.02 0.451709+ 2.412848i
#> 3 0.60761529 3.083843 0.04 0.04 0.607615+ 3.083843i
#> 4 0.75447540 3.727977 0.06 0.06 0.754475+ 3.727977i
#> 5 0.87673173 4.304710 0.08 0.08 0.876732+ 4.304710i
#> 6 0.87774294 5.113168 0.10 0.10 0.877743+ 5.113168i
#> 7 0.96804807 5.771896 0.12 0.12 0.968048+ 5.771896i
#> 8 1.08522001 6.453477 0.14 0.14 1.085220+ 6.453477i
#> 9 1.08988184 7.123313 0.16 0.16 1.089882+ 7.123313i
#> 10 0.96521886 7.705060 0.18 0.18 0.965219+ 7.705060i
#> 11 0.83593392 8.465222 0.20 0.20 0.835934+ 8.465222i
#> 12 0.79832931 9.192001 0.22 0.22 0.798329+ 9.192001i
#> 13 0.71154774 9.957741 0.24 0.24 0.711548+ 9.957741i
#> 14 0.71800119 10.523334 0.26 0.26 0.718001+10.523334i
#> 15 0.73787175 11.293063 0.28 0.28 0.737872+11.293063i
#> 16 0.75922112 12.025829 0.30 0.30 0.759221+12.025829i
#> 17 0.66324347 12.693582 0.32 0.32 0.663243+12.693582i
#> 18 0.53113967 13.301442 0.34 0.34 0.531140+13.301442i
#> 19 0.34320257 14.057606 0.36 0.36 0.343203+14.057606i
#> 20 0.30008525 14.641006 0.38 0.38 0.300085+14.641006i
#> 21 0.18506137 15.241348 0.40 0.40 0.185061+15.241348i
#> 22 0.06833593 15.931670 0.42 0.42 0.068336+15.931670i
#> 23 -0.06513516 16.602924 0.44 0.44 -0.065135+16.602924i
#> 24 -0.19307146 17.320818 0.46 0.46 -0.193071+17.320818i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_7 TrajSim_2_7
#> 2 0.0870239+0.7196658i Traj_2 Sim_7 TrajSim_2_7
#> 3 0.1559060+0.6709946i Traj_2 Sim_7 TrajSim_2_7
#> 4 0.1468601+0.6441346i Traj_2 Sim_7 TrajSim_2_7
#> 5 0.1222563+0.5767327i Traj_2 Sim_7 TrajSim_2_7
#> 6 0.0010112+0.8084583i Traj_2 Sim_7 TrajSim_2_7
#> 7 0.0903051+0.6587283i Traj_2 Sim_7 TrajSim_2_7
#> 8 0.1171719+0.6815810i Traj_2 Sim_7 TrajSim_2_7
#> 9 0.0046618+0.6698351i Traj_2 Sim_7 TrajSim_2_7
#> 10 -0.1246630+0.5817471i Traj_2 Sim_7 TrajSim_2_7
#> 11 -0.1292849+0.7601624i Traj_2 Sim_7 TrajSim_2_7
#> 12 -0.0376046+0.7267790i Traj_2 Sim_7 TrajSim_2_7
#> 13 -0.0867816+0.7657396i Traj_2 Sim_7 TrajSim_2_7
#> 14 0.0064534+0.5655938i Traj_2 Sim_7 TrajSim_2_7
#> 15 0.0198706+0.7697288i Traj_2 Sim_7 TrajSim_2_7
#> 16 0.0213494+0.7327655i Traj_2 Sim_7 TrajSim_2_7
#> 17 -0.0959777+0.6677535i Traj_2 Sim_7 TrajSim_2_7
#> 18 -0.1321038+0.6078593i Traj_2 Sim_7 TrajSim_2_7
#> 19 -0.1879371+0.7561649i Traj_2 Sim_7 TrajSim_2_7
#> 20 -0.0431173+0.5833998i Traj_2 Sim_7 TrajSim_2_7
#> 21 -0.1150239+0.6003414i Traj_2 Sim_7 TrajSim_2_7
#> 22 -0.1167254+0.6903227i Traj_2 Sim_7 TrajSim_2_7
#> 23 -0.1334711+0.6712535i Traj_2 Sim_7 TrajSim_2_7
#> 24 -0.1279363+0.7178942i Traj_2 Sim_7 TrajSim_2_7
#>
#>
#> [[8]]
#> [[8]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.7664300 1.551843 0.02 0.02 0.766430+ 1.551843i
#> 3 0.8355732 2.131767 0.04 0.04 0.835573+ 2.131767i
#> 4 0.9484997 2.806373 0.06 0.06 0.948500+ 2.806373i
#> 5 1.0070484 3.373343 0.08 0.08 1.007048+ 3.373343i
#> 6 1.0671630 4.008086 0.10 0.10 1.067163+ 4.008086i
#> 7 1.0908663 4.656735 0.12 0.12 1.090866+ 4.656735i
#> 8 1.0375257 5.139097 0.14 0.14 1.037526+ 5.139097i
#> 9 1.0166747 5.643993 0.16 0.16 1.016675+ 5.643993i
#> 10 0.9758425 6.191745 0.18 0.18 0.975842+ 6.191745i
#> 11 0.8959057 6.736126 0.20 0.20 0.895906+ 6.736126i
#> 12 0.8670209 7.317939 0.22 0.22 0.867021+ 7.317939i
#> 13 0.8837620 7.884735 0.24 0.24 0.883762+ 7.884735i
#> 14 0.9550857 8.472721 0.26 0.26 0.955086+ 8.472721i
#> 15 1.0010187 9.131848 0.28 0.28 1.001019+ 9.131848i
#> 16 1.0577781 9.648830 0.30 0.30 1.057778+ 9.648830i
#> 17 1.1363211 10.203508 0.32 0.32 1.136321+10.203508i
#> 18 1.2563831 10.849890 0.34 0.34 1.256383+10.849890i
#> 19 1.2938216 11.498476 0.36 0.36 1.293822+11.498476i
#> 20 1.3691126 12.071232 0.38 0.38 1.369113+12.071232i
#> 21 1.4472274 12.673645 0.40 0.40 1.447227+12.673645i
#> 22 1.4780155 13.193605 0.42 0.42 1.478015+13.193605i
#> 23 1.5254962 13.694254 0.44 0.44 1.525496+13.694254i
#> 24 1.5484501 14.239290 0.46 0.46 1.548450+14.239290i
#> 25 1.5144766 14.938920 0.48 0.48 1.514477+14.938920i
#> 26 1.4714200 15.411375 0.50 0.50 1.471420+15.411375i
#> 27 1.4085732 15.930603 0.52 0.52 1.408573+15.930603i
#> 28 1.3578939 16.394377 0.54 0.54 1.357894+16.394377i
#> 29 1.3106039 16.967336 0.56 0.56 1.310604+16.967336i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_8 TrajSim_1_8
#> 2 0.0110102+0.5250795i Traj_1 Sim_8 TrajSim_1_8
#> 3 0.0691433+0.5799246i Traj_1 Sim_8 TrajSim_1_8
#> 4 0.1129264+0.6746056i Traj_1 Sim_8 TrajSim_1_8
#> 5 0.0585487+0.5669696i Traj_1 Sim_8 TrajSim_1_8
#> 6 0.0601146+0.6347435i Traj_1 Sim_8 TrajSim_1_8
#> 7 0.0237033+0.6486486i Traj_1 Sim_8 TrajSim_1_8
#> 8 -0.0533406+0.4823620i Traj_1 Sim_8 TrajSim_1_8
#> 9 -0.0208510+0.5048963i Traj_1 Sim_8 TrajSim_1_8
#> 10 -0.0408322+0.5477523i Traj_1 Sim_8 TrajSim_1_8
#> 11 -0.0799368+0.5443804i Traj_1 Sim_8 TrajSim_1_8
#> 12 -0.0288848+0.5818136i Traj_1 Sim_8 TrajSim_1_8
#> 13 0.0167411+0.5667953i Traj_1 Sim_8 TrajSim_1_8
#> 14 0.0713236+0.5879860i Traj_1 Sim_8 TrajSim_1_8
#> 15 0.0459330+0.6591275i Traj_1 Sim_8 TrajSim_1_8
#> 16 0.0567594+0.5169817i Traj_1 Sim_8 TrajSim_1_8
#> 17 0.0785430+0.5546784i Traj_1 Sim_8 TrajSim_1_8
#> 18 0.1200620+0.6463815i Traj_1 Sim_8 TrajSim_1_8
#> 19 0.0374386+0.6485868i Traj_1 Sim_8 TrajSim_1_8
#> 20 0.0752910+0.5727553i Traj_1 Sim_8 TrajSim_1_8
#> 21 0.0781148+0.6024136i Traj_1 Sim_8 TrajSim_1_8
#> 22 0.0307880+0.5199594i Traj_1 Sim_8 TrajSim_1_8
#> 23 0.0474808+0.5006496i Traj_1 Sim_8 TrajSim_1_8
#> 24 0.0229539+0.5450351i Traj_1 Sim_8 TrajSim_1_8
#> 25 -0.0339735+0.6996309i Traj_1 Sim_8 TrajSim_1_8
#> 26 -0.0430566+0.4724549i Traj_1 Sim_8 TrajSim_1_8
#> 27 -0.0628468+0.5192280i Traj_1 Sim_8 TrajSim_1_8
#> 28 -0.0506792+0.4637742i Traj_1 Sim_8 TrajSim_1_8
#> 29 -0.0472901+0.5729584i Traj_1 Sim_8 TrajSim_1_8
#>
#> [[8]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.5283216 2.167350 0.02 0.02 0.528322+ 2.167350i
#> 3 0.5930272 2.784722 0.04 0.04 0.593027+ 2.784722i
#> 4 0.6781008 3.459250 0.06 0.06 0.678101+ 3.459250i
#> 5 0.9312548 4.208493 0.08 0.08 0.931255+ 4.208493i
#> 6 1.1088971 4.793378 0.10 0.10 1.108897+ 4.793378i
#> 7 1.3169561 5.390974 0.12 0.12 1.316956+ 5.390974i
#> 8 1.5693303 6.018406 0.14 0.14 1.569330+ 6.018406i
#> 9 1.7268178 6.653025 0.16 0.16 1.726818+ 6.653025i
#> 10 2.0028975 7.327570 0.18 0.18 2.002897+ 7.327570i
#> 11 2.3085703 7.897095 0.20 0.20 2.308570+ 7.897095i
#> 12 2.6327221 8.511358 0.22 0.22 2.632722+ 8.511358i
#> 13 2.8329607 8.884195 0.24 0.24 2.832961+ 8.884195i
#> 14 3.1781656 9.309082 0.26 0.26 3.178166+ 9.309082i
#> 15 3.5599633 9.890550 0.28 0.28 3.559963+ 9.890550i
#> 16 3.9827308 10.436342 0.30 0.30 3.982731+10.436342i
#> 17 4.4930454 10.879395 0.32 0.32 4.493045+10.879395i
#> 18 4.9520290 11.253957 0.34 0.34 4.952029+11.253957i
#> 19 5.5225885 11.536216 0.36 0.36 5.522589+11.536216i
#> 20 6.1236901 11.827434 0.38 0.38 6.123690+11.827434i
#> 21 6.7506796 12.234683 0.40 0.40 6.750680+12.234683i
#> 22 7.2781198 12.539780 0.42 0.42 7.278120+12.539780i
#> 23 7.9852485 13.024773 0.44 0.44 7.985249+13.024773i
#> 24 8.5923051 13.297599 0.46 0.46 8.592305+13.297599i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_8 TrajSim_2_8
#> 2 0.1636362+0.4741678i Traj_2 Sim_8 TrajSim_2_8
#> 3 0.0647056+0.6173719i Traj_2 Sim_8 TrajSim_2_8
#> 4 0.0850736+0.6745283i Traj_2 Sim_8 TrajSim_2_8
#> 5 0.2531540+0.7492423i Traj_2 Sim_8 TrajSim_2_8
#> 6 0.1776423+0.5848855i Traj_2 Sim_8 TrajSim_2_8
#> 7 0.2080590+0.5975959i Traj_2 Sim_8 TrajSim_2_8
#> 8 0.2523742+0.6274324i Traj_2 Sim_8 TrajSim_2_8
#> 9 0.1574875+0.6346181i Traj_2 Sim_8 TrajSim_2_8
#> 10 0.2760796+0.6745458i Traj_2 Sim_8 TrajSim_2_8
#> 11 0.3056728+0.5695242i Traj_2 Sim_8 TrajSim_2_8
#> 12 0.3241518+0.6142633i Traj_2 Sim_8 TrajSim_2_8
#> 13 0.2002386+0.3728372i Traj_2 Sim_8 TrajSim_2_8
#> 14 0.3452048+0.4248873i Traj_2 Sim_8 TrajSim_2_8
#> 15 0.3817977+0.5814671i Traj_2 Sim_8 TrajSim_2_8
#> 16 0.4227676+0.5457924i Traj_2 Sim_8 TrajSim_2_8
#> 17 0.5103146+0.4430529i Traj_2 Sim_8 TrajSim_2_8
#> 18 0.4589836+0.3745627i Traj_2 Sim_8 TrajSim_2_8
#> 19 0.5705595+0.2822590i Traj_2 Sim_8 TrajSim_2_8
#> 20 0.6011016+0.2912176i Traj_2 Sim_8 TrajSim_2_8
#> 21 0.6269895+0.4072491i Traj_2 Sim_8 TrajSim_2_8
#> 22 0.5274402+0.3050970i Traj_2 Sim_8 TrajSim_2_8
#> 23 0.7071287+0.4849932i Traj_2 Sim_8 TrajSim_2_8
#> 24 0.6070566+0.2728256i Traj_2 Sim_8 TrajSim_2_8
#>
#>
#> [[9]]
#> [[9]][[1]]
#> x y time displacementTime polar
#> 1 0.75541978 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.76394883 1.590955 0.02 0.02 0.763949+ 1.590955i
#> 3 0.74275746 2.053349 0.04 0.04 0.742757+ 2.053349i
#> 4 0.68914672 2.674383 0.06 0.06 0.689147+ 2.674383i
#> 5 0.60503122 3.164670 0.08 0.08 0.605031+ 3.164670i
#> 6 0.54271611 3.769903 0.10 0.10 0.542716+ 3.769903i
#> 7 0.50652637 4.293010 0.12 0.12 0.506526+ 4.293010i
#> 8 0.48573185 4.995174 0.14 0.14 0.485732+ 4.995174i
#> 9 0.54387207 5.475844 0.16 0.16 0.543872+ 5.475844i
#> 10 0.62471895 6.015474 0.18 0.18 0.624719+ 6.015474i
#> 11 0.69978678 6.533276 0.20 0.20 0.699787+ 6.533276i
#> 12 0.73357239 7.106293 0.22 0.22 0.733572+ 7.106293i
#> 13 0.76114812 7.612140 0.24 0.24 0.761148+ 7.612140i
#> 14 0.74865898 8.119341 0.26 0.26 0.748659+ 8.119341i
#> 15 0.73791877 8.666951 0.28 0.28 0.737919+ 8.666951i
#> 16 0.69213618 9.189222 0.30 0.30 0.692136+ 9.189222i
#> 17 0.56458629 9.773701 0.32 0.32 0.564586+ 9.773701i
#> 18 0.43821342 10.441828 0.34 0.34 0.438213+10.441828i
#> 19 0.27294880 11.009869 0.36 0.36 0.272949+11.009869i
#> 20 0.08254287 11.681399 0.38 0.38 0.082543+11.681399i
#> 21 -0.15761987 12.324756 0.40 0.40 -0.157620+12.324756i
#> 22 -0.30876553 12.785444 0.42 0.42 -0.308766+12.785444i
#> 23 -0.43461064 13.310669 0.44 0.44 -0.434611+13.310669i
#> 24 -0.53843851 13.787177 0.46 0.46 -0.538439+13.787177i
#> 25 -0.67556064 14.394656 0.48 0.48 -0.675561+14.394656i
#> 26 -0.83598202 14.878638 0.50 0.50 -0.835982+14.878638i
#> 27 -0.99357928 15.490809 0.52 0.52 -0.993579+15.490809i
#> 28 -1.14728019 15.993053 0.54 0.54 -1.147280+15.993053i
#> 29 -1.31574595 16.564449 0.56 0.56 -1.315746+16.564449i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_9 TrajSim_1_9
#> 2 0.0085290+0.5641917i Traj_1 Sim_9 TrajSim_1_9
#> 3 -0.0211914+0.4623937i Traj_1 Sim_9 TrajSim_1_9
#> 4 -0.0536107+0.6210349i Traj_1 Sim_9 TrajSim_1_9
#> 5 -0.0841155+0.4902862i Traj_1 Sim_9 TrajSim_1_9
#> 6 -0.0623151+0.6052336i Traj_1 Sim_9 TrajSim_1_9
#> 7 -0.0361897+0.5231065i Traj_1 Sim_9 TrajSim_1_9
#> 8 -0.0207945+0.7021644i Traj_1 Sim_9 TrajSim_1_9
#> 9 0.0581402+0.4806694i Traj_1 Sim_9 TrajSim_1_9
#> 10 0.0808469+0.5396305i Traj_1 Sim_9 TrajSim_1_9
#> 11 0.0750678+0.5178018i Traj_1 Sim_9 TrajSim_1_9
#> 12 0.0337856+0.5730168i Traj_1 Sim_9 TrajSim_1_9
#> 13 0.0275757+0.5058477i Traj_1 Sim_9 TrajSim_1_9
#> 14 -0.0124891+0.5072007i Traj_1 Sim_9 TrajSim_1_9
#> 15 -0.0107402+0.5476097i Traj_1 Sim_9 TrajSim_1_9
#> 16 -0.0457826+0.5222711i Traj_1 Sim_9 TrajSim_1_9
#> 17 -0.1275499+0.5844789i Traj_1 Sim_9 TrajSim_1_9
#> 18 -0.1263729+0.6681273i Traj_1 Sim_9 TrajSim_1_9
#> 19 -0.1652646+0.5680409i Traj_1 Sim_9 TrajSim_1_9
#> 20 -0.1904059+0.6715303i Traj_1 Sim_9 TrajSim_1_9
#> 21 -0.2401627+0.6433566i Traj_1 Sim_9 TrajSim_1_9
#> 22 -0.1511457+0.4606883i Traj_1 Sim_9 TrajSim_1_9
#> 23 -0.1258451+0.5252250i Traj_1 Sim_9 TrajSim_1_9
#> 24 -0.1038279+0.4765084i Traj_1 Sim_9 TrajSim_1_9
#> 25 -0.1371221+0.6074789i Traj_1 Sim_9 TrajSim_1_9
#> 26 -0.1604214+0.4839817i Traj_1 Sim_9 TrajSim_1_9
#> 27 -0.1575973+0.6121712i Traj_1 Sim_9 TrajSim_1_9
#> 28 -0.1537009+0.5022439i Traj_1 Sim_9 TrajSim_1_9
#> 29 -0.1684658+0.5713959i Traj_1 Sim_9 TrajSim_1_9
#>
#> [[9]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.4431690 2.261487 0.02 0.02 0.443169+ 2.261487i
#> 3 0.4390330 2.955507 0.04 0.04 0.439033+ 2.955507i
#> 4 0.4177383 3.503756 0.06 0.06 0.417738+ 3.503756i
#> 5 0.3882436 4.204228 0.08 0.08 0.388244+ 4.204228i
#> 6 0.3969118 4.790598 0.10 0.10 0.396912+ 4.790598i
#> 7 0.4481540 5.396034 0.12 0.12 0.448154+ 5.396034i
#> 8 0.6166769 6.245437 0.14 0.14 0.616677+ 6.245437i
#> 9 0.8218110 6.898740 0.16 0.16 0.821811+ 6.898740i
#> 10 1.1741904 7.461348 0.18 0.18 1.174190+ 7.461348i
#> 11 1.4904931 7.982607 0.20 0.20 1.490493+ 7.982607i
#> 12 1.7927999 8.495205 0.22 0.22 1.792800+ 8.495205i
#> 13 2.0968385 9.056053 0.24 0.24 2.096838+ 9.056053i
#> 14 2.4109830 9.650734 0.26 0.26 2.410983+ 9.650734i
#> 15 2.6874323 10.320641 0.28 0.28 2.687432+10.320641i
#> 16 2.9536975 10.950895 0.30 0.30 2.953697+10.950895i
#> 17 2.9642852 11.483108 0.32 0.32 2.964285+11.483108i
#> 18 2.9183497 12.040271 0.34 0.34 2.918350+12.040271i
#> 19 2.9339776 12.620531 0.36 0.36 2.933978+12.620531i
#> 20 2.9797816 13.340937 0.38 0.38 2.979782+13.340937i
#> 21 3.0928584 13.946827 0.40 0.40 3.092858+13.946827i
#> 22 3.1432150 14.522991 0.42 0.42 3.143215+14.522991i
#> 23 3.3054685 15.198267 0.44 0.44 3.305468+15.198267i
#> 24 3.4417799 15.884663 0.46 0.46 3.441780+15.884663i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_9 TrajSim_2_9
#> 2 0.0784836+0.5683048i Traj_2 Sim_9 TrajSim_2_9
#> 3 -0.0041360+0.6940200i Traj_2 Sim_9 TrajSim_2_9
#> 4 -0.0212946+0.5482486i Traj_2 Sim_9 TrajSim_2_9
#> 5 -0.0294947+0.7004727i Traj_2 Sim_9 TrajSim_2_9
#> 6 0.0086682+0.5863696i Traj_2 Sim_9 TrajSim_2_9
#> 7 0.0512422+0.6054358i Traj_2 Sim_9 TrajSim_2_9
#> 8 0.1685229+0.8494028i Traj_2 Sim_9 TrajSim_2_9
#> 9 0.2051341+0.6533038i Traj_2 Sim_9 TrajSim_2_9
#> 10 0.3523795+0.5626074i Traj_2 Sim_9 TrajSim_2_9
#> 11 0.3163027+0.5212593i Traj_2 Sim_9 TrajSim_2_9
#> 12 0.3023068+0.5125981i Traj_2 Sim_9 TrajSim_2_9
#> 13 0.3040386+0.5608475i Traj_2 Sim_9 TrajSim_2_9
#> 14 0.3141445+0.5946814i Traj_2 Sim_9 TrajSim_2_9
#> 15 0.2764493+0.6699072i Traj_2 Sim_9 TrajSim_2_9
#> 16 0.2662652+0.6302535i Traj_2 Sim_9 TrajSim_2_9
#> 17 0.0105877+0.5322136i Traj_2 Sim_9 TrajSim_2_9
#> 18 -0.0459355+0.5571631i Traj_2 Sim_9 TrajSim_2_9
#> 19 0.0156279+0.5802591i Traj_2 Sim_9 TrajSim_2_9
#> 20 0.0458040+0.7204068i Traj_2 Sim_9 TrajSim_2_9
#> 21 0.1130767+0.6058896i Traj_2 Sim_9 TrajSim_2_9
#> 22 0.0503567+0.5761637i Traj_2 Sim_9 TrajSim_2_9
#> 23 0.1622534+0.6752768i Traj_2 Sim_9 TrajSim_2_9
#> 24 0.1363114+0.6863956i Traj_2 Sim_9 TrajSim_2_9
#>
#>
#> [[10]]
#> [[10]][[1]]
#> x y time displacementTime polar
#> 1 0.7554198 1.026763 0.00 0.00 0.755420+ 1.026763i
#> 2 0.8164772 1.638964 0.02 0.02 0.816477+ 1.638964i
#> 3 0.9113462 2.205738 0.04 0.04 0.911346+ 2.205738i
#> 4 0.9980202 2.772563 0.06 0.06 0.998020+ 2.772563i
#> 5 1.0882845 3.253419 0.08 0.08 1.088285+ 3.253419i
#> 6 1.2160493 3.816620 0.10 0.10 1.216049+ 3.816620i
#> 7 1.2846962 4.424312 0.12 0.12 1.284696+ 4.424312i
#> 8 1.3539011 4.967991 0.14 0.14 1.353901+ 4.967991i
#> 9 1.3197463 5.612374 0.16 0.16 1.319746+ 5.612374i
#> 10 1.3065743 6.186171 0.18 0.18 1.306574+ 6.186171i
#> 11 1.2308435 6.883114 0.20 0.20 1.230844+ 6.883114i
#> 12 1.1242391 7.460091 0.22 0.22 1.124239+ 7.460091i
#> 13 1.0277195 8.095639 0.24 0.24 1.027720+ 8.095639i
#> 14 0.9613852 8.691365 0.26 0.26 0.961385+ 8.691365i
#> 15 0.8851097 9.274959 0.28 0.28 0.885110+ 9.274959i
#> 16 0.7815894 9.867266 0.30 0.30 0.781589+ 9.867266i
#> 17 0.7642655 10.486213 0.32 0.32 0.764265+10.486213i
#> 18 0.7359260 11.061234 0.34 0.34 0.735926+11.061234i
#> 19 0.7139759 11.687970 0.36 0.36 0.713976+11.687970i
#> 20 0.6799216 12.245705 0.38 0.38 0.679922+12.245705i
#> 21 0.6295400 12.856805 0.40 0.40 0.629540+12.856805i
#> 22 0.6016454 13.519422 0.42 0.42 0.601645+13.519422i
#> 23 0.6015291 14.033151 0.44 0.44 0.601529+14.033151i
#> 24 0.6856426 14.585401 0.46 0.46 0.685643+14.585401i
#> 25 0.7772210 15.215022 0.48 0.48 0.777221+15.215022i
#> 26 0.8624356 15.737627 0.50 0.50 0.862436+15.737627i
#> 27 0.9289027 16.350428 0.52 0.52 0.928903+16.350428i
#> 28 0.9604445 16.840963 0.54 0.54 0.960445+16.840963i
#> 29 0.9911533 17.475167 0.56 0.56 0.991153+17.475167i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_10 TrajSim_1_10
#> 2 0.0610575+0.6122010i Traj_1 Sim_10 TrajSim_1_10
#> 3 0.0948690+0.5667742i Traj_1 Sim_10 TrajSim_1_10
#> 4 0.0866740+0.5668251i Traj_1 Sim_10 TrajSim_1_10
#> 5 0.0902643+0.4808552i Traj_1 Sim_10 TrajSim_1_10
#> 6 0.1277648+0.5632012i Traj_1 Sim_10 TrajSim_1_10
#> 7 0.0686469+0.6076919i Traj_1 Sim_10 TrajSim_1_10
#> 8 0.0692049+0.5436797i Traj_1 Sim_10 TrajSim_1_10
#> 9 -0.0341548+0.6443823i Traj_1 Sim_10 TrajSim_1_10
#> 10 -0.0131720+0.5737976i Traj_1 Sim_10 TrajSim_1_10
#> 11 -0.0757308+0.6969422i Traj_1 Sim_10 TrajSim_1_10
#> 12 -0.1066044+0.5769772i Traj_1 Sim_10 TrajSim_1_10
#> 13 -0.0965196+0.6355484i Traj_1 Sim_10 TrajSim_1_10
#> 14 -0.0663343+0.5957255i Traj_1 Sim_10 TrajSim_1_10
#> 15 -0.0762756+0.5835947i Traj_1 Sim_10 TrajSim_1_10
#> 16 -0.1035203+0.5923061i Traj_1 Sim_10 TrajSim_1_10
#> 17 -0.0173239+0.6189472i Traj_1 Sim_10 TrajSim_1_10
#> 18 -0.0283394+0.5750211i Traj_1 Sim_10 TrajSim_1_10
#> 19 -0.0219501+0.6267367i Traj_1 Sim_10 TrajSim_1_10
#> 20 -0.0340544+0.5577345i Traj_1 Sim_10 TrajSim_1_10
#> 21 -0.0503816+0.6111005i Traj_1 Sim_10 TrajSim_1_10
#> 22 -0.0278946+0.6626162i Traj_1 Sim_10 TrajSim_1_10
#> 23 -0.0001163+0.5137291i Traj_1 Sim_10 TrajSim_1_10
#> 24 0.0841135+0.5522499i Traj_1 Sim_10 TrajSim_1_10
#> 25 0.0915784+0.6296211i Traj_1 Sim_10 TrajSim_1_10
#> 26 0.0852146+0.5226053i Traj_1 Sim_10 TrajSim_1_10
#> 27 0.0664672+0.6128013i Traj_1 Sim_10 TrajSim_1_10
#> 28 0.0315418+0.4905351i Traj_1 Sim_10 TrajSim_1_10
#> 29 0.0307088+0.6342032i Traj_1 Sim_10 TrajSim_1_10
#>
#> [[10]][[2]]
#> x y time displacementTime polar
#> 1 0.3646854 1.693182 0.00 0.00 0.364685+ 1.693182i
#> 2 0.5764066 2.394024 0.02 0.02 0.576407+ 2.394024i
#> 3 0.6651045 3.049787 0.04 0.04 0.665104+ 3.049787i
#> 4 0.7285358 3.679235 0.06 0.06 0.728536+ 3.679235i
#> 5 0.8377729 4.278595 0.08 0.08 0.837773+ 4.278595i
#> 6 0.9544363 4.776265 0.10 0.10 0.954436+ 4.776265i
#> 7 1.1442992 5.239151 0.12 0.12 1.144299+ 5.239151i
#> 8 1.2996278 5.959992 0.14 0.14 1.299628+ 5.959992i
#> 9 1.3237658 6.574202 0.16 0.16 1.323766+ 6.574202i
#> 10 1.4396600 7.379540 0.18 0.18 1.439660+ 7.379540i
#> 11 1.5810677 8.164378 0.20 0.20 1.581068+ 8.164378i
#> 12 1.6708141 8.853410 0.22 0.22 1.670814+ 8.853410i
#> 13 1.6493000 9.454842 0.24 0.24 1.649300+ 9.454842i
#> 14 1.8041677 10.179182 0.26 0.26 1.804168+10.179182i
#> 15 2.0194713 10.898594 0.28 0.28 2.019471+10.898594i
#> 16 2.1571282 11.454899 0.30 0.30 2.157128+11.454899i
#> 17 2.3035956 12.031200 0.32 0.32 2.303596+12.031200i
#> 18 2.5090013 12.673032 0.34 0.34 2.509001+12.673032i
#> 19 2.6619582 13.162764 0.36 0.36 2.661958+13.162764i
#> 20 2.7244300 13.685250 0.38 0.38 2.724430+13.685250i
#> 21 2.7360805 14.296972 0.40 0.40 2.736080+14.296972i
#> 22 2.8214630 14.830965 0.42 0.42 2.821463+14.830965i
#> 23 2.8859723 15.531690 0.44 0.44 2.885972+15.531690i
#> 24 3.0659348 16.262910 0.46 0.46 3.065935+16.262910i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_10 TrajSim_2_10
#> 2 0.2117211+0.7008415i Traj_2 Sim_10 TrajSim_2_10
#> 3 0.0886979+0.6557631i Traj_2 Sim_10 TrajSim_2_10
#> 4 0.0634314+0.6294477i Traj_2 Sim_10 TrajSim_2_10
#> 5 0.1092371+0.5993610i Traj_2 Sim_10 TrajSim_2_10
#> 6 0.1166634+0.4976699i Traj_2 Sim_10 TrajSim_2_10
#> 7 0.1898629+0.4628860i Traj_2 Sim_10 TrajSim_2_10
#> 8 0.1553285+0.7208406i Traj_2 Sim_10 TrajSim_2_10
#> 9 0.0241380+0.6142096i Traj_2 Sim_10 TrajSim_2_10
#> 10 0.1158942+0.8053387i Traj_2 Sim_10 TrajSim_2_10
#> 11 0.1414077+0.7848374i Traj_2 Sim_10 TrajSim_2_10
#> 12 0.0897464+0.6890329i Traj_2 Sim_10 TrajSim_2_10
#> 13 -0.0215141+0.6014312i Traj_2 Sim_10 TrajSim_2_10
#> 14 0.1548677+0.7243398i Traj_2 Sim_10 TrajSim_2_10
#> 15 0.2153036+0.7194125i Traj_2 Sim_10 TrajSim_2_10
#> 16 0.1376569+0.5563046i Traj_2 Sim_10 TrajSim_2_10
#> 17 0.1464674+0.5763017i Traj_2 Sim_10 TrajSim_2_10
#> 18 0.2054057+0.6418320i Traj_2 Sim_10 TrajSim_2_10
#> 19 0.1529569+0.4897312i Traj_2 Sim_10 TrajSim_2_10
#> 20 0.0624718+0.5224867i Traj_2 Sim_10 TrajSim_2_10
#> 21 0.0116505+0.6117216i Traj_2 Sim_10 TrajSim_2_10
#> 22 0.0853825+0.5339932i Traj_2 Sim_10 TrajSim_2_10
#> 23 0.0645093+0.7007252i Traj_2 Sim_10 TrajSim_2_10
#> 24 0.1799625+0.7312200i Traj_2 Sim_10 TrajSim_2_10
sim_unconstrained_mount <- simulate_track(sbMountTom, nsim = 100, model = "Unconstrained")
print(sim_unconstrained_mount[1:10])
#> [[1]]
#> [[1]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.78115 14.92495 0.02 0.02 39.78115+14.92495i
#> 3 38.98938 14.41514 0.04 0.04 38.98938+14.41514i
#> 4 38.27227 13.81000 0.06 0.06 38.27227+13.81000i
#> 5 37.51658 13.09596 0.08 0.08 37.51658+13.09596i
#> 6 36.70098 12.49151 0.10 0.10 36.70098+12.49151i
#> 7 35.90384 11.77907 0.12 0.12 35.90384+11.77907i
#> 8 35.26141 11.20484 0.14 0.14 35.26141+11.20484i
#> 9 34.66406 10.55372 0.16 0.16 34.66406+10.55372i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_1 TrajSim_1_1
#> 2 -0.8975336-0.5779932i Traj_1 Sim_1 TrajSim_1_1
#> 3 -0.7917672-0.5098074i Traj_1 Sim_1 TrajSim_1_1
#> 4 -0.7171056-0.6051421i Traj_1 Sim_1 TrajSim_1_1
#> 5 -0.7556918-0.7140361i Traj_1 Sim_1 TrajSim_1_1
#> 6 -0.8155989-0.6044550i Traj_1 Sim_1 TrajSim_1_1
#> 7 -0.7971380-0.7124404i Traj_1 Sim_1 TrajSim_1_1
#> 8 -0.6424388-0.5742269i Traj_1 Sim_1 TrajSim_1_1
#> 9 -0.5973493-0.6511231i Traj_1 Sim_1 TrajSim_1_1
#>
#> [[1]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 39.02131 15.94997 0.02 0.02 39.02131+15.94997i
#> 3 39.10425 16.96455 0.04 0.04 39.10425+16.96455i
#> 4 39.11974 17.99754 0.06 0.06 39.11974+17.99754i
#> 5 39.23944 18.95109 0.08 0.08 39.23944+18.95109i
#> 6 39.46911 19.90788 0.10 0.10 39.46911+19.90788i
#> 7 39.69281 20.85967 0.12 0.12 39.69281+20.85967i
#> 8 40.11453 21.83044 0.14 0.14 40.11453+21.83044i
#> 9 40.55750 22.71390 0.16 0.16 40.55750+22.71390i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_1 TrajSim_2_1
#> 2 -0.1683935+1.0426148i Traj_2 Sim_1 TrajSim_2_1
#> 3 0.0829382+1.0145772i Traj_2 Sim_1 TrajSim_2_1
#> 4 0.0154828+1.0329920i Traj_2 Sim_1 TrajSim_2_1
#> 5 0.1196998+0.9535565i Traj_2 Sim_1 TrajSim_2_1
#> 6 0.2296745+0.9567810i Traj_2 Sim_1 TrajSim_2_1
#> 7 0.2237031+0.9517939i Traj_2 Sim_1 TrajSim_2_1
#> 8 0.4217153+0.9707742i Traj_2 Sim_1 TrajSim_2_1
#> 9 0.4429732+0.8834531i Traj_2 Sim_1 TrajSim_2_1
#>
#> [[1]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.10757 16.10466 0.02 0.02 37.10757+16.10466i
#> 3 35.97269 16.74739 0.04 0.04 35.97269+16.74739i
#> 4 34.72470 17.37249 0.06 0.06 34.72470+17.37249i
#> 5 33.61775 17.91673 0.08 0.08 33.61775+17.91673i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_1 TrajSim_3_1
#> 2 -0.9968484+0.5531865i Traj_3 Sim_1 TrajSim_3_1
#> 3 -1.1348748+0.6427332i Traj_3 Sim_1 TrajSim_3_1
#> 4 -1.2479919+0.6251010i Traj_3 Sim_1 TrajSim_3_1
#> 5 -1.1069525+0.5442385i Traj_3 Sim_1 TrajSim_3_1
#>
#> [[1]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.96947 16.96608 0.02 0.02 34.96947+16.96608i
#> 3 34.25185 17.83271 0.04 0.04 34.25185+17.83271i
#> 4 33.54294 18.54306 0.06 0.06 33.54294+18.54306i
#> 5 32.69157 19.29996 0.08 0.08 32.69157+19.29996i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_1 TrajSim_4_1
#> 2 -0.6114170+0.9535748i Traj_4 Sim_1 TrajSim_4_1
#> 3 -0.7176146+0.8666338i Traj_4 Sim_1 TrajSim_4_1
#> 4 -0.7089141+0.7103503i Traj_4 Sim_1 TrajSim_4_1
#> 5 -0.8513703+0.7569030i Traj_4 Sim_1 TrajSim_4_1
#>
#> [[1]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 32.01469 14.40958 0.02 0.02 32.01469+14.40958i
#> 3 32.65880 13.88467 0.04 0.04 32.65880+13.88467i
#> 4 33.13346 13.55002 0.06 0.06 33.13346+13.55002i
#> 5 33.82499 12.95848 0.08 0.08 33.82499+12.95848i
#> 6 34.36911 12.18462 0.10 0.10 34.36911+12.18462i
#> 7 34.98487 11.47192 0.12 0.12 34.98487+11.47192i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_1 TrajSim_5_1
#> 2 0.8124793-0.5661547i Traj_5 Sim_1 TrajSim_5_1
#> 3 0.6441085-0.5249121i Traj_5 Sim_1 TrajSim_5_1
#> 4 0.4746641-0.3346531i Traj_5 Sim_1 TrajSim_5_1
#> 5 0.6915283-0.5915412i Traj_5 Sim_1 TrajSim_5_1
#> 6 0.5441234-0.7738530i Traj_5 Sim_1 TrajSim_5_1
#> 7 0.6157538-0.7127028i Traj_5 Sim_1 TrajSim_5_1
#>
#> [[1]][[6]]
#> x y time displacementTime polar displacement
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i 0.000000+0.000000i
#> 2 30.07447 15.21735 0.02 0.02 30.07447+15.21735i 1.179613+0.109261i
#> 3 31.22017 15.43587 0.04 0.04 31.22017+15.43587i 1.145707+0.218517i
#> 4 32.28972 15.75765 0.06 0.06 32.28972+15.75765i 1.069541+0.321785i
#> 5 33.40823 16.16229 0.08 0.08 33.40823+16.16229i 1.118514+0.404636i
#> 6 34.52916 16.53432 0.10 0.10 34.52916+16.53432i 1.120933+0.372033i
#> Trajectory Simulation TrajSim
#> 1 Traj_6 Sim_1 TrajSim_6_1
#> 2 Traj_6 Sim_1 TrajSim_6_1
#> 3 Traj_6 Sim_1 TrajSim_6_1
#> 4 Traj_6 Sim_1 TrajSim_6_1
#> 5 Traj_6 Sim_1 TrajSim_6_1
#> 6 Traj_6 Sim_1 TrajSim_6_1
#>
#> [[1]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.53060 16.84763 0.02 0.02 30.53060+16.84763i 1.333536-0.243551i
#> 3 32.17292 16.58222 0.04 0.04 32.17292+16.58222i 1.642327-0.265406i
#> 4 33.60456 16.39074 0.06 0.06 33.60456+16.39074i 1.431632-0.191485i
#> 5 35.00698 16.28853 0.08 0.08 35.00698+16.28853i 1.402429-0.102201i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_1 TrajSim_7_1
#> 2 Traj_7 Sim_1 TrajSim_7_1
#> 3 Traj_7 Sim_1 TrajSim_7_1
#> 4 Traj_7 Sim_1 TrajSim_7_1
#> 5 Traj_7 Sim_1 TrajSim_7_1
#>
#> [[1]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+ 9.65294i
#> 2 14.35961 10.003334 0.02 0.02 14.35961+10.00333i
#> 3 14.14292 10.427416 0.04 0.04 14.14292+10.42742i
#> 4 13.95656 10.868303 0.06 0.06 13.95656+10.86830i
#> 5 13.62628 11.230239 0.08 0.08 13.62628+11.23024i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_1 TrajSim_8_1
#> 2 -0.2190631+0.3503921i Traj_8 Sim_1 TrajSim_8_1
#> 3 -0.2166913+0.4240824i Traj_8 Sim_1 TrajSim_8_1
#> 4 -0.1863597+0.4408869i Traj_8 Sim_1 TrajSim_8_1
#> 5 -0.3302851+0.3619357i Traj_8 Sim_1 TrajSim_8_1
#>
#> [[1]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+9.00441i
#> 2 17.60300 7.835364 0.02 0.02 17.60300+7.83536i
#> 3 18.19321 6.837872 0.04 0.04 18.19321+6.83787i
#> 4 18.79651 5.934147 0.06 0.06 18.79651+5.93415i
#> 5 19.55430 4.999701 0.08 0.08 19.55430+4.99970i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_1 TrajSim_9_1
#> 2 0.3552009-1.1690488i Traj_9 Sim_1 TrajSim_9_1
#> 3 0.5902147-0.9974916i Traj_9 Sim_1 TrajSim_9_1
#> 4 0.6032973-0.9037248i Traj_9 Sim_1 TrajSim_9_1
#> 5 0.7577951-0.9344458i Traj_9 Sim_1 TrajSim_9_1
#>
#> [[1]][[10]]
#> x y time displacementTime polar
#> 1 16.211030 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.360235 7.804732 0.02 0.02 15.36024+ 7.80473i
#> 3 14.422955 8.258159 0.04 0.04 14.42296+ 8.25816i
#> 4 13.550756 8.731275 0.06 0.06 13.55076+ 8.73128i
#> 5 12.659893 9.284389 0.08 0.08 12.65989+ 9.28439i
#> 6 11.637059 9.824607 0.10 0.10 11.63706+ 9.82461i
#> 7 10.702122 10.291889 0.12 0.12 10.70212+10.29189i
#> 8 9.811166 10.778125 0.14 0.14 9.81117+10.77813i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_1 TrajSim_10_1
#> 2 -0.8507951+0.3069371i Traj_10 Sim_1 TrajSim_10_1
#> 3 -0.9372801+0.4534275i Traj_10 Sim_1 TrajSim_10_1
#> 4 -0.8721996+0.4731162i Traj_10 Sim_1 TrajSim_10_1
#> 5 -0.8908629+0.5531131i Traj_10 Sim_1 TrajSim_10_1
#> 6 -1.0228342+0.5402179i Traj_10 Sim_1 TrajSim_10_1
#> 7 -0.9349369+0.4672822i Traj_10 Sim_1 TrajSim_10_1
#> 8 -0.8909554+0.4862364i Traj_10 Sim_1 TrajSim_10_1
#>
#> [[1]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+8.06912i
#> 2 12.53157 7.090831 0.02 0.02 12.53157+7.09083i
#> 3 11.88729 6.060824 0.04 0.04 11.88729+6.06082i
#> 4 11.25754 4.911206 0.06 0.06 11.25754+4.91121i
#> 5 10.66952 3.742221 0.08 0.08 10.66952+3.74222i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_1 TrajSim_11_1
#> 2 -0.7103449-0.9782873i Traj_11 Sim_1 TrajSim_11_1
#> 3 -0.6442779-1.0300074i Traj_11 Sim_1 TrajSim_11_1
#> 4 -0.6297512-1.1496175i Traj_11 Sim_1 TrajSim_11_1
#> 5 -0.5880148-1.1689848i Traj_11 Sim_1 TrajSim_11_1
#>
#>
#> [[2]]
#> [[2]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.60829 15.46215 0.02 0.02 39.60829+15.46215i
#> 3 38.58764 15.38512 0.04 0.04 38.58764+15.38512i
#> 4 37.57453 15.27611 0.06 0.06 37.57453+15.27611i
#> 5 36.65172 15.13403 0.08 0.08 36.65172+15.13403i
#> 6 35.67373 15.01637 0.10 0.10 35.67373+15.01637i
#> 7 34.67878 14.85285 0.12 0.12 34.67878+14.85285i
#> 8 33.67078 14.74485 0.14 0.14 33.67078+14.74485i
#> 9 32.74698 14.74746 0.16 0.16 32.74698+14.74746i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_2 TrajSim_1_2
#> 2 -1.0703874-0.0407882i Traj_1 Sim_2 TrajSim_1_2
#> 3 -1.0206513-0.0770377i Traj_1 Sim_2 TrajSim_1_2
#> 4 -1.0131081-0.1090019i Traj_1 Sim_2 TrajSim_1_2
#> 5 -0.9228094-0.1420829i Traj_1 Sim_2 TrajSim_1_2
#> 6 -0.9779926-0.1176651i Traj_1 Sim_2 TrajSim_1_2
#> 7 -0.9949526-0.1635166i Traj_1 Sim_2 TrajSim_1_2
#> 8 -1.0079975-0.1080024i Traj_1 Sim_2 TrajSim_1_2
#> 9 -0.9238040+0.0026083i Traj_1 Sim_2 TrajSim_1_2
#>
#> [[2]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.907354 0.00 0.00 39.18971+14.90735i
#> 2 39.63029 14.084026 0.02 0.02 39.63029+14.08403i
#> 3 40.10113 13.248197 0.04 0.04 40.10113+13.24820i
#> 4 40.58174 12.369928 0.06 0.06 40.58174+12.36993i
#> 5 41.08188 11.497588 0.08 0.08 41.08188+11.49759i
#> 6 41.52271 10.606257 0.10 0.10 41.52271+10.60626i
#> 7 41.95311 9.674105 0.12 0.12 41.95311+ 9.67410i
#> 8 42.49485 8.684999 0.14 0.14 42.49485+ 8.68500i
#> 9 43.12164 7.718519 0.16 0.16 43.12164+ 7.71852i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_2 TrajSim_2_2
#> 2 0.4405814-0.8233280i Traj_2 Sim_2 TrajSim_2_2
#> 3 0.4708373-0.8358290i Traj_2 Sim_2 TrajSim_2_2
#> 4 0.4806116-0.8782685i Traj_2 Sim_2 TrajSim_2_2
#> 5 0.5001388-0.8723400i Traj_2 Sim_2 TrajSim_2_2
#> 6 0.4408340-0.8913316i Traj_2 Sim_2 TrajSim_2_2
#> 7 0.4303971-0.9321519i Traj_2 Sim_2 TrajSim_2_2
#> 8 0.5417366-0.9891060i Traj_2 Sim_2 TrajSim_2_2
#> 9 0.6267903-0.9664803i Traj_2 Sim_2 TrajSim_2_2
#>
#> [[2]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.13081 16.13284 0.02 0.02 37.13081+16.13284i
#> 3 36.06361 16.80826 0.04 0.04 36.06361+16.80826i
#> 4 34.99793 17.52279 0.06 0.06 34.99793+17.52279i
#> 5 33.80259 18.17310 0.08 0.08 33.80259+18.17310i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_2 TrajSim_3_2
#> 2 -0.9736021+0.5813715i Traj_3 Sim_2 TrajSim_3_2
#> 3 -1.0672010+0.6754147i Traj_3 Sim_2 TrajSim_3_2
#> 4 -1.0656791+0.7145317i Traj_3 Sim_2 TrajSim_3_2
#> 5 -1.1953428+0.6503065i Traj_3 Sim_2 TrajSim_3_2
#>
#> [[2]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.55030 17.23174 0.02 0.02 35.55030+17.23174i
#> 3 35.73362 18.34553 0.04 0.04 35.73362+18.34553i
#> 4 35.76570 19.57364 0.06 0.06 35.76570+19.57364i
#> 5 35.81315 20.70474 0.08 0.08 35.81315+20.70474i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_4 Sim_2 TrajSim_4_2
#> 2 -0.030582+1.219241i Traj_4 Sim_2 TrajSim_4_2
#> 3 0.183312+1.113784i Traj_4 Sim_2 TrajSim_4_2
#> 4 0.032085+1.228119i Traj_4 Sim_2 TrajSim_4_2
#> 5 0.047454+1.131094i Traj_4 Sim_2 TrajSim_4_2
#>
#> [[2]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 31.15024 15.79862 0.02 0.02 31.15024+15.79862i
#> 3 31.01142 16.58107 0.04 0.04 31.01142+16.58107i
#> 4 30.90028 17.28190 0.06 0.06 30.90028+17.28190i
#> 5 30.95047 18.17120 0.08 0.08 30.95047+18.17120i
#> 6 30.92442 18.98025 0.10 0.10 30.92442+18.98025i
#> 7 30.94642 19.81549 0.12 0.12 30.94642+19.81549i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_2 TrajSim_5_2
#> 2 -0.0519712+0.8228853i Traj_5 Sim_2 TrajSim_5_2
#> 3 -0.1388162+0.7824440i Traj_5 Sim_2 TrajSim_5_2
#> 4 -0.1111423+0.7008321i Traj_5 Sim_2 TrajSim_5_2
#> 5 0.0501948+0.8893057i Traj_5 Sim_2 TrajSim_5_2
#> 6 -0.0260577+0.8090467i Traj_5 Sim_2 TrajSim_5_2
#> 7 0.0220058+0.8352391i Traj_5 Sim_2 TrajSim_5_2
#>
#> [[2]][[6]]
#> x y time displacementTime polar displacement
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i 0.000000+0.000000i
#> 2 30.01367 15.36943 0.02 0.02 30.01367+15.36943i 1.118816+0.261343i
#> 3 31.18249 15.57988 0.04 0.04 31.18249+15.57988i 1.168818+0.210445i
#> 4 32.48998 15.70048 0.06 0.06 32.48998+15.70048i 1.307487+0.120602i
#> 5 33.64633 15.71017 0.08 0.08 33.64633+15.71017i 1.156356+0.009690i
#> 6 34.90746 15.74411 0.10 0.10 34.90746+15.74411i 1.261133+0.033939i
#> Trajectory Simulation TrajSim
#> 1 Traj_6 Sim_2 TrajSim_6_2
#> 2 Traj_6 Sim_2 TrajSim_6_2
#> 3 Traj_6 Sim_2 TrajSim_6_2
#> 4 Traj_6 Sim_2 TrajSim_6_2
#> 5 Traj_6 Sim_2 TrajSim_6_2
#> 6 Traj_6 Sim_2 TrajSim_6_2
#>
#> [[2]][[7]]
#> x y time displacementTime polar
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i
#> 2 30.21033 16.08366 0.02 0.02 30.21033+16.08366i
#> 3 31.23591 14.93229 0.04 0.04 31.23591+14.93229i
#> 4 32.07495 13.92139 0.06 0.06 32.07495+13.92139i
#> 5 32.86758 12.97091 0.08 0.08 32.86758+12.97091i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_7 Sim_2 TrajSim_7_2
#> 2 1.0132681-1.0075139i Traj_7 Sim_2 TrajSim_7_2
#> 3 1.0255847-1.1513695i Traj_7 Sim_2 TrajSim_7_2
#> 4 0.8390344-1.0109012i Traj_7 Sim_2 TrajSim_7_2
#> 5 0.7926286-0.9504858i Traj_7 Sim_2 TrajSim_7_2
#>
#> [[2]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.49180 9.259735 0.02 0.02 14.49180+9.25973i
#> 3 14.57390 8.742387 0.04 0.04 14.57390+8.74239i
#> 4 14.62833 8.261732 0.06 0.06 14.62833+8.26173i
#> 5 14.71402 7.825297 0.08 0.08 14.71402+7.82530i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_2 TrajSim_8_2
#> 2 -0.0868811-0.3932072i Traj_8 Sim_2 TrajSim_8_2
#> 3 0.0821050-0.5173477i Traj_8 Sim_2 TrajSim_8_2
#> 4 0.0544277-0.4806551i Traj_8 Sim_2 TrajSim_8_2
#> 5 0.0856941-0.4364352i Traj_8 Sim_2 TrajSim_8_2
#>
#> [[2]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+9.00441i
#> 2 16.68758 7.921535 0.02 0.02 16.68758+7.92154i
#> 3 16.12743 6.912685 0.04 0.04 16.12743+6.91269i
#> 4 15.42359 6.024039 0.06 0.06 15.42359+6.02404i
#> 5 14.67748 5.201485 0.08 0.08 14.67748+5.20149i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_2 TrajSim_9_2
#> 2 -0.5602122-1.0828769i Traj_9 Sim_2 TrajSim_9_2
#> 3 -0.5601515-1.0088502i Traj_9 Sim_2 TrajSim_9_2
#> 4 -0.7038432-0.8886464i Traj_9 Sim_2 TrajSim_9_2
#> 5 -0.7461064-0.8225534i Traj_9 Sim_2 TrajSim_9_2
#>
#> [[2]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.4977946 0.00 0.00 16.21103+7.49779i
#> 2 16.56897 6.5773133 0.02 0.02 16.56897+6.57731i
#> 3 16.95881 5.5440392 0.04 0.04 16.95881+5.54404i
#> 4 17.22034 4.6732174 0.06 0.06 17.22034+4.67322i
#> 5 17.51028 3.6864451 0.08 0.08 17.51028+3.68645i
#> 6 17.68670 2.6683672 0.10 0.10 17.68670+2.66837i
#> 7 17.91326 1.7377337 0.12 0.12 17.91326+1.73773i
#> 8 18.10018 0.8265035 0.14 0.14 18.10018+0.82650i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_2 TrajSim_10_2
#> 2 0.3579355-0.9204813i Traj_10 Sim_2 TrajSim_10_2
#> 3 0.3898458-1.0332741i Traj_10 Sim_2 TrajSim_10_2
#> 4 0.2615294-0.8708218i Traj_10 Sim_2 TrajSim_10_2
#> 5 0.2899376-0.9867723i Traj_10 Sim_2 TrajSim_10_2
#> 6 0.1764190-1.0180780i Traj_10 Sim_2 TrajSim_10_2
#> 7 0.2265584-0.9306334i Traj_10 Sim_2 TrajSim_10_2
#> 8 0.1869239-0.9112303i Traj_10 Sim_2 TrajSim_10_2
#>
#> [[2]][[11]]
#> x y time displacementTime polar
#> 1 13.241913 8.069118 0.00 0.00 13.241913+8.069118i
#> 2 12.175218 7.907414 0.02 0.02 12.175218+7.907414i
#> 3 10.985603 7.877676 0.04 0.04 10.985603+7.877676i
#> 4 9.892925 7.903201 0.06 0.06 9.892925+7.903201i
#> 5 8.608057 8.016952 0.08 0.08 8.608057+8.016952i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_2 TrajSim_11_2
#> 2 -1.066695-0.161704i Traj_11 Sim_2 TrajSim_11_2
#> 3 -1.189614-0.029739i Traj_11 Sim_2 TrajSim_11_2
#> 4 -1.092678+0.025525i Traj_11 Sim_2 TrajSim_11_2
#> 5 -1.284868+0.113751i Traj_11 Sim_2 TrajSim_11_2
#>
#>
#> [[3]]
#> [[3]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.502942 0.00 0.00 40.67868+15.50294i
#> 2 39.85763 14.985175 0.02 0.02 39.85763+14.98518i
#> 3 39.05282 14.232868 0.04 0.04 39.05282+14.23287i
#> 4 38.49262 13.463278 0.06 0.06 38.49262+13.46328i
#> 5 37.99226 12.613105 0.08 0.08 37.99226+12.61310i
#> 6 37.45551 11.928796 0.10 0.10 37.45551+11.92880i
#> 7 37.00700 11.127819 0.12 0.12 37.00700+11.12782i
#> 8 36.60454 10.268649 0.14 0.14 36.60454+10.26865i
#> 9 36.12976 9.441795 0.16 0.16 36.12976+ 9.44180i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_3 TrajSim_1_3
#> 2 -0.8210537-0.5177668i Traj_1 Sim_3 TrajSim_1_3
#> 3 -0.8048027-0.7523074i Traj_1 Sim_3 TrajSim_1_3
#> 4 -0.5602056-0.7695896i Traj_1 Sim_3 TrajSim_1_3
#> 5 -0.5003580-0.8501736i Traj_1 Sim_3 TrajSim_1_3
#> 6 -0.5367446-0.6843093i Traj_1 Sim_3 TrajSim_1_3
#> 7 -0.4485103-0.8009770i Traj_1 Sim_3 TrajSim_1_3
#> 8 -0.4024682-0.8591694i Traj_1 Sim_3 TrajSim_1_3
#> 9 -0.4747792-0.8268537i Traj_1 Sim_3 TrajSim_1_3
#>
#> [[3]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.907354 0.00 0.00 39.18971+14.90735i
#> 2 39.43795 13.930311 0.02 0.02 39.43795+13.93031i
#> 3 39.64217 12.767593 0.04 0.04 39.64217+12.76759i
#> 4 39.80877 11.654392 0.06 0.06 39.80877+11.65439i
#> 5 39.85244 10.492226 0.08 0.08 39.85244+10.49223i
#> 6 40.12710 9.402166 0.10 0.10 40.12710+ 9.40217i
#> 7 40.43492 8.441147 0.12 0.12 40.43492+ 8.44115i
#> 8 40.80113 7.399234 0.14 0.14 40.80113+ 7.39923i
#> 9 41.11678 6.641254 0.16 0.16 41.11678+ 6.64125i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_3 TrajSim_2_3
#> 2 0.2482450-0.9770425i Traj_2 Sim_3 TrajSim_2_3
#> 3 0.2042131-1.1627183i Traj_2 Sim_3 TrajSim_2_3
#> 4 0.1665989-1.1132013i Traj_2 Sim_3 TrajSim_2_3
#> 5 0.0436709-1.1621655i Traj_2 Sim_3 TrajSim_2_3
#> 6 0.2746635-1.0900602i Traj_2 Sim_3 TrajSim_2_3
#> 7 0.3078154-0.9610194i Traj_2 Sim_3 TrajSim_2_3
#> 8 0.3662138-1.0419132i Traj_2 Sim_3 TrajSim_2_3
#> 9 0.3156554-0.7579797i Traj_2 Sim_3 TrajSim_2_3
#>
#> [[3]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 38.65037 14.48874 0.02 0.02 38.65037+14.48874i
#> 3 39.22664 13.26102 0.04 0.04 39.22664+13.26102i
#> 4 39.63036 12.21263 0.06 0.06 39.63036+12.21263i
#> 5 39.98606 11.25033 0.08 0.08 39.98606+11.25033i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_3 TrajSim_3_3
#> 2 0.5459526-1.0627303i Traj_3 Sim_3 TrajSim_3_3
#> 3 0.5762723-1.2277164i Traj_3 Sim_3 TrajSim_3_3
#> 4 0.4037223-1.0483996i Traj_3 Sim_3 TrajSim_3_3
#> 5 0.3557008-0.9622969i Traj_3 Sim_3 TrajSim_3_3
#>
#> [[3]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.74842 15.11613 0.02 0.02 34.74842+15.11613i
#> 3 33.84542 14.26015 0.04 0.04 33.84542+14.26015i
#> 4 32.97931 13.66342 0.06 0.06 32.97931+13.66342i
#> 5 32.05948 13.03518 0.08 0.08 32.05948+13.03518i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_3 TrajSim_4_3
#> 2 -0.8324653-0.8963756i Traj_4 Sim_3 TrajSim_4_3
#> 3 -0.9030007-0.8559737i Traj_4 Sim_3 TrajSim_4_3
#> 4 -0.8661042-0.5967318i Traj_4 Sim_3 TrajSim_4_3
#> 5 -0.9198322-0.6282418i Traj_4 Sim_3 TrajSim_4_3
#>
#> [[3]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.30675 14.62306 0.02 0.02 30.30675+14.62306i
#> 3 29.29037 14.24525 0.04 0.04 29.29037+14.24525i
#> 4 28.52328 13.95854 0.06 0.06 28.52328+13.95854i
#> 5 27.76646 13.62706 0.08 0.08 27.76646+13.62706i
#> 6 27.02515 13.25967 0.10 0.10 27.02515+13.25967i
#> 7 26.19028 12.68740 0.12 0.12 26.19028+12.68740i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_3 TrajSim_5_3
#> 2 -0.8954539-0.3526753i Traj_5 Sim_3 TrajSim_5_3
#> 3 -1.0163811-0.3778071i Traj_5 Sim_3 TrajSim_5_3
#> 4 -0.7670943-0.2867100i Traj_5 Sim_3 TrajSim_5_3
#> 5 -0.7568188-0.3314884i Traj_5 Sim_3 TrajSim_5_3
#> 6 -0.7413060-0.3673845i Traj_5 Sim_3 TrajSim_5_3
#> 7 -0.8348760-0.5722660i Traj_5 Sim_3 TrajSim_5_3
#>
#> [[3]][[6]]
#> x y time displacementTime polar displacement
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i 0.000000+0.000000i
#> 2 28.95189 16.35344 0.02 0.02 28.95189+16.35344i 0.057038+1.245350i
#> 3 28.97630 17.54610 0.04 0.04 28.97630+17.54610i 0.024403+1.192664i
#> 4 29.10914 18.78552 0.06 0.06 29.10914+18.78552i 0.132849+1.239417i
#> 5 29.24733 19.93052 0.08 0.08 29.24733+19.93052i 0.138181+1.144998i
#> 6 29.31308 21.16131 0.10 0.10 29.31308+21.16131i 0.065751+1.230792i
#> Trajectory Simulation TrajSim
#> 1 Traj_6 Sim_3 TrajSim_6_3
#> 2 Traj_6 Sim_3 TrajSim_6_3
#> 3 Traj_6 Sim_3 TrajSim_6_3
#> 4 Traj_6 Sim_3 TrajSim_6_3
#> 5 Traj_6 Sim_3 TrajSim_6_3
#> 6 Traj_6 Sim_3 TrajSim_6_3
#>
#> [[3]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.61184 16.31707 0.02 0.02 30.61184+16.31707i 1.414784-0.774105i
#> 3 31.68053 15.62363 0.04 0.04 31.68053+15.62363i 1.068683-0.693442i
#> 4 32.79599 14.81892 0.06 0.06 32.79599+14.81892i 1.115459-0.804710i
#> 5 33.96674 13.86887 0.08 0.08 33.96674+13.86887i 1.170750-0.950050i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_3 TrajSim_7_3
#> 2 Traj_7 Sim_3 TrajSim_7_3
#> 3 Traj_7 Sim_3 TrajSim_7_3
#> 4 Traj_7 Sim_3 TrajSim_7_3
#> 5 Traj_7 Sim_3 TrajSim_7_3
#>
#> [[3]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.10209 9.610550 0.02 0.02 14.10209+9.61055i
#> 3 13.65513 9.602499 0.04 0.04 13.65513+9.60250i
#> 4 13.16305 9.558478 0.06 0.06 13.16305+9.55848i
#> 5 12.69379 9.508066 0.08 0.08 12.69379+9.50807i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_3 TrajSim_8_3
#> 2 -0.4765878-0.0423921i Traj_8 Sim_3 TrajSim_8_3
#> 3 -0.4469547-0.0080507i Traj_8 Sim_3 TrajSim_8_3
#> 4 -0.4920882-0.0440209i Traj_8 Sim_3 TrajSim_8_3
#> 5 -0.4692594-0.0504120i Traj_8 Sim_3 TrajSim_8_3
#>
#> [[3]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 18.02866 9.718701 0.02 0.02 18.02866+ 9.71870i
#> 3 18.78986 10.353786 0.04 0.04 18.78986+10.35379i
#> 4 19.69461 10.981999 0.06 0.06 19.69461+10.98200i
#> 5 20.69699 11.572177 0.08 0.08 20.69699+11.57218i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_3 TrajSim_9_3
#> 2 0.7808682+0.7142884i Traj_9 Sim_3 TrajSim_9_3
#> 3 0.7611922+0.6350856i Traj_9 Sim_3 TrajSim_9_3
#> 4 0.9047538+0.6282125i Traj_9 Sim_3 TrajSim_9_3
#> 5 1.0023796+0.5901784i Traj_9 Sim_3 TrajSim_9_3
#>
#> [[3]][[10]]
#> x y time displacementTime polar
#> 1 16.211030 7.497795 0.00 0.00 16.211030+7.497795i
#> 2 15.255309 7.849805 0.02 0.02 15.255309+7.849805i
#> 3 14.329902 8.146283 0.04 0.04 14.329902+8.146283i
#> 4 13.367844 8.484351 0.06 0.06 13.367844+8.484351i
#> 5 12.405331 8.722359 0.08 0.08 12.405331+8.722359i
#> 6 11.453322 8.945394 0.10 0.10 11.453322+8.945394i
#> 7 10.314291 9.220127 0.12 0.12 10.314291+9.220127i
#> 8 9.365073 9.384571 0.14 0.14 9.365073+9.384571i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_3 TrajSim_10_3
#> 2 -0.9557211+0.3520100i Traj_10 Sim_3 TrajSim_10_3
#> 3 -0.9254077+0.2964788i Traj_10 Sim_3 TrajSim_10_3
#> 4 -0.9620575+0.3380678i Traj_10 Sim_3 TrajSim_10_3
#> 5 -0.9625129+0.2380074i Traj_10 Sim_3 TrajSim_10_3
#> 6 -0.9520091+0.2230354i Traj_10 Sim_3 TrajSim_10_3
#> 7 -1.1390309+0.2747329i Traj_10 Sim_3 TrajSim_10_3
#> 8 -0.9492180+0.1644445i Traj_10 Sim_3 TrajSim_10_3
#>
#> [[3]][[11]]
#> x y time displacementTime polar
#> 1 13.241913 8.069118 0.00 0.00 13.241913+8.069118i
#> 2 12.160125 8.438831 0.02 0.02 12.160125+8.438831i
#> 3 11.026111 8.756035 0.04 0.04 11.026111+8.756035i
#> 4 9.849233 9.173187 0.06 0.06 9.849233+9.173187i
#> 5 8.523996 9.523728 0.08 0.08 8.523996+9.523728i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_3 TrajSim_11_3
#> 2 -1.081788+0.369713i Traj_11 Sim_3 TrajSim_11_3
#> 3 -1.134013+0.317204i Traj_11 Sim_3 TrajSim_11_3
#> 4 -1.176878+0.417151i Traj_11 Sim_3 TrajSim_11_3
#> 5 -1.325237+0.350542i Traj_11 Sim_3 TrajSim_11_3
#>
#>
#> [[4]]
#> [[4]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.04066 16.28211 0.02 0.02 40.04066+16.28211i
#> 3 39.32353 17.02406 0.04 0.04 39.32353+17.02406i
#> 4 38.68091 17.74127 0.06 0.06 38.68091+17.74127i
#> 5 38.05670 18.45342 0.08 0.08 38.05670+18.45342i
#> 6 37.53852 19.26544 0.10 0.10 37.53852+19.26544i
#> 7 37.30700 20.13709 0.12 0.12 37.30700+20.13709i
#> 8 37.13663 21.15017 0.14 0.14 37.13663+21.15017i
#> 9 37.05078 22.19487 0.16 0.16 37.05078+22.19487i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_4 TrajSim_1_4
#> 2 -0.6380228+0.7791701i Traj_1 Sim_4 TrajSim_1_4
#> 3 -0.7171239+0.7419477i Traj_1 Sim_4 TrajSim_1_4
#> 4 -0.6426258+0.7172097i Traj_1 Sim_4 TrajSim_1_4
#> 5 -0.6242032+0.7121482i Traj_1 Sim_4 TrajSim_1_4
#> 6 -0.5181878+0.8120181i Traj_1 Sim_4 TrajSim_1_4
#> 7 -0.2315125+0.8716499i Traj_1 Sim_4 TrajSim_1_4
#> 8 -0.1703737+1.0130833i Traj_1 Sim_4 TrajSim_1_4
#> 9 -0.0858526+1.0446993i Traj_1 Sim_4 TrajSim_1_4
#>
#> [[4]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.79737 15.66914 0.02 0.02 38.79737+15.66914i
#> 3 38.21367 16.50246 0.04 0.04 38.21367+16.50246i
#> 4 37.62265 17.20536 0.06 0.06 37.62265+17.20536i
#> 5 36.99373 17.97753 0.08 0.08 36.99373+17.97753i
#> 6 36.59653 18.89355 0.10 0.10 36.59653+18.89355i
#> 7 36.19295 19.91690 0.12 0.12 36.19295+19.91690i
#> 8 35.66941 20.83631 0.14 0.14 35.66941+20.83631i
#> 9 34.96461 21.73189 0.16 0.16 34.96461+21.73189i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_4 TrajSim_2_4
#> 2 -0.3923381+0.7617818i Traj_2 Sim_4 TrajSim_2_4
#> 3 -0.5836974+0.8333233i Traj_2 Sim_4 TrajSim_2_4
#> 4 -0.5910245+0.7029015i Traj_2 Sim_4 TrajSim_2_4
#> 5 -0.6289234+0.7721664i Traj_2 Sim_4 TrajSim_2_4
#> 6 -0.3971947+0.9160256i Traj_2 Sim_4 TrajSim_2_4
#> 7 -0.4035798+1.0233438i Traj_2 Sim_4 TrajSim_2_4
#> 8 -0.5235424+0.9194164i Traj_2 Sim_4 TrajSim_2_4
#> 9 -0.7048010+0.8955802i Traj_2 Sim_4 TrajSim_2_4
#>
#> [[4]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.18980 14.47117 0.02 0.02 37.18980+14.47117i
#> 3 36.28779 13.37754 0.04 0.04 36.28779+13.37754i
#> 4 35.49778 12.32220 0.06 0.06 35.49778+12.32220i
#> 5 34.82043 11.45415 0.08 0.08 34.82043+11.45415i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_4 TrajSim_3_4
#> 2 -0.9146168-1.0803061i Traj_3 Sim_4 TrajSim_3_4
#> 3 -0.9020085-1.0936233i Traj_3 Sim_4 TrajSim_3_4
#> 4 -0.7900133-1.0553381i Traj_3 Sim_4 TrajSim_3_4
#> 5 -0.6773495-0.8680562i Traj_3 Sim_4 TrajSim_3_4
#>
#> [[4]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.54467 17.11381 0.02 0.02 35.54467+17.11381i
#> 3 35.79974 18.34385 0.04 0.04 35.79974+18.34385i
#> 4 36.00452 19.39414 0.06 0.06 36.00452+19.39414i
#> 5 36.32241 20.47310 0.08 0.08 36.32241+20.47310i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_4 Sim_4 TrajSim_4_4
#> 2 -0.036220+1.101305i Traj_4 Sim_4 TrajSim_4_4
#> 3 0.255074+1.230043i Traj_4 Sim_4 TrajSim_4_4
#> 4 0.204780+1.050294i Traj_4 Sim_4 TrajSim_4_4
#> 5 0.317895+1.078960i Traj_4 Sim_4 TrajSim_4_4
#>
#> [[4]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 31.56145 14.08248 0.02 0.02 31.56145+14.08248i
#> 3 31.85729 13.34251 0.04 0.04 31.85729+13.34251i
#> 4 32.41693 12.39987 0.06 0.06 32.41693+12.39987i
#> 5 33.05448 11.51716 0.08 0.08 33.05448+11.51716i
#> 6 33.78190 10.87486 0.10 0.10 33.78190+10.87486i
#> 7 34.42936 10.49003 0.12 0.12 34.42936+10.49003i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_4 TrajSim_5_4
#> 2 0.3592398-0.8932602i Traj_5 Sim_4 TrajSim_5_4
#> 3 0.2958439-0.7399679i Traj_5 Sim_4 TrajSim_5_4
#> 4 0.5596403-0.9426369i Traj_5 Sim_4 TrajSim_5_4
#> 5 0.6375471-0.8827110i Traj_5 Sim_4 TrajSim_5_4
#> 6 0.7274182-0.6422979i Traj_5 Sim_4 TrajSim_5_4
#> 7 0.6474659-0.3848326i Traj_5 Sim_4 TrajSim_5_4
#>
#> [[4]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 29.02318 16.10464 0.02 0.02 29.02318+16.10464i
#> 3 29.19515 17.23137 0.04 0.04 29.19515+17.23137i
#> 4 29.22813 18.49988 0.06 0.06 29.22813+18.49988i
#> 5 29.17465 19.73475 0.08 0.08 29.17465+19.73475i
#> 6 29.04756 20.90217 0.10 0.10 29.04756+20.90217i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.0000000i Traj_6 Sim_4 TrajSim_6_4
#> 2 0.128326+0.9965483i Traj_6 Sim_4 TrajSim_6_4
#> 3 0.171965+1.1267348i Traj_6 Sim_4 TrajSim_6_4
#> 4 0.032983+1.2685092i Traj_6 Sim_4 TrajSim_6_4
#> 5 -0.053479+1.2348690i Traj_6 Sim_4 TrajSim_6_4
#> 6 -0.127086+1.1674146i Traj_6 Sim_4 TrajSim_6_4
#>
#> [[4]][[7]]
#> x y time displacementTime polar
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i
#> 2 28.88396 15.82786 0.02 0.02 28.88396+15.82786i
#> 3 28.65875 14.43100 0.04 0.04 28.65875+14.43100i
#> 4 28.32137 13.26140 0.06 0.06 28.32137+13.26140i
#> 5 27.88486 11.85800 0.08 0.08 27.88486+11.85800i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_7 Sim_4 TrajSim_7_4
#> 2 -0.313096-1.263313i Traj_7 Sim_4 TrajSim_7_4
#> 3 -0.225211-1.396862i Traj_7 Sim_4 TrajSim_7_4
#> 4 -0.337382-1.169603i Traj_7 Sim_4 TrajSim_7_4
#> 5 -0.436509-1.403396i Traj_7 Sim_4 TrajSim_7_4
#>
#> [[4]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.96805 9.396538 0.02 0.02 14.96805+9.39654i
#> 3 15.38067 9.144871 0.04 0.04 15.38067+9.14487i
#> 4 15.78369 8.991786 0.06 0.06 15.78369+8.99179i
#> 5 16.22926 8.971034 0.08 0.08 16.22926+8.97103i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_4 TrajSim_8_4
#> 2 0.3893736-0.2564037i Traj_8 Sim_4 TrajSim_8_4
#> 3 0.4126215-0.2516670i Traj_8 Sim_4 TrajSim_8_4
#> 4 0.4030135-0.1530848i Traj_8 Sim_4 TrajSim_8_4
#> 5 0.4455784-0.0207527i Traj_8 Sim_4 TrajSim_8_4
#>
#> [[4]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+9.00441i
#> 2 16.34314 8.305014 0.02 0.02 16.34314+8.30501i
#> 3 15.33851 7.537933 0.04 0.04 15.33851+7.53793i
#> 4 14.47897 6.952637 0.06 0.06 14.47897+6.95264i
#> 5 13.41786 6.326790 0.08 0.08 13.41786+6.32679i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_4 TrajSim_9_4
#> 2 -0.9046516-0.6993979i Traj_9 Sim_4 TrajSim_9_4
#> 3 -1.0046380-0.7670814i Traj_9 Sim_4 TrajSim_9_4
#> 4 -0.8595321-0.5852963i Traj_9 Sim_4 TrajSim_9_4
#> 5 -1.0611176-0.6258468i Traj_9 Sim_4 TrajSim_9_4
#>
#> [[4]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+7.49779i
#> 2 17.03999 7.869445 0.02 0.02 17.03999+7.86944i
#> 3 17.98613 8.158196 0.04 0.04 17.98613+8.15820i
#> 4 18.99856 8.433673 0.06 0.06 18.99856+8.43367i
#> 5 20.00340 8.646378 0.08 0.08 20.00340+8.64638i
#> 6 20.96927 8.901189 0.10 0.10 20.96927+8.90119i
#> 7 21.95008 9.159980 0.12 0.12 21.95008+9.15998i
#> 8 22.91900 9.360984 0.14 0.14 22.91900+9.36098i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_4 TrajSim_10_4
#> 2 0.8289634+0.3716500i Traj_10 Sim_4 TrajSim_10_4
#> 3 0.9461373+0.2887512i Traj_10 Sim_4 TrajSim_10_4
#> 4 1.0124329+0.2754775i Traj_10 Sim_4 TrajSim_10_4
#> 5 1.0048356+0.2127049i Traj_10 Sim_4 TrajSim_10_4
#> 6 0.9658653+0.2548105i Traj_10 Sim_4 TrajSim_10_4
#> 7 0.9808112+0.2587914i Traj_10 Sim_4 TrajSim_10_4
#> 8 0.9689195+0.2010042i Traj_10 Sim_4 TrajSim_10_4
#>
#> [[4]][[11]]
#> x y time displacementTime polar
#> 1 13.241913 8.069118 0.00 0.00 13.241913+8.069118i
#> 2 11.974566 8.112928 0.02 0.02 11.974566+8.112928i
#> 3 10.900781 8.064509 0.04 0.04 10.900781+8.064509i
#> 4 9.644340 7.902698 0.06 0.06 9.644340+7.902698i
#> 5 8.548366 7.723315 0.08 0.08 8.548366+7.723315i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_4 TrajSim_11_4
#> 2 -1.267346+0.043810i Traj_11 Sim_4 TrajSim_11_4
#> 3 -1.073785-0.048419i Traj_11 Sim_4 TrajSim_11_4
#> 4 -1.256441-0.161811i Traj_11 Sim_4 TrajSim_11_4
#> 5 -1.095974-0.179383i Traj_11 Sim_4 TrajSim_11_4
#>
#>
#> [[5]]
#> [[5]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.74824 15.70093 0.02 0.02 39.74824+15.70093i
#> 3 38.77866 15.98216 0.04 0.04 38.77866+15.98216i
#> 4 37.88179 16.15345 0.06 0.06 37.88179+16.15345i
#> 5 36.93270 16.00280 0.08 0.08 36.93270+16.00280i
#> 6 35.92207 16.02284 0.10 0.10 35.92207+16.02284i
#> 7 34.90491 15.92673 0.12 0.12 34.90491+15.92673i
#> 8 33.87977 15.82444 0.14 0.14 33.87977+15.82444i
#> 9 32.99863 15.46360 0.16 0.16 32.99863+15.46360i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_5 TrajSim_1_5
#> 2 -0.9304381+0.1979926i Traj_1 Sim_5 TrajSim_1_5
#> 3 -0.9695773+0.2812269i Traj_1 Sim_5 TrajSim_1_5
#> 4 -0.8968719+0.1712885i Traj_1 Sim_5 TrajSim_1_5
#> 5 -0.9490883-0.1506455i Traj_1 Sim_5 TrajSim_1_5
#> 6 -1.0106322+0.0200358i Traj_1 Sim_5 TrajSim_1_5
#> 7 -1.0171654-0.0961144i Traj_1 Sim_5 TrajSim_1_5
#> 8 -1.0251375-0.1022853i Traj_1 Sim_5 TrajSim_1_5
#> 9 -0.8811412-0.3608421i Traj_1 Sim_5 TrajSim_1_5
#>
#> [[5]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.43600 15.66106 0.02 0.02 38.43600+15.66106i
#> 3 37.72685 16.41006 0.04 0.04 37.72685+16.41006i
#> 4 36.95032 17.23980 0.06 0.06 36.95032+17.23980i
#> 5 36.17091 18.21954 0.08 0.08 36.17091+18.21954i
#> 6 35.38523 18.90872 0.10 0.10 35.38523+18.90872i
#> 7 34.63979 19.57349 0.12 0.12 34.63979+19.57349i
#> 8 34.05227 20.60563 0.14 0.14 34.05227+20.60563i
#> 9 33.44314 21.44238 0.16 0.16 33.44314+21.44238i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_5 TrajSim_2_5
#> 2 -0.7537075+0.7537072i Traj_2 Sim_5 TrajSim_2_5
#> 3 -0.7091523+0.7489965i Traj_2 Sim_5 TrajSim_2_5
#> 4 -0.7765317+0.8297433i Traj_2 Sim_5 TrajSim_2_5
#> 5 -0.7794068+0.9797388i Traj_2 Sim_5 TrajSim_2_5
#> 6 -0.7856796+0.6891757i Traj_2 Sim_5 TrajSim_2_5
#> 7 -0.7454402+0.6647758i Traj_2 Sim_5 TrajSim_2_5
#> 8 -0.5875225+1.0321427i Traj_2 Sim_5 TrajSim_2_5
#> 9 -0.6091281+0.8367413i Traj_2 Sim_5 TrajSim_2_5
#>
#> [[5]][[3]]
#> x y time displacementTime polar displacement
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i 0.000000+0.000000i
#> 2 38.75358 16.67897 0.02 0.02 38.75358+16.67897i 0.649169+1.127496i
#> 3 39.34743 17.88336 0.04 0.04 39.34743+17.88336i 0.593845+1.204391i
#> 4 39.89244 18.95122 0.06 0.06 39.89244+18.95122i 0.545014+1.067864i
#> 5 40.54039 20.26357 0.08 0.08 40.54039+20.26357i 0.647946+1.312347i
#> Trajectory Simulation TrajSim
#> 1 Traj_3 Sim_5 TrajSim_3_5
#> 2 Traj_3 Sim_5 TrajSim_3_5
#> 3 Traj_3 Sim_5 TrajSim_3_5
#> 4 Traj_3 Sim_5 TrajSim_3_5
#> 5 Traj_3 Sim_5 TrajSim_3_5
#>
#> [[5]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 36.24529 15.02343 0.02 0.02 36.24529+15.02343i
#> 3 36.64972 14.02834 0.04 0.04 36.64972+14.02834i
#> 4 36.79629 13.05003 0.06 0.06 36.79629+13.05003i
#> 5 37.02997 11.99010 0.08 0.08 37.02997+11.99010i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_5 TrajSim_4_5
#> 2 0.6644096-0.9890664i Traj_4 Sim_5 TrajSim_4_5
#> 3 0.4044298-0.9950918i Traj_4 Sim_5 TrajSim_4_5
#> 4 0.1465617-0.9783141i Traj_4 Sim_5 TrajSim_4_5
#> 5 0.2336793-1.0599274i Traj_4 Sim_5 TrajSim_4_5
#>
#> [[5]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 31.53092 15.73908 0.02 0.02 31.53092+15.73908i
#> 3 32.15552 16.75639 0.04 0.04 32.15552+16.75639i
#> 4 32.62541 17.53945 0.06 0.06 32.62541+17.53945i
#> 5 33.00771 18.14841 0.08 0.08 33.00771+18.14841i
#> 6 33.42127 18.82616 0.10 0.10 33.42127+18.82616i
#> 7 34.03624 19.47776 0.12 0.12 34.03624+19.47776i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_5 TrajSim_5_5
#> 2 0.3287159+0.7633459i Traj_5 Sim_5 TrajSim_5_5
#> 3 0.6245939+1.0173088i Traj_5 Sim_5 TrajSim_5_5
#> 4 0.4698935+0.7830558i Traj_5 Sim_5 TrajSim_5_5
#> 5 0.3823035+0.6089610i Traj_5 Sim_5 TrajSim_5_5
#> 6 0.4135545+0.6777569i Traj_5 Sim_5 TrajSim_5_5
#> 7 0.6149686+0.6515928i Traj_5 Sim_5 TrajSim_5_5
#>
#> [[5]][[6]]
#> x y time displacementTime polar displacement
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i 0.000000+0.000000i
#> 2 28.99039 16.29497 0.02 0.02 28.99039+16.29497i 0.095538+1.186878i
#> 3 29.02175 17.58505 0.04 0.04 29.02175+17.58505i 0.031358+1.290082i
#> 4 29.08019 18.71120 0.06 0.06 29.08019+18.71120i 0.058442+1.126148i
#> 5 29.20121 19.78980 0.08 0.08 29.20121+19.78980i 0.121016+1.078602i
#> 6 29.27755 21.22324 0.10 0.10 29.27755+21.22324i 0.076341+1.433437i
#> Trajectory Simulation TrajSim
#> 1 Traj_6 Sim_5 TrajSim_6_5
#> 2 Traj_6 Sim_5 TrajSim_6_5
#> 3 Traj_6 Sim_5 TrajSim_6_5
#> 4 Traj_6 Sim_5 TrajSim_6_5
#> 5 Traj_6 Sim_5 TrajSim_6_5
#> 6 Traj_6 Sim_5 TrajSim_6_5
#>
#> [[5]][[7]]
#> x y time displacementTime polar
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i
#> 2 29.42811 16.21637 0.02 0.02 29.42811+16.21637i
#> 3 29.80449 14.64056 0.04 0.04 29.80449+14.64056i
#> 4 30.08660 13.32968 0.06 0.06 30.08660+13.32968i
#> 5 30.40392 12.11794 0.08 0.08 30.40392+12.11794i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_7 Sim_5 TrajSim_7_5
#> 2 0.2310474-0.8748099i Traj_7 Sim_5 TrajSim_7_5
#> 3 0.3763784-1.5758110i Traj_7 Sim_5 TrajSim_7_5
#> 4 0.2821143-1.3108730i Traj_7 Sim_5 TrajSim_7_5
#> 5 0.3173215-1.2117424i Traj_7 Sim_5 TrajSim_7_5
#>
#> [[5]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.14372 9.466631 0.02 0.02 14.14372+9.46663i
#> 3 13.69667 9.293941 0.04 0.04 13.69667+9.29394i
#> 4 13.27653 9.155786 0.06 0.06 13.27653+9.15579i
#> 5 12.85170 8.979652 0.08 0.08 12.85170+8.97965i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_5 TrajSim_8_5
#> 2 -0.4349604-0.1863113i Traj_8 Sim_5 TrajSim_8_5
#> 3 -0.4470431-0.1726892i Traj_8 Sim_5 TrajSim_8_5
#> 4 -0.4201471-0.1381553i Traj_8 Sim_5 TrajSim_8_5
#> 5 -0.4248238-0.1761337i Traj_8 Sim_5 TrajSim_8_5
#>
#> [[5]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+9.00441i
#> 2 16.98080 7.999265 0.02 0.02 16.98080+7.99926i
#> 3 16.82456 7.102535 0.04 0.04 16.82456+7.10253i
#> 4 16.63226 6.039524 0.06 0.06 16.63226+6.03952i
#> 5 16.38186 4.955041 0.08 0.08 16.38186+4.95504i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.0000000i Traj_9 Sim_5 TrajSim_9_5
#> 2 -0.266999-1.0051478i Traj_9 Sim_5 TrajSim_9_5
#> 3 -0.156240-0.8967299i Traj_9 Sim_5 TrajSim_9_5
#> 4 -0.192298-1.0630108i Traj_9 Sim_5 TrajSim_9_5
#> 5 -0.250400-1.0844824i Traj_9 Sim_5 TrajSim_9_5
#>
#> [[5]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 16.48693 8.475931 0.02 0.02 16.48693+ 8.47593i
#> 3 16.75672 9.402827 0.04 0.04 16.75672+ 9.40283i
#> 4 17.05575 10.321604 0.06 0.06 17.05575+10.32160i
#> 5 17.44009 11.257585 0.08 0.08 17.44009+11.25758i
#> 6 17.86182 12.117650 0.10 0.10 17.86182+12.11765i
#> 7 18.30623 13.035226 0.12 0.12 18.30623+13.03523i
#> 8 18.59276 14.032931 0.14 0.14 18.59276+14.03293i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_5 TrajSim_10_5
#> 2 0.2759018+0.9781364i Traj_10 Sim_5 TrajSim_10_5
#> 3 0.2697845+0.9268956i Traj_10 Sim_5 TrajSim_10_5
#> 4 0.2990363+0.9187773i Traj_10 Sim_5 TrajSim_10_5
#> 5 0.3843327+0.9359806i Traj_10 Sim_5 TrajSim_10_5
#> 6 0.4217351+0.8600650i Traj_10 Sim_5 TrajSim_10_5
#> 7 0.4444088+0.9175761i Traj_10 Sim_5 TrajSim_10_5
#> 8 0.2865351+0.9977051i Traj_10 Sim_5 TrajSim_10_5
#>
#> [[5]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 14.08199 8.924849 0.02 0.02 14.08199+ 8.92485i
#> 3 14.91784 9.754804 0.04 0.04 14.91784+ 9.75480i
#> 4 15.78304 10.668821 0.06 0.06 15.78304+10.66882i
#> 5 16.59560 11.509001 0.08 0.08 16.59560+11.50900i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_5 TrajSim_11_5
#> 2 0.8400756+0.8557312i Traj_11 Sim_5 TrajSim_11_5
#> 3 0.8358505+0.8299549i Traj_11 Sim_5 TrajSim_11_5
#> 4 0.8652036+0.9140163i Traj_11 Sim_5 TrajSim_11_5
#> 5 0.8125596+0.8401807i Traj_11 Sim_5 TrajSim_11_5
#>
#>
#> [[6]]
#> [[6]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.70375 15.71750 0.02 0.02 39.70375+15.71750i
#> 3 38.73801 15.83334 0.04 0.04 38.73801+15.83334i
#> 4 37.79819 16.04275 0.06 0.06 37.79819+16.04275i
#> 5 36.84494 16.15792 0.08 0.08 36.84494+16.15792i
#> 6 35.95696 16.30424 0.10 0.10 35.95696+16.30424i
#> 7 35.12076 16.57358 0.12 0.12 35.12076+16.57358i
#> 8 34.24232 16.81090 0.14 0.14 34.24232+16.81090i
#> 9 33.37322 17.03063 0.16 0.16 33.37322+17.03063i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_6 TrajSim_1_6
#> 2 -0.9749251+0.2145561i Traj_1 Sim_6 TrajSim_1_6
#> 3 -0.9657432+0.1158449i Traj_1 Sim_6 TrajSim_1_6
#> 4 -0.9398193+0.2094077i Traj_1 Sim_6 TrajSim_1_6
#> 5 -0.9532483+0.1151689i Traj_1 Sim_6 TrajSim_1_6
#> 6 -0.8879796+0.1463218i Traj_1 Sim_6 TrajSim_1_6
#> 7 -0.8362051+0.2693353i Traj_1 Sim_6 TrajSim_1_6
#> 8 -0.8784426+0.2373236i Traj_1 Sim_6 TrajSim_1_6
#> 9 -0.8690961+0.2197328i Traj_1 Sim_6 TrajSim_1_6
#>
#> [[6]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 39.07913 15.93655 0.02 0.02 39.07913+15.93655i
#> 3 38.98277 16.99212 0.04 0.04 38.98277+16.99212i
#> 4 38.84005 18.05418 0.06 0.06 38.84005+18.05418i
#> 5 38.63611 19.13605 0.08 0.08 38.63611+19.13605i
#> 6 38.43088 20.03553 0.10 0.10 38.43088+20.03553i
#> 7 38.26722 21.13139 0.12 0.12 38.26722+21.13139i
#> 8 38.25571 22.31462 0.14 0.14 38.25571+22.31462i
#> 9 38.27356 23.49967 0.16 0.16 38.27356+23.49967i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_6 TrajSim_2_6
#> 2 -0.1105743+1.0291918i Traj_2 Sim_6 TrajSim_2_6
#> 3 -0.0963690+1.0555791i Traj_2 Sim_6 TrajSim_2_6
#> 4 -0.1427117+1.0620556i Traj_2 Sim_6 TrajSim_2_6
#> 5 -0.2039450+1.0818672i Traj_2 Sim_6 TrajSim_2_6
#> 6 -0.2052243+0.8994858i Traj_2 Sim_6 TrajSim_2_6
#> 7 -0.1636656+1.0958608i Traj_2 Sim_6 TrajSim_2_6
#> 8 -0.0115108+1.1832212i Traj_2 Sim_6 TrajSim_2_6
#> 9 0.0178521+1.1850583i Traj_2 Sim_6 TrajSim_2_6
#>
#> [[6]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 38.70049 16.69425 0.02 0.02 38.70049+16.69425i
#> 3 39.35929 17.96617 0.04 0.04 39.35929+17.96617i
#> 4 40.01530 19.03135 0.06 0.06 40.01530+19.03135i
#> 5 40.72574 20.01270 0.08 0.08 40.72574+20.01270i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_6 TrajSim_3_6
#> 2 0.5960776+1.1427754i Traj_3 Sim_6 TrajSim_3_6
#> 3 0.6588029+1.2719204i Traj_3 Sim_6 TrajSim_3_6
#> 4 0.6560025+1.0651871i Traj_3 Sim_6 TrajSim_3_6
#> 5 0.7104391+0.9813448i Traj_3 Sim_6 TrajSim_3_6
#>
#> [[6]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.57546 17.03837 0.02 0.02 35.57546+17.03837i
#> 3 35.47975 18.15915 0.04 0.04 35.47975+18.15915i
#> 4 35.26923 19.29434 0.06 0.06 35.26923+19.29434i
#> 5 35.11281 20.45646 0.08 0.08 35.11281+20.45646i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_4 Sim_6 TrajSim_4_6
#> 2 -0.005429+1.025865i Traj_4 Sim_6 TrajSim_4_6
#> 3 -0.095703+1.120783i Traj_4 Sim_6 TrajSim_4_6
#> 4 -0.210518+1.135188i Traj_4 Sim_6 TrajSim_4_6
#> 5 -0.156430+1.162121i Traj_4 Sim_6 TrajSim_4_6
#>
#> [[6]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 31.29291 15.98233 0.02 0.02 31.29291+15.98233i
#> 3 31.40143 16.91948 0.04 0.04 31.40143+16.91948i
#> 4 31.62989 17.89918 0.06 0.06 31.62989+17.89918i
#> 5 31.74048 18.69379 0.08 0.08 31.74048+18.69379i
#> 6 31.77126 19.38687 0.10 0.10 31.77126+19.38687i
#> 7 31.64871 20.41762 0.12 0.12 31.64871+20.41762i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_6 TrajSim_5_6
#> 2 0.0906997+1.0065936i Traj_5 Sim_6 TrajSim_5_6
#> 3 0.1085211+0.9371514i Traj_5 Sim_6 TrajSim_5_6
#> 4 0.2284655+0.9796972i Traj_5 Sim_6 TrajSim_5_6
#> 5 0.1105865+0.7946133i Traj_5 Sim_6 TrajSim_5_6
#> 6 0.0307834+0.6930755i Traj_5 Sim_6 TrajSim_5_6
#> 7 -0.1225552+1.0307539i Traj_5 Sim_6 TrajSim_5_6
#>
#> [[6]][[6]]
#> x y time displacementTime polar displacement
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i 0.000000+0.000000i
#> 2 30.05587 15.42530 0.02 0.02 30.05587+15.42530i 1.161020+0.317207i
#> 3 31.16618 15.61450 0.04 0.04 31.16618+15.61450i 1.110304+0.189203i
#> 4 32.48831 15.84178 0.06 0.06 32.48831+15.84178i 1.322128+0.227283i
#> 5 33.66386 16.00952 0.08 0.08 33.66386+16.00952i 1.175551+0.167734i
#> 6 34.75008 16.19449 0.10 0.10 34.75008+16.19449i 1.086227+0.184971i
#> Trajectory Simulation TrajSim
#> 1 Traj_6 Sim_6 TrajSim_6_6
#> 2 Traj_6 Sim_6 TrajSim_6_6
#> 3 Traj_6 Sim_6 TrajSim_6_6
#> 4 Traj_6 Sim_6 TrajSim_6_6
#> 5 Traj_6 Sim_6 TrajSim_6_6
#> 6 Traj_6 Sim_6 TrajSim_6_6
#>
#> [[6]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.30973 17.25400 0.02 0.02 30.30973+17.25400i 1.112667+0.162818i
#> 3 31.63424 17.45149 0.04 0.04 31.63424+17.45149i 1.324514+0.197493i
#> 4 32.97172 17.64099 0.06 0.06 32.97172+17.64099i 1.337479+0.189505i
#> 5 34.29820 17.77947 0.08 0.08 34.29820+17.77947i 1.326478+0.138475i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_6 TrajSim_7_6
#> 2 Traj_7 Sim_6 TrajSim_7_6
#> 3 Traj_7 Sim_6 TrajSim_7_6
#> 4 Traj_7 Sim_6 TrajSim_7_6
#> 5 Traj_7 Sim_6 TrajSim_7_6
#>
#> [[6]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.12288 9.546096 0.02 0.02 14.12288+9.54610i
#> 3 13.70929 9.493963 0.04 0.04 13.70929+9.49396i
#> 4 13.21611 9.505496 0.06 0.06 13.21611+9.50550i
#> 5 12.70475 9.391499 0.08 0.08 12.70475+9.39150i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_6 TrajSim_8_6
#> 2 -0.4557976-0.1068460i Traj_8 Sim_6 TrajSim_8_6
#> 3 -0.4135920-0.0521333i Traj_8 Sim_6 TrajSim_8_6
#> 4 -0.4931794+0.0115338i Traj_8 Sim_6 TrajSim_8_6
#> 5 -0.5113582-0.1139971i Traj_8 Sim_6 TrajSim_8_6
#>
#> [[6]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 17.40362 10.164923 0.02 0.02 17.40362+10.16492i
#> 3 17.68096 11.180645 0.04 0.04 17.68096+11.18064i
#> 4 17.98841 12.240945 0.06 0.06 17.98841+12.24094i
#> 5 18.17049 13.438853 0.08 0.08 18.17049+13.43885i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_9 Sim_6 TrajSim_9_6
#> 2 0.155823+1.160511i Traj_9 Sim_6 TrajSim_9_6
#> 3 0.277347+1.015721i Traj_9 Sim_6 TrajSim_9_6
#> 4 0.307444+1.060300i Traj_9 Sim_6 TrajSim_9_6
#> 5 0.182080+1.197909i Traj_9 Sim_6 TrajSim_9_6
#>
#> [[6]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.4977946 0.00 0.00 16.21103+7.49779i
#> 2 16.13703 6.4366560 0.02 0.02 16.13703+6.43666i
#> 3 16.16522 5.4211232 0.04 0.04 16.16522+5.42112i
#> 4 16.12943 4.4284228 0.06 0.06 16.12943+4.42842i
#> 5 16.16603 3.3661773 0.08 0.08 16.16603+3.36618i
#> 6 16.28484 2.3017681 0.10 0.10 16.28484+2.30177i
#> 7 16.35071 1.2186389 0.12 0.12 16.35071+1.21864i
#> 8 16.33238 0.1732759 0.14 0.14 16.33238+0.17328i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_6 TrajSim_10_6
#> 2 -0.0740054-1.0611386i Traj_10 Sim_6 TrajSim_10_6
#> 3 0.0281976-1.0155328i Traj_10 Sim_6 TrajSim_10_6
#> 4 -0.0357913-0.9927003i Traj_10 Sim_6 TrajSim_10_6
#> 5 0.0365991-1.0622456i Traj_10 Sim_6 TrajSim_10_6
#> 6 0.1188126-1.0644092i Traj_10 Sim_6 TrajSim_10_6
#> 7 0.0658707-1.0831291i Traj_10 Sim_6 TrajSim_10_6
#> 8 -0.0183381-1.0453631i Traj_10 Sim_6 TrajSim_10_6
#>
#> [[6]][[11]]
#> x y time displacementTime polar
#> 1 13.241913 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.385242 8.822408 0.02 0.02 12.38524+ 8.82241i
#> 3 11.545553 9.689722 0.04 0.04 11.54555+ 9.68972i
#> 4 10.842465 10.577987 0.06 0.06 10.84246+10.57799i
#> 5 9.907736 11.670347 0.08 0.08 9.90774+11.67035i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_6 TrajSim_11_6
#> 2 -0.8566708+0.7532896i Traj_11 Sim_6 TrajSim_11_6
#> 3 -0.8396889+0.8673141i Traj_11 Sim_6 TrajSim_11_6
#> 4 -0.7030882+0.8882654i Traj_11 Sim_6 TrajSim_11_6
#> 5 -0.9347286+1.0923597i Traj_11 Sim_6 TrajSim_11_6
#>
#>
#> [[7]]
#> [[7]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.502942 0.00 0.00 40.67868+15.50294i
#> 2 41.20384 14.722680 0.02 0.02 41.20384+14.72268i
#> 3 41.82041 14.048942 0.04 0.04 41.82041+14.04894i
#> 4 42.47504 13.276981 0.06 0.06 42.47504+13.27698i
#> 5 43.02599 12.617024 0.08 0.08 43.02599+12.61702i
#> 6 43.60520 11.848053 0.10 0.10 43.60520+11.84805i
#> 7 44.28105 11.042919 0.12 0.12 44.28105+11.04292i
#> 8 44.96478 10.379566 0.14 0.14 44.96478+10.37957i
#> 9 45.61022 9.670845 0.16 0.16 45.61022+ 9.67085i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_7 TrajSim_1_7
#> 2 0.5251561-0.7802620i Traj_1 Sim_7 TrajSim_1_7
#> 3 0.6165713-0.6737386i Traj_1 Sim_7 TrajSim_1_7
#> 4 0.6546353-0.7719610i Traj_1 Sim_7 TrajSim_1_7
#> 5 0.5509494-0.6599570i Traj_1 Sim_7 TrajSim_1_7
#> 6 0.5792067-0.7689702i Traj_1 Sim_7 TrajSim_1_7
#> 7 0.6758505-0.8051347i Traj_1 Sim_7 TrajSim_1_7
#> 8 0.6837351-0.6633530i Traj_1 Sim_7 TrajSim_1_7
#> 9 0.6454388-0.7087202i Traj_1 Sim_7 TrajSim_1_7
#>
#> [[7]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.26525 15.38889 0.02 0.02 38.26525+15.38889i
#> 3 37.43086 16.01733 0.04 0.04 37.43086+16.01733i
#> 4 36.56062 16.75048 0.06 0.06 36.56062+16.75048i
#> 5 35.71956 17.38386 0.08 0.08 35.71956+17.38386i
#> 6 34.91977 17.97334 0.10 0.10 34.91977+17.97334i
#> 7 34.09059 18.67651 0.12 0.12 34.09059+18.67651i
#> 8 33.23288 19.20511 0.14 0.14 33.23288+19.20511i
#> 9 32.42139 19.80306 0.16 0.16 32.42139+19.80306i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_7 TrajSim_2_7
#> 2 -0.9244621+0.4815364i Traj_2 Sim_7 TrajSim_2_7
#> 3 -0.8343828+0.6284411i Traj_2 Sim_7 TrajSim_2_7
#> 4 -0.8702397+0.7331456i Traj_2 Sim_7 TrajSim_2_7
#> 5 -0.8410673+0.6333864i Traj_2 Sim_7 TrajSim_2_7
#> 6 -0.7997829+0.5894777i Traj_2 Sim_7 TrajSim_2_7
#> 7 -0.8291812+0.7031641i Traj_2 Sim_7 TrajSim_2_7
#> 8 -0.8577140+0.5286082i Traj_2 Sim_7 TrajSim_2_7
#> 9 -0.8114842+0.5979465i Traj_2 Sim_7 TrajSim_2_7
#>
#> [[7]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.67728 14.49307 0.02 0.02 37.67728+14.49307i
#> 3 37.25087 13.33148 0.04 0.04 37.25087+13.33148i
#> 4 36.80511 12.16934 0.06 0.06 36.80511+12.16934i
#> 5 36.35556 10.97546 0.08 0.08 36.35556+10.97546i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_3 Sim_7 TrajSim_3_7
#> 2 -0.427132-1.058398i Traj_3 Sim_7 TrajSim_3_7
#> 3 -0.426413-1.161597i Traj_3 Sim_7 TrajSim_3_7
#> 4 -0.445755-1.162141i Traj_3 Sim_7 TrajSim_3_7
#> 5 -0.449550-1.193879i Traj_3 Sim_7 TrajSim_3_7
#>
#> [[7]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 36.22748 16.96505 0.02 0.02 36.22748+16.96505i
#> 3 36.75781 17.95247 0.04 0.04 36.75781+17.95247i
#> 4 37.20861 18.99979 0.06 0.06 37.20861+18.99979i
#> 5 37.64289 20.02931 0.08 0.08 37.64289+20.02931i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_7 TrajSim_4_7
#> 2 0.6465958+0.9525461i Traj_4 Sim_7 TrajSim_4_7
#> 3 0.5303255+0.9874273i Traj_4 Sim_7 TrajSim_4_7
#> 4 0.4508027+1.0473115i Traj_4 Sim_7 TrajSim_4_7
#> 5 0.4342843+1.0295204i Traj_4 Sim_7 TrajSim_4_7
#>
#> [[7]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.86687 15.93871 0.02 0.02 30.86687+15.93871i
#> 3 30.63708 16.79620 0.04 0.04 30.63708+16.79620i
#> 4 30.45421 17.97833 0.06 0.06 30.45421+17.97833i
#> 5 30.24774 18.76445 0.08 0.08 30.24774+18.76445i
#> 6 30.09690 19.65476 0.10 0.10 30.09690+19.65476i
#> 7 29.81132 20.67131 0.12 0.12 29.81132+20.67131i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_7 TrajSim_5_7
#> 2 -0.3353397+0.9629694i Traj_5 Sim_7 TrajSim_5_7
#> 3 -0.2297892+0.8574972i Traj_5 Sim_7 TrajSim_5_7
#> 4 -0.1828642+1.1821227i Traj_5 Sim_7 TrajSim_5_7
#> 5 -0.2064769+0.7861237i Traj_5 Sim_7 TrajSim_5_7
#> 6 -0.1508378+0.8903102i Traj_5 Sim_7 TrajSim_5_7
#> 7 -0.2855779+1.0165481i Traj_5 Sim_7 TrajSim_5_7
#>
#> [[7]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.52394 16.18669 0.02 0.02 28.52394+16.18669i
#> 3 27.93115 17.31212 0.04 0.04 27.93115+17.31212i
#> 4 27.24814 18.41188 0.06 0.06 27.24814+18.41188i
#> 5 26.64337 19.39892 0.08 0.08 26.64337+19.39892i
#> 6 26.08266 20.33349 0.10 0.10 26.08266+20.33349i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_7 TrajSim_6_7
#> 2 -0.3709151+1.0786034i Traj_6 Sim_7 TrajSim_6_7
#> 3 -0.5927875+1.1254276i Traj_6 Sim_7 TrajSim_6_7
#> 4 -0.6830166+1.0997598i Traj_6 Sim_7 TrajSim_6_7
#> 5 -0.6047657+0.9870395i Traj_6 Sim_7 TrajSim_6_7
#> 6 -0.5607059+0.9345750i Traj_6 Sim_7 TrajSim_6_7
#>
#> [[7]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.48709 17.06621 0.02 0.02 30.48709+17.06621i 1.290025-0.024966i
#> 3 31.69670 16.95389 0.04 0.04 31.69670+16.95389i 1.209615-0.112323i
#> 4 32.82725 16.88727 0.06 0.06 32.82725+16.88727i 1.130549-0.066616i
#> 5 34.23271 16.83085 0.08 0.08 34.23271+16.83085i 1.405459-0.056425i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_7 TrajSim_7_7
#> 2 Traj_7 Sim_7 TrajSim_7_7
#> 3 Traj_7 Sim_7 TrajSim_7_7
#> 4 Traj_7 Sim_7 TrajSim_7_7
#> 5 Traj_7 Sim_7 TrajSim_7_7
#>
#> [[7]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.63778 9.173406 0.02 0.02 14.63778+9.17341i
#> 3 14.73470 8.755509 0.04 0.04 14.73470+8.75551i
#> 4 15.06488 8.362947 0.06 0.06 15.06488+8.36295i
#> 5 15.32890 8.037609 0.08 0.08 15.32890+8.03761i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_7 TrajSim_8_7
#> 2 0.0590981-0.4795355i Traj_8 Sim_7 TrajSim_8_7
#> 3 0.0969195-0.4178975i Traj_8 Sim_7 TrajSim_8_7
#> 4 0.3301844-0.3925616i Traj_8 Sim_7 TrajSim_8_7
#> 5 0.2640213-0.3253387i Traj_8 Sim_7 TrajSim_8_7
#>
#> [[7]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+9.00441i
#> 2 16.21529 8.404253 0.02 0.02 16.21529+8.40425i
#> 3 15.26860 7.768967 0.04 0.04 15.26860+7.76897i
#> 4 14.34782 7.133833 0.06 0.06 14.34782+7.13383i
#> 5 13.36694 6.474727 0.08 0.08 13.36694+6.47473i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_7 TrajSim_9_7
#> 2 -1.0325062-0.6001598i Traj_9 Sim_7 TrajSim_9_7
#> 3 -0.9466896-0.6352853i Traj_9 Sim_7 TrajSim_9_7
#> 4 -0.9207770-0.6351345i Traj_9 Sim_7 TrajSim_9_7
#> 5 -0.9808868-0.6591057i Traj_9 Sim_7 TrajSim_9_7
#>
#> [[7]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+7.49779i
#> 2 17.22623 7.475542 0.02 0.02 17.22623+7.47554i
#> 3 18.23757 7.385027 0.04 0.04 18.23757+7.38503i
#> 4 19.18611 7.345086 0.06 0.06 19.18611+7.34509i
#> 5 20.28462 7.165445 0.08 0.08 20.28462+7.16544i
#> 6 21.19912 7.039961 0.10 0.10 21.19912+7.03996i
#> 7 22.36805 6.896748 0.12 0.12 22.36805+6.89675i
#> 8 23.39133 6.835455 0.14 0.14 23.39133+6.83545i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_7 TrajSim_10_7
#> 2 1.0152043-0.0222526i Traj_10 Sim_7 TrajSim_10_7
#> 3 1.0113396-0.0905147i Traj_10 Sim_7 TrajSim_10_7
#> 4 0.9485318-0.0399417i Traj_10 Sim_7 TrajSim_10_7
#> 5 1.0985166-0.1796408i Traj_10 Sim_7 TrajSim_10_7
#> 6 0.9144993-0.1254838i Traj_10 Sim_7 TrajSim_10_7
#> 7 1.1689295-0.1432132i Traj_10 Sim_7 TrajSim_10_7
#> 8 1.0232764-0.0612928i Traj_10 Sim_7 TrajSim_10_7
#>
#> [[7]][[11]]
#> x y time displacementTime polar
#> 1 13.241913 8.069118 0.00 0.00 13.241913+8.069118i
#> 2 12.128862 7.554332 0.02 0.02 12.128862+7.554332i
#> 3 11.056146 7.068272 0.04 0.04 11.056146+7.068272i
#> 4 9.872157 6.609153 0.06 0.06 9.872157+6.609153i
#> 5 8.846459 6.242018 0.08 0.08 8.846459+6.242018i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_7 TrajSim_11_7
#> 2 -1.113051-0.514786i Traj_11 Sim_7 TrajSim_11_7
#> 3 -1.072716-0.486060i Traj_11 Sim_7 TrajSim_11_7
#> 4 -1.183989-0.459118i Traj_11 Sim_7 TrajSim_11_7
#> 5 -1.025698-0.367135i Traj_11 Sim_7 TrajSim_11_7
#>
#>
#> [[8]]
#> [[8]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 41.66486 15.48812 0.02 0.02 41.66486+15.48812i
#> 3 42.64448 15.59645 0.04 0.04 42.64448+15.59645i
#> 4 43.56955 15.76948 0.06 0.06 43.56955+15.76948i
#> 5 44.48651 16.09065 0.08 0.08 44.48651+16.09065i
#> 6 45.40052 16.32401 0.10 0.10 45.40052+16.32401i
#> 7 46.29442 16.65830 0.12 0.12 46.29442+16.65830i
#> 8 47.22263 16.95357 0.14 0.14 47.22263+16.95357i
#> 9 48.05831 17.47734 0.16 0.16 48.05831+17.47734i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_8 TrajSim_1_8
#> 2 0.9861759-0.0148192i Traj_1 Sim_8 TrajSim_1_8
#> 3 0.9796205+0.1083317i Traj_1 Sim_8 TrajSim_1_8
#> 4 0.9250728+0.1730236i Traj_1 Sim_8 TrajSim_1_8
#> 5 0.9169579+0.3211682i Traj_1 Sim_8 TrajSim_1_8
#> 6 0.9140166+0.2333596i Traj_1 Sim_8 TrajSim_1_8
#> 7 0.8938981+0.3342977i Traj_1 Sim_8 TrajSim_1_8
#> 8 0.9282047+0.2952637i Traj_1 Sim_8 TrajSim_1_8
#> 9 0.8356825+0.5237745i Traj_1 Sim_8 TrajSim_1_8
#>
#> [[8]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.09503 15.37545 0.02 0.02 38.09503+15.37545i
#> 3 37.14131 15.77045 0.04 0.04 37.14131+15.77045i
#> 4 36.24930 16.11698 0.06 0.06 36.24930+16.11698i
#> 5 35.30989 16.46748 0.08 0.08 35.30989+16.46748i
#> 6 34.33344 16.69026 0.10 0.10 34.33344+16.69026i
#> 7 33.28784 16.75925 0.12 0.12 33.28784+16.75925i
#> 8 32.04720 16.73924 0.14 0.14 32.04720+16.73924i
#> 9 31.03792 16.71108 0.16 0.16 31.03792+16.71108i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_8 TrajSim_2_8
#> 2 -1.0946744+0.4680998i Traj_2 Sim_8 TrajSim_2_8
#> 3 -0.9537212+0.3949997i Traj_2 Sim_8 TrajSim_2_8
#> 4 -0.8920115+0.3465258i Traj_2 Sim_8 TrajSim_2_8
#> 5 -0.9394161+0.3504998i Traj_2 Sim_8 TrajSim_2_8
#> 6 -0.9764448+0.2227821i Traj_2 Sim_8 TrajSim_2_8
#> 7 -1.0456004+0.0689862i Traj_2 Sim_8 TrajSim_2_8
#> 8 -1.2406375-0.0200025i Traj_2 Sim_8 TrajSim_2_8
#> 9 -1.0092868-0.0281612i Traj_2 Sim_8 TrajSim_2_8
#>
#> [[8]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.29146 14.46972 0.02 0.02 37.29146+14.46972i
#> 3 36.52025 13.50246 0.04 0.04 36.52025+13.50246i
#> 4 35.66502 12.46890 0.06 0.06 35.66502+12.46890i
#> 5 34.82303 11.47784 0.08 0.08 34.82303+11.47784i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_8 TrajSim_3_8
#> 2 -0.8129550-1.0817473i Traj_3 Sim_8 TrajSim_3_8
#> 3 -0.7712112-0.9672669i Traj_3 Sim_8 TrajSim_3_8
#> 4 -0.8552312-1.0335605i Traj_3 Sim_8 TrajSim_3_8
#> 5 -0.8419880-0.9910578i Traj_3 Sim_8 TrajSim_3_8
#>
#> [[8]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.79288 17.13532 0.02 0.02 35.79288+17.13532i
#> 3 35.63851 18.32309 0.04 0.04 35.63851+18.32309i
#> 4 35.36822 19.43950 0.06 0.06 35.36822+19.43950i
#> 5 34.93675 20.57830 0.08 0.08 34.93675+20.57830i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_4 Sim_8 TrajSim_4_8
#> 2 0.211995+1.122823i Traj_4 Sim_8 TrajSim_4_8
#> 3 -0.154372+1.187766i Traj_4 Sim_8 TrajSim_4_8
#> 4 -0.270291+1.116406i Traj_4 Sim_8 TrajSim_4_8
#> 5 -0.431467+1.138806i Traj_4 Sim_8 TrajSim_4_8
#>
#> [[8]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 31.14654 14.11628 0.02 0.02 31.14654+14.11628i
#> 3 30.96372 13.41392 0.04 0.04 30.96372+13.41392i
#> 4 30.62292 12.41116 0.06 0.06 30.62292+12.41116i
#> 5 30.06843 11.63793 0.08 0.08 30.06843+11.63793i
#> 6 29.60216 10.90280 0.10 0.10 29.60216+10.90280i
#> 7 29.05640 10.19736 0.12 0.12 29.05640+10.19736i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_8 TrajSim_5_8
#> 2 -0.0556641-0.8594578i Traj_5 Sim_8 TrajSim_5_8
#> 3 -0.1828192-0.7023628i Traj_5 Sim_8 TrajSim_5_8
#> 4 -0.3408060-1.0027605i Traj_5 Sim_8 TrajSim_5_8
#> 5 -0.5544920-0.7732209i Traj_5 Sim_8 TrajSim_5_8
#> 6 -0.4662638-0.7351368i Traj_5 Sim_8 TrajSim_5_8
#> 7 -0.5457580-0.7054397i Traj_5 Sim_8 TrajSim_5_8
#>
#> [[8]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 29.98214 15.85128 0.02 0.02 29.98214+15.85128i
#> 3 30.79516 16.71582 0.04 0.04 30.79516+16.71582i
#> 4 31.49688 17.75984 0.06 0.06 31.49688+17.75984i
#> 5 32.17132 18.78497 0.08 0.08 32.17132+18.78497i
#> 6 32.79326 19.83384 0.10 0.10 32.79326+19.83384i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_8 TrajSim_6_8
#> 2 1.0872842+0.7431937i Traj_6 Sim_8 TrajSim_6_8
#> 3 0.8130229+0.8645322i Traj_6 Sim_8 TrajSim_6_8
#> 4 0.7017144+1.0440290i Traj_6 Sim_8 TrajSim_6_8
#> 5 0.6744473+1.0251282i Traj_6 Sim_8 TrajSim_6_8
#> 6 0.6219371+1.0488645i Traj_6 Sim_8 TrajSim_6_8
#>
#> [[8]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 29.57486 15.68066 0.02 0.02 29.57486+15.68066i 0.377801-1.410519i
#> 3 29.98220 14.44796 0.04 0.04 29.98220+14.44796i 0.407343-1.232694i
#> 4 30.48239 13.19105 0.06 0.06 30.48239+13.19105i 0.500182-1.256917i
#> 5 31.02168 11.90914 0.08 0.08 31.02168+11.90914i 0.539294-1.281906i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_8 TrajSim_7_8
#> 2 Traj_7 Sim_8 TrajSim_7_8
#> 3 Traj_7 Sim_8 TrajSim_7_8
#> 4 Traj_7 Sim_8 TrajSim_7_8
#> 5 Traj_7 Sim_8 TrajSim_7_8
#>
#> [[8]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+ 9.65294i
#> 2 14.24774 9.942692 0.02 0.02 14.24774+ 9.94269i
#> 3 14.04783 10.330338 0.04 0.04 14.04783+10.33034i
#> 4 13.83907 10.771072 0.06 0.06 13.83907+10.77107i
#> 5 13.66687 11.190885 0.08 0.08 13.66687+11.19088i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_8 TrajSim_8_8
#> 2 -0.3309374+0.2897501i Traj_8 Sim_8 TrajSim_8_8
#> 3 -0.1999095+0.3876462i Traj_8 Sim_8 TrajSim_8_8
#> 4 -0.2087573+0.4407342i Traj_8 Sim_8 TrajSim_8_8
#> 5 -0.1722054+0.4198126i Traj_8 Sim_8 TrajSim_8_8
#>
#> [[8]][[9]]
#> x y time displacementTime polar displacement
#> 1 17.24780 9.004412 0.00 0.00 17.24780+9.00441i 0.000000+0.000000i
#> 2 18.36176 8.575941 0.02 0.02 18.36176+8.57594i 1.113962-0.428471i
#> 3 19.54630 8.080216 0.04 0.04 19.54630+8.08022i 1.184541-0.495725i
#> 4 20.60353 7.611478 0.06 0.06 20.60353+7.61148i 1.057236-0.468738i
#> 5 21.69812 7.234007 0.08 0.08 21.69812+7.23401i 1.094583-0.377471i
#> Trajectory Simulation TrajSim
#> 1 Traj_9 Sim_8 TrajSim_9_8
#> 2 Traj_9 Sim_8 TrajSim_9_8
#> 3 Traj_9 Sim_8 TrajSim_9_8
#> 4 Traj_9 Sim_8 TrajSim_9_8
#> 5 Traj_9 Sim_8 TrajSim_9_8
#>
#> [[8]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+7.49779i
#> 2 16.83590 6.729626 0.02 0.02 16.83590+6.72963i
#> 3 17.42233 5.885140 0.04 0.04 17.42233+5.88514i
#> 4 18.17219 5.150816 0.06 0.06 18.17219+5.15082i
#> 5 18.89940 4.446560 0.08 0.08 18.89940+4.44656i
#> 6 19.68162 3.693197 0.10 0.10 19.68162+3.69320i
#> 7 20.38421 3.100706 0.12 0.12 20.38421+3.10071i
#> 8 21.22204 2.519893 0.14 0.14 21.22204+2.51989i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_8 TrajSim_10_8
#> 2 0.6248667-0.7681683i Traj_10 Sim_8 TrajSim_10_8
#> 3 0.5864294-0.8444867i Traj_10 Sim_8 TrajSim_10_8
#> 4 0.7498665-0.7343238i Traj_10 Sim_8 TrajSim_10_8
#> 5 0.7272090-0.7042559i Traj_10 Sim_8 TrajSim_10_8
#> 6 0.7822222-0.7533625i Traj_10 Sim_8 TrajSim_10_8
#> 7 0.7025833-0.5924911i Traj_10 Sim_8 TrajSim_10_8
#> 8 0.8378355-0.5808136i Traj_10 Sim_8 TrajSim_10_8
#>
#> [[8]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+8.06912i
#> 2 14.22942 7.319934 0.02 0.02 14.22942+7.31993i
#> 3 15.16481 6.743568 0.04 0.04 15.16481+6.74357i
#> 4 16.27709 6.200597 0.06 0.06 16.27709+6.20060i
#> 5 17.38323 5.710428 0.08 0.08 17.38323+5.71043i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_8 TrajSim_11_8
#> 2 0.9875119-0.7491846i Traj_11 Sim_8 TrajSim_11_8
#> 3 0.9353894-0.5763654i Traj_11 Sim_8 TrajSim_11_8
#> 4 1.1122773-0.5429713i Traj_11 Sim_8 TrajSim_11_8
#> 5 1.1061415-0.4901692i Traj_11 Sim_8 TrajSim_11_8
#>
#>
#> [[9]]
#> [[9]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.502942 0.00 0.00 40.67868+15.50294i
#> 2 41.24554 14.774714 0.02 0.02 41.24554+14.77471i
#> 3 41.85475 14.024155 0.04 0.04 41.85475+14.02415i
#> 4 42.50394 13.262429 0.06 0.06 42.50394+13.26243i
#> 5 43.29708 12.511835 0.08 0.08 43.29708+12.51183i
#> 6 44.01576 11.918251 0.10 0.10 44.01576+11.91825i
#> 7 44.84588 11.298343 0.12 0.12 44.84588+11.29834i
#> 8 45.52704 10.652856 0.14 0.14 45.52704+10.65286i
#> 9 46.19129 9.924422 0.16 0.16 46.19129+ 9.92442i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_9 TrajSim_1_9
#> 2 0.5668593-0.7282280i Traj_1 Sim_9 TrajSim_1_9
#> 3 0.6092131-0.7505595i Traj_1 Sim_9 TrajSim_1_9
#> 4 0.6491928-0.7617258i Traj_1 Sim_9 TrajSim_1_9
#> 5 0.7931366-0.7505941i Traj_1 Sim_9 TrajSim_1_9
#> 6 0.7186825-0.5935837i Traj_1 Sim_9 TrajSim_1_9
#> 7 0.8301157-0.6199075i Traj_1 Sim_9 TrajSim_1_9
#> 8 0.6811579-0.6454877i Traj_1 Sim_9 TrajSim_1_9
#> 9 0.6642534-0.7284334i Traj_1 Sim_9 TrajSim_1_9
#>
#> [[9]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.49204 15.71756 0.02 0.02 38.49204+15.71756i
#> 3 37.98834 16.70936 0.04 0.04 37.98834+16.70936i
#> 4 37.62418 17.68101 0.06 0.06 37.62418+17.68101i
#> 5 37.12886 18.63407 0.08 0.08 37.12886+18.63407i
#> 6 36.69641 19.41499 0.10 0.10 36.69641+19.41499i
#> 7 36.09206 20.26045 0.12 0.12 36.09206+20.26045i
#> 8 35.57146 21.18543 0.14 0.14 35.57146+21.18543i
#> 9 35.14364 22.03485 0.16 0.16 35.14364+22.03485i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_9 TrajSim_2_9
#> 2 -0.6976656+0.8102046i Traj_2 Sim_9 TrajSim_2_9
#> 3 -0.5037036+0.9918047i Traj_2 Sim_9 TrajSim_2_9
#> 4 -0.3641641+0.9716463i Traj_2 Sim_9 TrajSim_2_9
#> 5 -0.4953129+0.9530621i Traj_2 Sim_9 TrajSim_2_9
#> 6 -0.4324546+0.7809219i Traj_2 Sim_9 TrajSim_2_9
#> 7 -0.6043439+0.8454548i Traj_2 Sim_9 TrajSim_2_9
#> 8 -0.5206008+0.9249843i Traj_2 Sim_9 TrajSim_2_9
#> 9 -0.4278209+0.8494177i Traj_2 Sim_9 TrajSim_2_9
#>
#> [[9]][[3]]
#> x y time displacementTime polar displacement
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i 0.000000+0.000000i
#> 2 39.30480 15.70877 0.02 0.02 39.30480+15.70877i 1.200383+0.157299i
#> 3 40.49557 15.88206 0.04 0.04 40.49557+15.88206i 1.190769+0.173285i
#> 4 41.78026 16.08932 0.06 0.06 41.78026+16.08932i 1.284696+0.207268i
#> 5 42.98100 16.32552 0.08 0.08 42.98100+16.32552i 1.200737+0.236192i
#> Trajectory Simulation TrajSim
#> 1 Traj_3 Sim_9 TrajSim_3_9
#> 2 Traj_3 Sim_9 TrajSim_3_9
#> 3 Traj_3 Sim_9 TrajSim_3_9
#> 4 Traj_3 Sim_9 TrajSim_3_9
#> 5 Traj_3 Sim_9 TrajSim_3_9
#>
#> [[9]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.26571 16.99897 0.02 0.02 35.26571+16.99897i
#> 3 34.65334 18.02446 0.04 0.04 34.65334+18.02446i
#> 4 34.07331 19.05561 0.06 0.06 34.07331+19.05561i
#> 5 33.45810 19.92665 0.08 0.08 33.45810+19.92665i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_9 TrajSim_4_9
#> 2 -0.3151710+0.9864714i Traj_4 Sim_9 TrajSim_4_9
#> 3 -0.6123768+1.0254862i Traj_4 Sim_9 TrajSim_4_9
#> 4 -0.5800219+1.0311545i Traj_4 Sim_9 TrajSim_4_9
#> 5 -0.6152181+0.8710338i Traj_4 Sim_9 TrajSim_4_9
#>
#> [[9]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 31.68279 14.32536 0.02 0.02 31.68279+14.32536i
#> 3 32.03102 13.27667 0.04 0.04 32.03102+13.27667i
#> 4 32.05679 12.54890 0.06 0.06 32.05679+12.54890i
#> 5 31.96728 11.43931 0.08 0.08 31.96728+11.43931i
#> 6 31.77027 10.39867 0.10 0.10 31.77027+10.39867i
#> 7 31.48960 9.52411 0.12 0.12 31.48960+ 9.52411i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_9 TrajSim_5_9
#> 2 0.4805805-0.6503789i Traj_5 Sim_9 TrajSim_5_9
#> 3 0.3482321-1.0486913i Traj_5 Sim_9 TrajSim_5_9
#> 4 0.0257723-0.7277691i Traj_5 Sim_9 TrajSim_5_9
#> 5 -0.0895117-1.1095899i Traj_5 Sim_9 TrajSim_5_9
#> 6 -0.1970134-1.0406329i Traj_5 Sim_9 TrajSim_5_9
#> 7 -0.2806639-0.8745643i Traj_5 Sim_9 TrajSim_5_9
#>
#> [[9]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 27.71788 14.41899 0.02 0.02 27.71788+14.41899i
#> 3 26.64261 13.87951 0.04 0.04 26.64261+13.87951i
#> 4 25.41802 13.47288 0.06 0.06 25.41802+13.47288i
#> 5 24.24714 13.13250 0.08 0.08 24.24714+13.13250i
#> 6 23.11751 12.71713 0.10 0.10 23.11751+12.71713i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_6 Sim_9 TrajSim_6_9
#> 2 -1.176974-0.689095i Traj_6 Sim_9 TrajSim_6_9
#> 3 -1.075267-0.539486i Traj_6 Sim_9 TrajSim_6_9
#> 4 -1.224598-0.406631i Traj_6 Sim_9 TrajSim_6_9
#> 5 -1.170872-0.340380i Traj_6 Sim_9 TrajSim_6_9
#> 6 -1.129636-0.415368i Traj_6 Sim_9 TrajSim_6_9
#>
#> [[9]][[7]]
#> x y time displacementTime polar
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i
#> 2 28.97451 15.70883 0.02 0.02 28.97451+15.70883i
#> 3 28.86186 14.17816 0.04 0.04 28.86186+14.17816i
#> 4 28.70131 12.50903 0.06 0.06 28.70131+12.50903i
#> 5 28.38540 11.05944 0.08 0.08 28.38540+11.05944i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_7 Sim_9 TrajSim_7_9
#> 2 -0.222553-1.382347i Traj_7 Sim_9 TrajSim_7_9
#> 3 -0.112647-1.530674i Traj_7 Sim_9 TrajSim_7_9
#> 4 -0.160556-1.669125i Traj_7 Sim_9 TrajSim_7_9
#> 5 -0.315901-1.449592i Traj_7 Sim_9 TrajSim_7_9
#>
#> [[9]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.46972 9.244908 0.02 0.02 14.46972+9.24491i
#> 3 14.32411 8.808347 0.04 0.04 14.32411+8.80835i
#> 4 14.25922 8.359392 0.06 0.06 14.25922+8.35939i
#> 5 14.30381 7.963557 0.08 0.08 14.30381+7.96356i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_9 TrajSim_8_9
#> 2 -0.1089547-0.4080339i Traj_8 Sim_9 TrajSim_8_9
#> 3 -0.1456162-0.4365613i Traj_8 Sim_9 TrajSim_8_9
#> 4 -0.0648845-0.4489542i Traj_8 Sim_9 TrajSim_8_9
#> 5 0.0445887-0.3958357i Traj_8 Sim_9 TrajSim_8_9
#>
#> [[9]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.26143 9.588338 0.02 0.02 16.26143+ 9.58834i
#> 3 15.24894 10.281609 0.04 0.04 15.24894+10.28161i
#> 4 14.34161 10.834371 0.06 0.06 14.34161+10.83437i
#> 5 13.30749 11.582541 0.08 0.08 13.30749+11.58254i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_9 TrajSim_9_9
#> 2 -0.9863695+0.5839255i Traj_9 Sim_9 TrajSim_9_9
#> 3 -1.0124880+0.6932715i Traj_9 Sim_9 TrajSim_9_9
#> 4 -0.9073263+0.5527615i Traj_9 Sim_9 TrajSim_9_9
#> 5 -1.0341242+0.7481701i Traj_9 Sim_9 TrajSim_9_9
#>
#> [[9]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 16.62983 8.435208 0.02 0.02 16.62983+ 8.43521i
#> 3 16.96713 9.284148 0.04 0.04 16.96713+ 9.28415i
#> 4 17.35068 10.087925 0.06 0.06 17.35068+10.08793i
#> 5 17.86786 10.914707 0.08 0.08 17.86786+10.91471i
#> 6 18.36585 11.737697 0.10 0.10 18.36585+11.73770i
#> 7 18.93222 12.706705 0.12 0.12 18.93222+12.70670i
#> 8 19.35206 13.532023 0.14 0.14 19.35206+13.53202i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_9 TrajSim_10_9
#> 2 0.4188012+0.9374131i Traj_10 Sim_9 TrajSim_10_9
#> 3 0.3373031+0.8489407i Traj_10 Sim_9 TrajSim_10_9
#> 4 0.3835402+0.8037766i Traj_10 Sim_9 TrajSim_10_9
#> 5 0.5171875+0.8267815i Traj_10 Sim_9 TrajSim_10_9
#> 6 0.4979834+0.8229908i Traj_10 Sim_9 TrajSim_10_9
#> 7 0.5663736+0.9690074i Traj_10 Sim_9 TrajSim_10_9
#> 8 0.4198429+0.8253185i Traj_10 Sim_9 TrajSim_10_9
#>
#> [[9]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 13.25725 9.250783 0.02 0.02 13.25725+ 9.25078i
#> 3 13.33322 10.400484 0.04 0.04 13.33322+10.40048i
#> 4 13.48413 11.610061 0.06 0.06 13.48413+11.61006i
#> 5 13.70599 12.765966 0.08 0.08 13.70599+12.76597i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_9 TrajSim_11_9
#> 2 0.015335+1.181665i Traj_11 Sim_9 TrajSim_11_9
#> 3 0.075975+1.149701i Traj_11 Sim_9 TrajSim_11_9
#> 4 0.150912+1.209578i Traj_11 Sim_9 TrajSim_11_9
#> 5 0.221857+1.155905i Traj_11 Sim_9 TrajSim_11_9
#>
#>
#> [[10]]
#> [[10]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 41.72669 15.45288 0.02 0.02 41.72669+15.45288i
#> 3 42.81547 15.51142 0.04 0.04 42.81547+15.51142i
#> 4 43.82468 15.52011 0.06 0.06 43.82468+15.52011i
#> 5 44.80335 15.70887 0.08 0.08 44.80335+15.70887i
#> 6 45.75339 15.93049 0.10 0.10 45.75339+15.93049i
#> 7 46.69692 16.10584 0.12 0.12 46.69692+16.10584i
#> 8 47.50257 16.40175 0.14 0.14 47.50257+16.40175i
#> 9 48.30537 16.72956 0.16 0.16 48.30537+16.72956i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_10 TrajSim_1_10
#> 2 1.0480068-0.0500621i Traj_1 Sim_10 TrajSim_1_10
#> 3 1.0887800+0.0585365i Traj_1 Sim_10 TrajSim_1_10
#> 4 1.0092131+0.0086902i Traj_1 Sim_10 TrajSim_1_10
#> 5 0.9786709+0.1887600i Traj_1 Sim_10 TrajSim_1_10
#> 6 0.9500450+0.2216198i Traj_1 Sim_10 TrajSim_1_10
#> 7 0.9435209+0.1753510i Traj_1 Sim_10 TrajSim_1_10
#> 8 0.8056505+0.2959109i Traj_1 Sim_10 TrajSim_1_10
#> 9 0.8028061+0.3278157i Traj_1 Sim_10 TrajSim_1_10
#>
#> [[10]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.86963 16.03848 0.02 0.02 38.86963+16.03848i
#> 3 38.54928 17.08925 0.04 0.04 38.54928+17.08925i
#> 4 38.33683 17.98553 0.06 0.06 38.33683+17.98553i
#> 5 38.23788 18.96843 0.08 0.08 38.23788+18.96843i
#> 6 38.00768 20.09962 0.10 0.10 38.00768+20.09962i
#> 7 37.76536 20.96198 0.12 0.12 37.76536+20.96198i
#> 8 37.52452 21.93893 0.14 0.14 37.52452+21.93893i
#> 9 37.30254 22.87102 0.16 0.16 37.30254+22.87102i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_10 TrajSim_2_10
#> 2 -0.3200808+1.1311305i Traj_2 Sim_10 TrajSim_2_10
#> 3 -0.3203476+1.0507700i Traj_2 Sim_10 TrajSim_2_10
#> 4 -0.2124474+0.8962733i Traj_2 Sim_10 TrajSim_2_10
#> 5 -0.0989518+0.9828978i Traj_2 Sim_10 TrajSim_2_10
#> 6 -0.2302001+1.1311963i Traj_2 Sim_10 TrajSim_2_10
#> 7 -0.2423175+0.8623570i Traj_2 Sim_10 TrajSim_2_10
#> 8 -0.2408483+0.9769550i Traj_2 Sim_10 TrajSim_2_10
#> 9 -0.2219738+0.9320829i Traj_2 Sim_10 TrajSim_2_10
#>
#> [[10]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.15316 14.67638 0.02 0.02 37.15316+14.67638i
#> 3 36.15312 13.74118 0.04 0.04 36.15312+13.74118i
#> 4 35.22058 12.74143 0.06 0.06 35.22058+12.74143i
#> 5 34.36337 11.79227 0.08 0.08 34.36337+11.79227i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_10 TrajSim_3_10
#> 2 -0.9512499-0.8750959i Traj_3 Sim_10 TrajSim_3_10
#> 3 -1.0000444-0.9351968i Traj_3 Sim_10 TrajSim_3_10
#> 4 -0.9325439-0.9997493i Traj_3 Sim_10 TrajSim_3_10
#> 5 -0.8572064-0.9491550i Traj_3 Sim_10 TrajSim_3_10
#>
#> [[10]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.50726 14.82346 0.02 0.02 35.50726+14.82346i
#> 3 35.37383 13.61164 0.04 0.04 35.37383+13.61164i
#> 4 35.19824 12.48669 0.06 0.06 35.19824+12.48669i
#> 5 34.95825 11.40669 0.08 0.08 34.95825+11.40669i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_4 Sim_10 TrajSim_4_10
#> 2 -0.073624-1.189040i Traj_4 Sim_10 TrajSim_4_10
#> 3 -0.133430-1.211818i Traj_4 Sim_10 TrajSim_4_10
#> 4 -0.175591-1.124956i Traj_4 Sim_10 TrajSim_4_10
#> 5 -0.239989-1.080000i Traj_4 Sim_10 TrajSim_4_10
#>
#> [[10]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 31.45677 15.90715 0.02 0.02 31.45677+15.90715i
#> 3 31.71683 16.94594 0.04 0.04 31.71683+16.94594i
#> 4 32.00945 17.78174 0.06 0.06 32.00945+17.78174i
#> 5 32.19202 18.70300 0.08 0.08 32.19202+18.70300i
#> 6 32.41377 19.49104 0.10 0.10 32.41377+19.49104i
#> 7 32.62594 20.21690 0.12 0.12 32.62594+20.21690i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_10 TrajSim_5_10
#> 2 0.2545644+0.9314100i Traj_5 Sim_10 TrajSim_5_10
#> 3 0.2600601+1.0387958i Traj_5 Sim_10 TrajSim_5_10
#> 4 0.2926199+0.8358011i Traj_5 Sim_10 TrajSim_5_10
#> 5 0.1825720+0.9212537i Traj_5 Sim_10 TrajSim_5_10
#> 6 0.2217419+0.7880460i Traj_5 Sim_10 TrajSim_5_10
#> 7 0.2121759+0.7258563i Traj_5 Sim_10 TrajSim_5_10
#>
#> [[10]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.108089 0.00 0.00 28.89485+15.10809i
#> 2 28.37554 13.915647 0.02 0.02 28.37554+13.91565i
#> 3 28.05565 12.712910 0.04 0.04 28.05565+12.71291i
#> 4 27.71008 11.620070 0.06 0.06 27.71008+11.62007i
#> 5 27.33408 10.402550 0.08 0.08 27.33408+10.40255i
#> 6 26.98362 9.284435 0.10 0.10 26.98362+ 9.28444i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_6 Sim_10 TrajSim_6_10
#> 2 -0.519315-1.192443i Traj_6 Sim_10 TrajSim_6_10
#> 3 -0.319888-1.202737i Traj_6 Sim_10 TrajSim_6_10
#> 4 -0.345573-1.092840i Traj_6 Sim_10 TrajSim_6_10
#> 5 -0.376001-1.217520i Traj_6 Sim_10 TrajSim_6_10
#> 6 -0.350459-1.118115i Traj_6 Sim_10 TrajSim_6_10
#>
#> [[10]][[7]]
#> x y time displacementTime polar
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i
#> 2 29.64654 16.02113 0.02 0.02 29.64654+16.02113i
#> 3 30.07709 15.12775 0.04 0.04 30.07709+15.12775i
#> 4 30.70932 14.01016 0.06 0.06 30.70932+14.01016i
#> 5 31.42271 12.80338 0.08 0.08 31.42271+12.80338i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.000000i Traj_7 Sim_10 TrajSim_7_10
#> 2 0.4494774-1.070045i Traj_7 Sim_10 TrajSim_7_10
#> 3 0.4305566-0.893387i Traj_7 Sim_10 TrajSim_7_10
#> 4 0.6322290-1.117588i Traj_7 Sim_10 TrajSim_7_10
#> 5 0.7133854-1.206783i Traj_7 Sim_10 TrajSim_7_10
#>
#> [[10]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.54800 9.203248 0.02 0.02 14.54800+9.20325i
#> 3 14.65255 8.758446 0.04 0.04 14.65255+8.75845i
#> 4 14.65296 8.295915 0.06 0.06 14.65296+8.29592i
#> 5 14.61732 7.831161 0.08 0.08 14.61732+7.83116i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_10 TrajSim_8_10
#> 2 -0.0306774-0.4496934i Traj_8 Sim_10 TrajSim_8_10
#> 3 0.1045488-0.4448023i Traj_8 Sim_10 TrajSim_8_10
#> 4 0.0004106-0.4625309i Traj_8 Sim_10 TrajSim_8_10
#> 5 -0.0356427-0.4647539i Traj_8 Sim_10 TrajSim_8_10
#>
#> [[10]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 17.33857 10.142288 0.02 0.02 17.33857+10.14229i
#> 3 17.50306 11.198295 0.04 0.04 17.50306+11.19829i
#> 4 17.60868 12.390504 0.06 0.06 17.60868+12.39050i
#> 5 17.74982 13.554641 0.08 0.08 17.74982+13.55464i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_9 Sim_10 TrajSim_9_10
#> 2 0.090778+1.137876i Traj_9 Sim_10 TrajSim_9_10
#> 3 0.164490+1.056006i Traj_9 Sim_10 TrajSim_9_10
#> 4 0.105613+1.192210i Traj_9 Sim_10 TrajSim_9_10
#> 5 0.141145+1.164136i Traj_9 Sim_10 TrajSim_9_10
#>
#> [[10]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+7.49779i
#> 2 17.15364 7.106861 0.02 0.02 17.15364+7.10686i
#> 3 18.14740 6.722209 0.04 0.04 18.14740+6.72221i
#> 4 18.99533 6.296764 0.06 0.06 18.99533+6.29676i
#> 5 19.96460 5.870899 0.08 0.08 19.96460+5.87090i
#> 6 20.88448 5.411264 0.10 0.10 20.88448+5.41126i
#> 7 21.85989 5.056346 0.12 0.12 21.85989+5.05635i
#> 8 22.93186 4.762962 0.14 0.14 22.93186+4.76296i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_10 TrajSim_10_10
#> 2 0.9426098-0.3909333i Traj_10 Sim_10 TrajSim_10_10
#> 3 0.9937593-0.3846524i Traj_10 Sim_10 TrajSim_10_10
#> 4 0.8479265-0.4254450i Traj_10 Sim_10 TrajSim_10_10
#> 5 0.9692759-0.4258647i Traj_10 Sim_10 TrajSim_10_10
#> 6 0.9198769-0.4596348i Traj_10 Sim_10 TrajSim_10_10
#> 7 0.9754079-0.3549183i Traj_10 Sim_10 TrajSim_10_10
#> 8 1.0719755-0.2933845i Traj_10 Sim_10 TrajSim_10_10
#>
#> [[10]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+8.06912i
#> 2 13.07192 7.076330 0.02 0.02 13.07192+7.07633i
#> 3 12.80546 5.890699 0.04 0.04 12.80546+5.89070i
#> 4 12.51046 4.676749 0.06 0.06 12.51046+4.67675i
#> 5 12.17715 3.552851 0.08 0.08 12.17715+3.55285i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_10 TrajSim_11_10
#> 2 -0.1699906-0.9927886i Traj_11 Sim_10 TrajSim_11_10
#> 3 -0.2664639-1.1856306i Traj_11 Sim_10 TrajSim_11_10
#> 4 -0.2949987-1.2139496i Traj_11 Sim_10 TrajSim_11_10
#> 5 -0.3333115-1.1238988i Traj_11 Sim_10 TrajSim_11_10
sim_directed_mount <- simulate_track(sbMountTom, nsim = 100, model = "Directed")
print(sim_directed_mount[1:10])
#> [[1]]
#> [[1]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.86502 16.08769 0.02 0.02 39.86502+16.08769i
#> 3 39.22390 16.79278 0.04 0.04 39.22390+16.79278i
#> 4 38.45825 17.49364 0.06 0.06 38.45825+17.49364i
#> 5 37.57484 18.15220 0.08 0.08 37.57484+18.15220i
#> 6 36.81227 18.88843 0.10 0.10 36.81227+18.88843i
#> 7 36.17219 19.58932 0.12 0.12 36.17219+19.58932i
#> 8 35.58668 20.39716 0.14 0.14 35.58668+20.39716i
#> 9 34.96132 21.03427 0.16 0.16 34.96132+21.03427i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_1 TrajSim_1_1
#> 2 -0.8136548+0.5847524i Traj_1 Sim_1 TrajSim_1_1
#> 3 -0.6411271+0.7050898i Traj_1 Sim_1 TrajSim_1_1
#> 4 -0.7656481+0.7008597i Traj_1 Sim_1 TrajSim_1_1
#> 5 -0.8834125+0.6585599i Traj_1 Sim_1 TrajSim_1_1
#> 6 -0.7625639+0.7362260i Traj_1 Sim_1 TrajSim_1_1
#> 7 -0.6400828+0.7008904i Traj_1 Sim_1 TrajSim_1_1
#> 8 -0.5855076+0.8078378i Traj_1 Sim_1 TrajSim_1_1
#> 9 -0.6253657+0.6371143i Traj_1 Sim_1 TrajSim_1_1
#>
#> [[1]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.56656 15.85819 0.02 0.02 38.56656+15.85819i
#> 3 37.86519 16.85583 0.04 0.04 37.86519+16.85583i
#> 4 37.18688 17.62611 0.06 0.06 37.18688+17.62611i
#> 5 36.36226 18.53454 0.08 0.08 36.36226+18.53454i
#> 6 35.56943 19.26355 0.10 0.10 35.56943+19.26355i
#> 7 34.92418 20.04141 0.12 0.12 34.92418+20.04141i
#> 8 34.38390 20.92371 0.14 0.14 34.38390+20.92371i
#> 9 33.74607 21.62125 0.16 0.16 33.74607+21.62125i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_1 TrajSim_2_1
#> 2 -0.6231468+0.9508352i Traj_2 Sim_1 TrajSim_2_1
#> 3 -0.7013742+0.9976386i Traj_2 Sim_1 TrajSim_2_1
#> 4 -0.6783110+0.7702839i Traj_2 Sim_1 TrajSim_2_1
#> 5 -0.8246154+0.9084284i Traj_2 Sim_1 TrajSim_2_1
#> 6 -0.7928307+0.7290078i Traj_2 Sim_1 TrajSim_2_1
#> 7 -0.6452521+0.7778642i Traj_2 Sim_1 TrajSim_2_1
#> 8 -0.5402741+0.8822987i Traj_2 Sim_1 TrajSim_2_1
#> 9 -0.6378357+0.6975343i Traj_2 Sim_1 TrajSim_2_1
#>
#> [[1]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.17938 16.51684 0.02 0.02 37.17938+16.51684i
#> 3 36.29977 17.45620 0.04 0.04 36.29977+17.45620i
#> 4 35.40030 18.39743 0.06 0.06 35.40030+18.39743i
#> 5 34.38284 19.39100 0.08 0.08 34.38284+19.39100i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_1 TrajSim_3_1
#> 2 -0.9250298+0.9653726i Traj_3 Sim_1 TrajSim_3_1
#> 3 -0.8796123+0.9393531i Traj_3 Sim_1 TrajSim_3_1
#> 4 -0.8994767+0.9412356i Traj_3 Sim_1 TrajSim_3_1
#> 5 -1.0174567+0.9935661i Traj_3 Sim_1 TrajSim_3_1
#>
#> [[1]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.89661 16.91230 0.02 0.02 34.89661+16.91230i
#> 3 34.36352 17.84219 0.04 0.04 34.36352+17.84219i
#> 4 33.68273 18.72410 0.06 0.06 33.68273+18.72410i
#> 5 33.06304 19.70707 0.08 0.08 33.06304+19.70707i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_1 TrajSim_4_1
#> 2 -0.6842776+0.8997949i Traj_4 Sim_1 TrajSim_4_1
#> 3 -0.5330841+0.9298938i Traj_4 Sim_1 TrajSim_4_1
#> 4 -0.6807921+0.8819112i Traj_4 Sim_1 TrajSim_4_1
#> 5 -0.6196883+0.9829672i Traj_4 Sim_1 TrajSim_4_1
#>
#> [[1]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.88097 15.98691 0.02 0.02 30.88097+15.98691i
#> 3 30.24199 16.76709 0.04 0.04 30.24199+16.76709i
#> 4 29.87608 17.45889 0.06 0.06 29.87608+17.45889i
#> 5 29.71179 18.11217 0.08 0.08 29.71179+18.11217i
#> 6 29.44321 18.76637 0.10 0.10 29.44321+18.76637i
#> 7 28.78701 19.58843 0.12 0.12 28.78701+19.58843i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_1 TrajSim_5_1
#> 2 -0.3212393+1.0111780i Traj_5 Sim_1 TrajSim_5_1
#> 3 -0.6389781+0.7801756i Traj_5 Sim_1 TrajSim_5_1
#> 4 -0.3659140+0.6917994i Traj_5 Sim_1 TrajSim_5_1
#> 5 -0.1642880+0.6532836i Traj_5 Sim_1 TrajSim_5_1
#> 6 -0.2685783+0.6541946i Traj_5 Sim_1 TrajSim_5_1
#> 7 -0.6562051+0.8220602i Traj_5 Sim_1 TrajSim_5_1
#>
#> [[1]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.25490 16.20948 0.02 0.02 28.25490+16.20948i
#> 3 27.68842 17.12430 0.04 0.04 27.68842+17.12430i
#> 4 27.08161 18.23017 0.06 0.06 27.08161+18.23017i
#> 5 26.44339 19.30386 0.08 0.08 26.44339+19.30386i
#> 6 25.90640 20.38259 0.10 0.10 25.90640+20.38259i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_1 TrajSim_6_1
#> 2 -0.6399523+1.1013865i Traj_6 Sim_1 TrajSim_6_1
#> 3 -0.5664784+0.9148228i Traj_6 Sim_1 TrajSim_6_1
#> 4 -0.6068118+1.1058713i Traj_6 Sim_1 TrajSim_6_1
#> 5 -0.6382200+1.0736855i Traj_6 Sim_1 TrajSim_6_1
#> 6 -0.5369929+1.0787318i Traj_6 Sim_1 TrajSim_6_1
#>
#> [[1]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.34514 16.55598 0.02 0.02 30.34514+16.55598i 1.148078-0.535195i
#> 3 31.94193 16.12973 0.04 0.04 31.94193+16.12973i 1.596794-0.426248i
#> 4 33.15151 15.68537 0.06 0.06 33.15151+15.68537i 1.209581-0.444365i
#> 5 34.26274 15.23107 0.08 0.08 34.26274+15.23107i 1.111224-0.454296i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_1 TrajSim_7_1
#> 2 Traj_7 Sim_1 TrajSim_7_1
#> 3 Traj_7 Sim_1 TrajSim_7_1
#> 4 Traj_7 Sim_1 TrajSim_7_1
#> 5 Traj_7 Sim_1 TrajSim_7_1
#>
#> [[1]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.27716 9.330526 0.02 0.02 14.27716+9.33053i
#> 3 13.87619 9.118824 0.04 0.04 13.87619+9.11882i
#> 4 13.64058 8.747989 0.06 0.06 13.64058+8.74799i
#> 5 13.28686 8.502036 0.08 0.08 13.28686+8.50204i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_1 TrajSim_8_1
#> 2 -0.3015216-0.3224159i Traj_8 Sim_1 TrajSim_8_1
#> 3 -0.4009632-0.2117021i Traj_8 Sim_1 TrajSim_8_1
#> 4 -0.2356107-0.3708347i Traj_8 Sim_1 TrajSim_8_1
#> 5 -0.3537248-0.2459536i Traj_8 Sim_1 TrajSim_8_1
#>
#> [[1]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.73232 10.024459 0.02 0.02 16.73232+10.02446i
#> 3 16.17346 10.927951 0.04 0.04 16.17346+10.92795i
#> 4 15.53484 11.842524 0.06 0.06 15.53484+11.84252i
#> 5 15.01839 12.931102 0.08 0.08 15.01839+12.93110i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_1 TrajSim_9_1
#> 2 -0.5154703+1.0200462i Traj_9 Sim_1 TrajSim_9_1
#> 3 -0.5588675+0.9034920i Traj_9 Sim_1 TrajSim_9_1
#> 4 -0.6386173+0.9145734i Traj_9 Sim_1 TrajSim_9_1
#> 5 -0.5164491+1.0885780i Traj_9 Sim_1 TrajSim_9_1
#>
#> [[1]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.71599 8.377025 0.02 0.02 15.71599+ 8.37703i
#> 3 15.09090 9.044407 0.04 0.04 15.09090+ 9.04441i
#> 4 14.47510 9.787079 0.06 0.06 14.47510+ 9.78708i
#> 5 13.83155 10.621032 0.08 0.08 13.83155+10.62103i
#> 6 13.14212 11.300205 0.10 0.10 13.14212+11.30021i
#> 7 12.59374 12.080360 0.12 0.12 12.59374+12.08036i
#> 8 11.89355 12.852497 0.14 0.14 11.89355+12.85250i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_1 TrajSim_10_1
#> 2 -0.4950395+0.8792306i Traj_10 Sim_1 TrajSim_10_1
#> 3 -0.6250891+0.6673818i Traj_10 Sim_1 TrajSim_10_1
#> 4 -0.6158033+0.7426716i Traj_10 Sim_1 TrajSim_10_1
#> 5 -0.6435502+0.8339537i Traj_10 Sim_1 TrajSim_10_1
#> 6 -0.6894330+0.6791731i Traj_10 Sim_1 TrajSim_10_1
#> 7 -0.5483775+0.7801542i Traj_10 Sim_1 TrajSim_10_1
#> 8 -0.7001887+0.7721378i Traj_10 Sim_1 TrajSim_10_1
#>
#> [[1]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.86473 9.107765 0.02 0.02 12.86473+ 9.10777i
#> 3 12.48814 10.175755 0.04 0.04 12.48814+10.17576i
#> 4 12.08014 11.375913 0.06 0.06 12.08014+11.37591i
#> 5 11.65910 12.457572 0.08 0.08 11.65910+12.45757i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_1 TrajSim_11_1
#> 2 -0.377182+1.038647i Traj_11 Sim_1 TrajSim_11_1
#> 3 -0.376589+1.067990i Traj_11 Sim_1 TrajSim_11_1
#> 4 -0.408005+1.200158i Traj_11 Sim_1 TrajSim_11_1
#> 5 -0.421033+1.081659i Traj_11 Sim_1 TrajSim_11_1
#>
#>
#> [[2]]
#> [[2]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.00282 16.23430 0.02 0.02 40.00282+16.23430i
#> 3 39.18997 16.81776 0.04 0.04 39.18997+16.81776i
#> 4 38.37188 17.39355 0.06 0.06 38.37188+17.39355i
#> 5 37.65185 17.97949 0.08 0.08 37.65185+17.97949i
#> 6 36.95591 18.62251 0.10 0.10 36.95591+18.62251i
#> 7 36.27238 19.33849 0.12 0.12 36.27238+19.33849i
#> 8 35.52617 20.01848 0.14 0.14 35.52617+20.01848i
#> 9 34.67164 20.71828 0.16 0.16 34.67164+20.71828i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_2 TrajSim_1_2
#> 2 -0.6758582+0.7313612i Traj_1 Sim_2 TrajSim_1_2
#> 3 -0.8128519+0.5834546i Traj_1 Sim_2 TrajSim_1_2
#> 4 -0.8180842+0.5757900i Traj_1 Sim_2 TrajSim_1_2
#> 5 -0.7200335+0.5859462i Traj_1 Sim_2 TrajSim_1_2
#> 6 -0.6959414+0.6430138i Traj_1 Sim_2 TrajSim_1_2
#> 7 -0.6835305+0.7159794i Traj_1 Sim_2 TrajSim_1_2
#> 8 -0.7462070+0.6799952i Traj_1 Sim_2 TrajSim_1_2
#> 9 -0.8545311+0.6998017i Traj_1 Sim_2 TrajSim_1_2
#>
#> [[2]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.42511 15.69982 0.02 0.02 38.42511+15.69982i
#> 3 37.77801 16.45461 0.04 0.04 37.77801+16.45461i
#> 4 37.27162 17.35499 0.06 0.06 37.27162+17.35499i
#> 5 36.68821 18.24337 0.08 0.08 36.68821+18.24337i
#> 6 35.95579 19.22341 0.10 0.10 35.95579+19.22341i
#> 7 35.25737 20.22058 0.12 0.12 35.25737+20.22058i
#> 8 34.69209 21.23789 0.14 0.14 34.69209+21.23789i
#> 9 34.00810 22.00210 0.16 0.16 34.00810+22.00210i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_2 TrajSim_2_2
#> 2 -0.7645968+0.7924680i Traj_2 Sim_2 TrajSim_2_2
#> 3 -0.6471024+0.7547887i Traj_2 Sim_2 TrajSim_2_2
#> 4 -0.5063870+0.9003830i Traj_2 Sim_2 TrajSim_2_2
#> 5 -0.5834153+0.8883768i Traj_2 Sim_2 TrajSim_2_2
#> 6 -0.7324140+0.9800406i Traj_2 Sim_2 TrajSim_2_2
#> 7 -0.6984204+0.9971677i Traj_2 Sim_2 TrajSim_2_2
#> 8 -0.5652851+1.0173144i Traj_2 Sim_2 TrajSim_2_2
#> 9 -0.6839908+0.7642111i Traj_2 Sim_2 TrajSim_2_2
#>
#> [[2]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.27787 16.56031 0.02 0.02 37.27787+16.56031i
#> 3 36.33362 17.65161 0.04 0.04 36.33362+17.65161i
#> 4 35.51995 18.57787 0.06 0.06 35.51995+18.57787i
#> 5 34.81647 19.38834 0.08 0.08 34.81647+19.38834i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_2 TrajSim_3_2
#> 2 -0.8265416+1.0088369i Traj_3 Sim_2 TrajSim_3_2
#> 3 -0.9442477+1.0913019i Traj_3 Sim_2 TrajSim_3_2
#> 4 -0.8136741+0.9262612i Traj_3 Sim_2 TrajSim_3_2
#> 5 -0.7034804+0.8104683i Traj_3 Sim_2 TrajSim_3_2
#>
#> [[2]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.09511 17.03564 0.02 0.02 35.09511+17.03564i
#> 3 34.57855 17.83435 0.04 0.04 34.57855+17.83435i
#> 4 34.01116 18.70013 0.06 0.06 34.01116+18.70013i
#> 5 33.34964 19.46431 0.08 0.08 33.34964+19.46431i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_2 TrajSim_4_2
#> 2 -0.4857787+1.0231429i Traj_4 Sim_2 TrajSim_4_2
#> 3 -0.5165554+0.7987039i Traj_4 Sim_2 TrajSim_4_2
#> 4 -0.5673889+0.8657791i Traj_4 Sim_2 TrajSim_4_2
#> 5 -0.6615169+0.7641880i Traj_4 Sim_2 TrajSim_4_2
#>
#> [[2]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.56873 15.52695 0.02 0.02 30.56873+15.52695i
#> 3 30.20763 16.15868 0.04 0.04 30.20763+16.15868i
#> 4 30.03223 16.98231 0.06 0.06 30.03223+16.98231i
#> 5 29.81591 17.61216 0.08 0.08 29.81591+17.61216i
#> 6 29.50713 18.46348 0.10 0.10 29.50713+18.46348i
#> 7 29.04809 19.21664 0.12 0.12 29.04809+19.21664i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_2 TrajSim_5_2
#> 2 -0.6334811+0.5512127i Traj_5 Sim_2 TrajSim_5_2
#> 3 -0.3610923+0.6317314i Traj_5 Sim_2 TrajSim_5_2
#> 4 -0.1754016+0.8236324i Traj_5 Sim_2 TrajSim_5_2
#> 5 -0.2163256+0.6298513i Traj_5 Sim_2 TrajSim_5_2
#> 6 -0.3087786+0.8513160i Traj_5 Sim_2 TrajSim_5_2
#> 7 -0.4590340+0.7531565i Traj_5 Sim_2 TrajSim_5_2
#>
#> [[2]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.33465 16.04262 0.02 0.02 28.33465+16.04262i
#> 3 27.75853 17.09417 0.04 0.04 27.75853+17.09417i
#> 4 27.10070 18.08104 0.06 0.06 27.10070+18.08104i
#> 5 26.49732 19.06322 0.08 0.08 26.49732+19.06322i
#> 6 25.93812 20.20166 0.10 0.10 25.93812+20.20166i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_2 TrajSim_6_2
#> 2 -0.5602053+0.9345259i Traj_6 Sim_2 TrajSim_6_2
#> 3 -0.5761170+1.0515519i Traj_6 Sim_2 TrajSim_6_2
#> 4 -0.6578282+0.9868761i Traj_6 Sim_2 TrajSim_6_2
#> 5 -0.6033828+0.9821751i Traj_6 Sim_2 TrajSim_6_2
#> 6 -0.5591972+1.1384395i Traj_6 Sim_2 TrajSim_6_2
#>
#> [[2]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.29506 16.72013 0.02 0.02 30.29506+16.72013i 1.097996-0.371051i
#> 3 31.52287 16.31073 0.04 0.04 31.52287+16.31073i 1.227817-0.409398i
#> 4 32.72447 15.70914 0.06 0.06 32.72447+15.70914i 1.201599-0.601589i
#> 5 33.90583 15.20760 0.08 0.08 33.90583+15.20760i 1.181356-0.501540i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_2 TrajSim_7_2
#> 2 Traj_7 Sim_2 TrajSim_7_2
#> 3 Traj_7 Sim_2 TrajSim_7_2
#> 4 Traj_7 Sim_2 TrajSim_7_2
#> 5 Traj_7 Sim_2 TrajSim_7_2
#>
#> [[2]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.30091 9.328220 0.02 0.02 14.30091+9.32822i
#> 3 14.03213 8.991057 0.04 0.04 14.03213+8.99106i
#> 4 13.77709 8.571454 0.06 0.06 13.77709+8.57145i
#> 5 13.56522 8.149749 0.08 0.08 13.56522+8.14975i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_2 TrajSim_8_2
#> 2 -0.2777692-0.3247221i Traj_8 Sim_2 TrajSim_8_2
#> 3 -0.2687765-0.3371623i Traj_8 Sim_2 TrajSim_8_2
#> 4 -0.2550427-0.4196037i Traj_8 Sim_2 TrajSim_8_2
#> 5 -0.2118695-0.4217045i Traj_8 Sim_2 TrajSim_8_2
#>
#> [[2]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.82480 10.104545 0.02 0.02 16.82480+10.10455i
#> 3 16.22126 11.016873 0.04 0.04 16.22126+11.01687i
#> 4 15.78340 11.961652 0.06 0.06 15.78340+11.96165i
#> 5 15.27863 12.844576 0.08 0.08 15.27863+12.84458i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_2 TrajSim_9_2
#> 2 -0.4229929+1.1001331i Traj_9 Sim_2 TrajSim_9_2
#> 3 -0.6035455+0.9123277i Traj_9 Sim_2 TrajSim_9_2
#> 4 -0.4378562+0.9447788i Traj_9 Sim_2 TrajSim_9_2
#> 5 -0.5047737+0.8829240i Traj_9 Sim_2 TrajSim_9_2
#>
#> [[2]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.78994 8.393509 0.02 0.02 15.78994+ 8.39351i
#> 3 15.26225 9.212161 0.04 0.04 15.26225+ 9.21216i
#> 4 14.86052 10.184672 0.06 0.06 14.86052+10.18467i
#> 5 14.49954 11.033536 0.08 0.08 14.49954+11.03354i
#> 6 13.85568 11.940921 0.10 0.10 13.85568+11.94092i
#> 7 13.27319 12.706156 0.12 0.12 13.27319+12.70616i
#> 8 12.64933 13.494010 0.14 0.14 12.64933+13.49401i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_2 TrajSim_10_2
#> 2 -0.4210860+0.8957139i Traj_10 Sim_2 TrajSim_10_2
#> 3 -0.5276969+0.8186524i Traj_10 Sim_2 TrajSim_10_2
#> 4 -0.4017266+0.9725115i Traj_10 Sim_2 TrajSim_10_2
#> 5 -0.3609826+0.8488632i Traj_10 Sim_2 TrajSim_10_2
#> 6 -0.6438629+0.9073859i Traj_10 Sim_2 TrajSim_10_2
#> 7 -0.5824873+0.7652348i Traj_10 Sim_2 TrajSim_10_2
#> 8 -0.6238534+0.7878537i Traj_10 Sim_2 TrajSim_10_2
#>
#> [[2]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.80874 9.302754 0.02 0.02 12.80874+ 9.30275i
#> 3 12.42717 10.295662 0.04 0.04 12.42717+10.29566i
#> 4 11.99854 11.522647 0.06 0.06 11.99854+11.52265i
#> 5 11.60992 12.595496 0.08 0.08 11.60992+12.59550i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_2 TrajSim_11_2
#> 2 -0.4331742+1.2336363i Traj_11 Sim_2 TrajSim_11_2
#> 3 -0.3815683+0.9929077i Traj_11 Sim_2 TrajSim_11_2
#> 4 -0.4286300+1.2269848i Traj_11 Sim_2 TrajSim_11_2
#> 5 -0.3886163+1.0728484i Traj_11 Sim_2 TrajSim_11_2
#>
#>
#> [[3]]
#> [[3]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.97942 16.18162 0.02 0.02 39.97942+16.18162i
#> 3 39.28688 16.92689 0.04 0.04 39.28688+16.92689i
#> 4 38.48543 17.59882 0.06 0.06 38.48543+17.59882i
#> 5 37.75954 18.26610 0.08 0.08 37.75954+18.26610i
#> 6 37.07115 18.91171 0.10 0.10 37.07115+18.91171i
#> 7 36.35187 19.68189 0.12 0.12 36.35187+19.68189i
#> 8 35.72598 20.31268 0.14 0.14 35.72598+20.31268i
#> 9 35.17606 21.01496 0.16 0.16 35.17606+21.01496i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_3 TrajSim_1_3
#> 2 -0.6992549+0.6786782i Traj_1 Sim_3 TrajSim_1_3
#> 3 -0.6925419+0.7452650i Traj_1 Sim_3 TrajSim_1_3
#> 4 -0.8014487+0.6719381i Traj_1 Sim_3 TrajSim_1_3
#> 5 -0.7258946+0.6672778i Traj_1 Sim_3 TrajSim_1_3
#> 6 -0.6883935+0.6456067i Traj_1 Sim_3 TrajSim_1_3
#> 7 -0.7192790+0.7701844i Traj_1 Sim_3 TrajSim_1_3
#> 8 -0.6258816+0.6307825i Traj_1 Sim_3 TrajSim_1_3
#> 9 -0.5499266+0.7022842i Traj_1 Sim_3 TrajSim_1_3
#>
#> [[3]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.67731 15.78452 0.02 0.02 38.67731+15.78452i
#> 3 37.95774 16.70553 0.04 0.04 37.95774+16.70553i
#> 4 37.39636 17.45408 0.06 0.06 37.39636+17.45408i
#> 5 36.69281 18.33995 0.08 0.08 36.69281+18.33995i
#> 6 36.07621 19.13295 0.10 0.10 36.07621+19.13295i
#> 7 35.42776 19.88287 0.12 0.12 35.42776+19.88287i
#> 8 34.78950 20.73003 0.14 0.14 34.78950+20.73003i
#> 9 34.17983 21.64383 0.16 0.16 34.17983+21.64383i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_3 TrajSim_2_3
#> 2 -0.5124002+0.8771647i Traj_2 Sim_3 TrajSim_2_3
#> 3 -0.7195711+0.9210093i Traj_2 Sim_3 TrajSim_2_3
#> 4 -0.5613814+0.7485544i Traj_2 Sim_3 TrajSim_2_3
#> 5 -0.7035418+0.8858630i Traj_2 Sim_3 TrajSim_2_3
#> 6 -0.6166053+0.7930088i Traj_2 Sim_3 TrajSim_2_3
#> 7 -0.6484487+0.7499175i Traj_2 Sim_3 TrajSim_2_3
#> 8 -0.6382640+0.8471628i Traj_2 Sim_3 TrajSim_2_3
#> 9 -0.6096673+0.9137970i Traj_2 Sim_3 TrajSim_2_3
#>
#> [[3]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.36104 16.36326 0.02 0.02 37.36104+16.36326i
#> 3 36.46494 17.29674 0.04 0.04 36.46494+17.29674i
#> 4 35.45177 18.37711 0.06 0.06 35.45177+18.37711i
#> 5 34.65409 19.36057 0.08 0.08 34.65409+19.36057i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_3 TrajSim_3_3
#> 2 -0.7433777+0.8117878i Traj_3 Sim_3 TrajSim_3_3
#> 3 -0.8960931+0.9334800i Traj_3 Sim_3 TrajSim_3_3
#> 4 -1.0131748+1.0803711i Traj_3 Sim_3 TrajSim_3_3
#> 5 -0.7976771+0.9834598i Traj_3 Sim_3 TrajSim_3_3
#>
#> [[3]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.98299 16.93976 0.02 0.02 34.98299+16.93976i
#> 3 34.33269 17.79608 0.04 0.04 34.33269+17.79608i
#> 4 33.53576 18.62511 0.06 0.06 33.53576+18.62511i
#> 5 33.01327 19.59773 0.08 0.08 33.01327+19.59773i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_3 TrajSim_4_3
#> 2 -0.5978914+0.9272587i Traj_4 Sim_3 TrajSim_4_3
#> 3 -0.6502995+0.8563195i Traj_4 Sim_3 TrajSim_4_3
#> 4 -0.7969331+0.8290311i Traj_4 Sim_3 TrajSim_4_3
#> 5 -0.5224902+0.9726186i Traj_4 Sim_3 TrajSim_4_3
#>
#> [[3]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.45600 15.74012 0.02 0.02 30.45600+15.74012i
#> 3 30.23766 16.84626 0.04 0.04 30.23766+16.84626i
#> 4 29.70083 17.59239 0.06 0.06 29.70083+17.59239i
#> 5 29.05452 18.27565 0.08 0.08 29.05452+18.27565i
#> 6 28.56462 19.22078 0.10 0.10 28.56462+19.22078i
#> 7 28.22412 20.15471 0.12 0.12 28.22412+20.15471i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_3 TrajSim_5_3
#> 2 -0.7462070+0.7643821i Traj_5 Sim_3 TrajSim_5_3
#> 3 -0.2183445+1.1061395i Traj_5 Sim_3 TrajSim_5_3
#> 4 -0.5368304+0.7461368i Traj_5 Sim_3 TrajSim_5_3
#> 5 -0.6463045+0.6832545i Traj_5 Sim_3 TrajSim_5_3
#> 6 -0.4899058+0.9451273i Traj_5 Sim_3 TrajSim_5_3
#> 7 -0.3404994+0.9339334i Traj_5 Sim_3 TrajSim_5_3
#>
#> [[3]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.34109 16.23964 0.02 0.02 28.34109+16.23964i
#> 3 27.71100 17.35089 0.04 0.04 27.71100+17.35089i
#> 4 27.05075 18.53108 0.06 0.06 27.05075+18.53108i
#> 5 26.42219 19.49785 0.08 0.08 26.42219+19.49785i
#> 6 25.68733 20.61646 0.10 0.10 25.68733+20.61646i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_3 TrajSim_6_3
#> 2 -0.5537618+1.1315532i Traj_6 Sim_3 TrajSim_6_3
#> 3 -0.6300970+1.1112456i Traj_6 Sim_3 TrajSim_6_3
#> 4 -0.6602450+1.1801885i Traj_6 Sim_3 TrajSim_6_3
#> 5 -0.6285586+0.9667689i Traj_6 Sim_3 TrajSim_6_3
#> 6 -0.7348641+1.1186191i Traj_6 Sim_3 TrajSim_6_3
#>
#> [[3]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.74524 16.55737 0.02 0.02 30.74524+16.55737i 1.548178-0.533810i
#> 3 31.84757 16.00990 0.04 0.04 31.84757+16.00990i 1.102334-0.547471i
#> 4 33.07952 15.47635 0.06 0.06 33.07952+15.47635i 1.231951-0.533544i
#> 5 34.40045 15.00961 0.08 0.08 34.40045+15.00961i 1.320929-0.466740i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_3 TrajSim_7_3
#> 2 Traj_7 Sim_3 TrajSim_7_3
#> 3 Traj_7 Sim_3 TrajSim_7_3
#> 4 Traj_7 Sim_3 TrajSim_7_3
#> 5 Traj_7 Sim_3 TrajSim_7_3
#>
#> [[3]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.25453 9.243729 0.02 0.02 14.25453+9.24373i
#> 3 13.99000 8.889595 0.04 0.04 13.99000+8.88960i
#> 4 13.74794 8.479059 0.06 0.06 13.74794+8.47906i
#> 5 13.40259 8.214159 0.08 0.08 13.40259+8.21416i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_3 TrajSim_8_3
#> 2 -0.3241492-0.4092127i Traj_8 Sim_3 TrajSim_8_3
#> 3 -0.2645248-0.3541340i Traj_8 Sim_3 TrajSim_8_3
#> 4 -0.2420648-0.4105357i Traj_8 Sim_3 TrajSim_8_3
#> 5 -0.3453522-0.2649005i Traj_8 Sim_3 TrajSim_8_3
#>
#> [[3]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.71075 10.151802 0.02 0.02 16.71075+10.15180i
#> 3 16.29048 11.163149 0.04 0.04 16.29048+11.16315i
#> 4 15.88860 12.119083 0.06 0.06 15.88860+12.11908i
#> 5 15.41457 13.171742 0.08 0.08 15.41457+13.17174i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_3 TrajSim_9_3
#> 2 -0.5370492+1.1473897i Traj_9 Sim_3 TrajSim_9_3
#> 3 -0.4202651+1.0113472i Traj_9 Sim_3 TrajSim_9_3
#> 4 -0.4018855+0.9559337i Traj_9 Sim_3 TrajSim_9_3
#> 5 -0.4740256+1.0526586i Traj_9 Sim_3 TrajSim_9_3
#>
#> [[3]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.61432 8.394212 0.02 0.02 15.61432+ 8.39421i
#> 3 15.11852 9.261000 0.04 0.04 15.11852+ 9.26100i
#> 4 14.53567 9.995046 0.06 0.06 14.53567+ 9.99505i
#> 5 13.76273 10.852563 0.08 0.08 13.76273+10.85256i
#> 6 13.24051 11.647966 0.10 0.10 13.24051+11.64797i
#> 7 12.61068 12.502786 0.12 0.12 12.61068+12.50279i
#> 8 12.21292 13.468443 0.14 0.14 12.21292+13.46844i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_3 TrajSim_10_3
#> 2 -0.5967137+0.8964178i Traj_10 Sim_3 TrajSim_10_3
#> 3 -0.4958006+0.8667874i Traj_10 Sim_3 TrajSim_10_3
#> 4 -0.5828439+0.7340461i Traj_10 Sim_3 TrajSim_10_3
#> 5 -0.7729393+0.8575166i Traj_10 Sim_3 TrajSim_10_3
#> 6 -0.5222189+0.7954039i Traj_10 Sim_3 TrajSim_10_3
#> 7 -0.6298307+0.8548197i Traj_10 Sim_3 TrajSim_10_3
#> 8 -0.3977614+0.9656571i Traj_10 Sim_3 TrajSim_10_3
#>
#> [[3]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.78925 9.178708 0.02 0.02 12.78925+ 9.17871i
#> 3 12.38413 10.297368 0.04 0.04 12.38413+10.29737i
#> 4 12.00159 11.321892 0.06 0.06 12.00159+11.32189i
#> 5 11.50492 12.380340 0.08 0.08 11.50492+12.38034i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_3 TrajSim_11_3
#> 2 -0.452659+1.109590i Traj_11 Sim_3 TrajSim_11_3
#> 3 -0.405122+1.118660i Traj_11 Sim_3 TrajSim_11_3
#> 4 -0.382538+1.024524i Traj_11 Sim_3 TrajSim_11_3
#> 5 -0.496674+1.058447i Traj_11 Sim_3 TrajSim_11_3
#>
#>
#> [[4]]
#> [[4]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.88615 16.17409 0.02 0.02 39.88615+16.17409i
#> 3 39.21782 16.82508 0.04 0.04 39.21782+16.82508i
#> 4 38.53483 17.42968 0.06 0.06 38.53483+17.42968i
#> 5 37.78346 18.13164 0.08 0.08 37.78346+18.13164i
#> 6 37.09289 18.87170 0.10 0.10 37.09289+18.87170i
#> 7 36.40196 19.49893 0.12 0.12 36.40196+19.49893i
#> 8 35.67903 20.25751 0.14 0.14 35.67903+20.25751i
#> 9 34.95141 20.85033 0.16 0.16 34.95141+20.85033i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_4 TrajSim_1_4
#> 2 -0.7925293+0.6711465i Traj_1 Sim_4 TrajSim_1_4
#> 3 -0.6683259+0.6509912i Traj_1 Sim_4 TrajSim_1_4
#> 4 -0.6829990+0.6046005i Traj_1 Sim_4 TrajSim_1_4
#> 5 -0.7513695+0.7019614i Traj_1 Sim_4 TrajSim_1_4
#> 6 -0.6905667+0.7400558i Traj_1 Sim_4 TrajSim_1_4
#> 7 -0.6909251+0.6272348i Traj_1 Sim_4 TrajSim_1_4
#> 8 -0.7229374+0.7585788i Traj_1 Sim_4 TrajSim_1_4
#> 9 -0.7276168+0.5928235i Traj_1 Sim_4 TrajSim_1_4
#>
#> [[4]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.64527 15.68490 0.02 0.02 38.64527+15.68490i
#> 3 37.91991 16.32964 0.04 0.04 37.91991+16.32964i
#> 4 37.26430 17.33798 0.06 0.06 37.26430+17.33798i
#> 5 36.64735 17.94157 0.08 0.08 36.64735+17.94157i
#> 6 35.85431 18.62627 0.10 0.10 35.85431+18.62627i
#> 7 35.22249 19.42398 0.12 0.12 35.22249+19.42398i
#> 8 34.57345 20.31285 0.14 0.14 34.57345+20.31285i
#> 9 33.91406 21.30636 0.16 0.16 33.91406+21.30636i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_4 TrajSim_2_4
#> 2 -0.5444415+0.7775454i Traj_2 Sim_4 TrajSim_2_4
#> 3 -0.7253534+0.6447422i Traj_2 Sim_4 TrajSim_2_4
#> 4 -0.6556093+1.0083358i Traj_2 Sim_4 TrajSim_2_4
#> 5 -0.6169507+0.6035890i Traj_2 Sim_4 TrajSim_2_4
#> 6 -0.7930424+0.6847083i Traj_2 Sim_4 TrajSim_2_4
#> 7 -0.6318207+0.7977068i Traj_2 Sim_4 TrajSim_2_4
#> 8 -0.6490428+0.8888647i Traj_2 Sim_4 TrajSim_2_4
#> 9 -0.6593845+0.9935115i Traj_2 Sim_4 TrajSim_2_4
#>
#> [[4]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.21640 16.60539 0.02 0.02 37.21640+16.60539i
#> 3 36.38529 17.54091 0.04 0.04 36.38529+17.54091i
#> 4 35.50065 18.48546 0.06 0.06 35.50065+18.48546i
#> 5 34.74942 19.34965 0.08 0.08 34.74942+19.34965i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_4 TrajSim_3_4
#> 2 -0.8880124+1.0539184i Traj_3 Sim_4 TrajSim_3_4
#> 3 -0.8311110+0.9355210i Traj_3 Sim_4 TrajSim_3_4
#> 4 -0.8846360+0.9445506i Traj_3 Sim_4 TrajSim_3_4
#> 5 -0.7512347+0.8641867i Traj_3 Sim_4 TrajSim_3_4
#>
#> [[4]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.00971 16.93156 0.02 0.02 35.00971+16.93156i
#> 3 34.49392 17.93098 0.04 0.04 34.49392+17.93098i
#> 4 33.86291 18.82734 0.06 0.06 33.86291+18.82734i
#> 5 33.05820 19.75445 0.08 0.08 33.05820+19.75445i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_4 TrajSim_4_4
#> 2 -0.5711776+0.9190600i Traj_4 Sim_4 TrajSim_4_4
#> 3 -0.5157906+0.9994202i Traj_4 Sim_4 TrajSim_4_4
#> 4 -0.6310028+0.8963562i Traj_4 Sim_4 TrajSim_4_4
#> 5 -0.8047107+0.9271159i Traj_4 Sim_4 TrajSim_4_4
#>
#> [[4]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.61198 15.94158 0.02 0.02 30.61198+15.94158i
#> 3 30.09454 16.78181 0.04 0.04 30.09454+16.78181i
#> 4 29.70099 17.78298 0.06 0.06 29.70099+17.78298i
#> 5 29.23742 18.31039 0.08 0.08 29.23742+18.31039i
#> 6 28.99827 19.25294 0.10 0.10 28.99827+19.25294i
#> 7 28.45700 20.05537 0.12 0.12 28.45700+20.05537i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_4 TrajSim_5_4
#> 2 -0.5902281+0.9658388i Traj_5 Sim_4 TrajSim_5_4
#> 3 -0.5174395+0.8402374i Traj_5 Sim_4 TrajSim_5_4
#> 4 -0.3935539+1.0011635i Traj_5 Sim_4 TrajSim_5_4
#> 5 -0.4635623+0.5274104i Traj_5 Sim_4 TrajSim_5_4
#> 6 -0.2391505+0.9425504i Traj_5 Sim_4 TrajSim_5_4
#> 7 -0.5412703+0.8024337i Traj_5 Sim_4 TrajSim_5_4
#>
#> [[4]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.33533 15.92376 0.02 0.02 28.33533+15.92376i
#> 3 27.72660 16.93708 0.04 0.04 27.72660+16.93708i
#> 4 27.07022 17.96648 0.06 0.06 27.07022+17.96648i
#> 5 26.38002 18.94233 0.08 0.08 26.38002+18.94233i
#> 6 25.65330 19.77981 0.10 0.10 25.65330+19.77981i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_4 TrajSim_6_4
#> 2 -0.5595230+0.8156733i Traj_6 Sim_4 TrajSim_6_4
#> 3 -0.6087351+1.0133209i Traj_6 Sim_4 TrajSim_6_4
#> 4 -0.6563786+1.0294004i Traj_6 Sim_4 TrajSim_6_4
#> 5 -0.6901935+0.9758452i Traj_6 Sim_4 TrajSim_6_4
#> 6 -0.7267217+0.8374792i Traj_6 Sim_4 TrajSim_6_4
#>
#> [[4]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.28786 16.73762 0.02 0.02 30.28786+16.73762i 1.090799-0.353561i
#> 3 31.54117 16.30792 0.04 0.04 31.54117+16.30792i 1.253309-0.429696i
#> 4 32.80024 15.68539 0.06 0.06 32.80024+15.68539i 1.259072-0.622532i
#> 5 33.92366 15.29796 0.08 0.08 33.92366+15.29796i 1.123421-0.387429i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_4 TrajSim_7_4
#> 2 Traj_7 Sim_4 TrajSim_7_4
#> 3 Traj_7 Sim_4 TrajSim_7_4
#> 4 Traj_7 Sim_4 TrajSim_7_4
#> 5 Traj_7 Sim_4 TrajSim_7_4
#>
#> [[4]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.29331 9.339636 0.02 0.02 14.29331+9.33964i
#> 3 14.00692 9.018834 0.04 0.04 14.00692+9.01883i
#> 4 13.75070 8.699543 0.06 0.06 13.75070+8.69954i
#> 5 13.57081 8.295076 0.08 0.08 13.57081+8.29508i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_4 TrajSim_8_4
#> 2 -0.2853710-0.3133062i Traj_8 Sim_4 TrajSim_8_4
#> 3 -0.2863815-0.3208017i Traj_8 Sim_4 TrajSim_8_4
#> 4 -0.2562240-0.3192911i Traj_8 Sim_4 TrajSim_8_4
#> 5 -0.1798900-0.4044664i Traj_8 Sim_4 TrajSim_8_4
#>
#> [[4]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.87803 10.108453 0.02 0.02 16.87803+10.10845i
#> 3 16.46898 11.199462 0.04 0.04 16.46898+11.19946i
#> 4 15.83759 12.198293 0.06 0.06 15.83759+12.19829i
#> 5 15.33145 13.284346 0.08 0.08 15.33145+13.28435i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_4 TrajSim_9_4
#> 2 -0.3697698+1.1040402i Traj_9 Sim_4 TrajSim_9_4
#> 3 -0.4090450+1.0910094i Traj_9 Sim_4 TrajSim_9_4
#> 4 -0.6313933+0.9988307i Traj_9 Sim_4 TrajSim_9_4
#> 5 -0.5061386+1.0860532i Traj_9 Sim_4 TrajSim_9_4
#>
#> [[4]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.51114 8.202643 0.02 0.02 15.51114+ 8.20264i
#> 3 14.89476 9.059658 0.04 0.04 14.89476+ 9.05966i
#> 4 14.46078 10.003688 0.06 0.06 14.46078+10.00369i
#> 5 13.88144 10.744179 0.08 0.08 13.88144+10.74418i
#> 6 13.36743 11.648696 0.10 0.10 13.36743+11.64870i
#> 7 12.87394 12.523682 0.12 0.12 12.87394+12.52368i
#> 8 12.42631 13.291700 0.14 0.14 12.42631+13.29170i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_4 TrajSim_10_4
#> 2 -0.6998909+0.7048488i Traj_10 Sim_4 TrajSim_10_4
#> 3 -0.6163814+0.8570150i Traj_10 Sim_4 TrajSim_10_4
#> 4 -0.4339773+0.9440298i Traj_10 Sim_4 TrajSim_10_4
#> 5 -0.5793447+0.7404908i Traj_10 Sim_4 TrajSim_10_4
#> 6 -0.5140073+0.9045169i Traj_10 Sim_4 TrajSim_10_4
#> 7 -0.4934859+0.8749864i Traj_10 Sim_4 TrajSim_10_4
#> 8 -0.4476345+0.7680181i Traj_10 Sim_4 TrajSim_10_4
#>
#> [[4]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.73790 9.185142 0.02 0.02 12.73790+ 9.18514i
#> 3 12.33766 10.282025 0.04 0.04 12.33766+10.28202i
#> 4 11.78366 11.534764 0.06 0.06 11.78366+11.53476i
#> 5 11.26933 12.636088 0.08 0.08 11.26933+12.63609i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_4 TrajSim_11_4
#> 2 -0.504014+1.116024i Traj_11 Sim_4 TrajSim_11_4
#> 3 -0.400238+1.096882i Traj_11 Sim_4 TrajSim_11_4
#> 4 -0.554002+1.252740i Traj_11 Sim_4 TrajSim_11_4
#> 5 -0.514328+1.101324i Traj_11 Sim_4 TrajSim_11_4
#>
#>
#> [[5]]
#> [[5]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.99718 16.13502 0.02 0.02 39.99718+16.13502i
#> 3 39.32275 16.88354 0.04 0.04 39.32275+16.88354i
#> 4 38.66920 17.58408 0.06 0.06 38.66920+17.58408i
#> 5 37.87268 18.27840 0.08 0.08 37.87268+18.27840i
#> 6 37.08635 18.86708 0.10 0.10 37.08635+18.86708i
#> 7 36.37116 19.53900 0.12 0.12 36.37116+19.53900i
#> 8 35.61561 20.15299 0.14 0.14 35.61561+20.15299i
#> 9 34.80247 20.72300 0.16 0.16 34.80247+20.72300i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_5 TrajSim_1_5
#> 2 -0.6814946+0.6320754i Traj_1 Sim_5 TrajSim_1_5
#> 3 -0.6744376+0.7485188i Traj_1 Sim_5 TrajSim_1_5
#> 4 -0.6535448+0.7005448i Traj_1 Sim_5 TrajSim_1_5
#> 5 -0.7965189+0.6943167i Traj_1 Sim_5 TrajSim_1_5
#> 6 -0.7863310+0.5886803i Traj_1 Sim_5 TrajSim_1_5
#> 7 -0.7151886+0.6719195i Traj_1 Sim_5 TrajSim_1_5
#> 8 -0.7555558+0.6139885i Traj_1 Sim_5 TrajSim_1_5
#> 9 -0.8131351+0.5700177i Traj_1 Sim_5 TrajSim_1_5
#>
#> [[5]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.63161 15.82610 0.02 0.02 38.63161+15.82610i
#> 3 37.92590 16.67174 0.04 0.04 37.92590+16.67174i
#> 4 37.26074 17.66862 0.06 0.06 37.26074+17.66862i
#> 5 36.76818 18.47542 0.08 0.08 36.76818+18.47542i
#> 6 36.19061 19.32930 0.10 0.10 36.19061+19.32930i
#> 7 35.49283 20.27295 0.12 0.12 35.49283+20.27295i
#> 8 34.69402 21.10548 0.14 0.14 34.69402+21.10548i
#> 9 33.88947 22.04383 0.16 0.16 33.88947+22.04383i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_5 TrajSim_2_5
#> 2 -0.5580990+0.9187474i Traj_2 Sim_5 TrajSim_2_5
#> 3 -0.7057111+0.8456428i Traj_2 Sim_5 TrajSim_2_5
#> 4 -0.6651624+0.9968752i Traj_2 Sim_5 TrajSim_2_5
#> 5 -0.4925610+0.8068010i Traj_2 Sim_5 TrajSim_2_5
#> 6 -0.5775691+0.8538803i Traj_2 Sim_5 TrajSim_2_5
#> 7 -0.6977733+0.9436497i Traj_2 Sim_5 TrajSim_2_5
#> 8 -0.7988111+0.8325278i Traj_2 Sim_5 TrajSim_2_5
#> 9 -0.8045563+0.9383488i Traj_2 Sim_5 TrajSim_2_5
#>
#> [[5]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.19408 16.52505 0.02 0.02 37.19408+16.52505i
#> 3 36.46808 17.30909 0.04 0.04 36.46808+17.30909i
#> 4 35.61434 18.22868 0.06 0.06 35.61434+18.22868i
#> 5 34.72422 19.21107 0.08 0.08 34.72422+19.21107i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_5 TrajSim_3_5
#> 2 -0.9103321+0.9735820i Traj_3 Sim_5 TrajSim_3_5
#> 3 -0.7259981+0.7840374i Traj_3 Sim_5 TrajSim_3_5
#> 4 -0.8537433+0.9195855i Traj_3 Sim_5 TrajSim_3_5
#> 5 -0.8901230+0.9823927i Traj_3 Sim_5 TrajSim_3_5
#>
#> [[5]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.99611 17.04653 0.02 0.02 34.99611+17.04653i
#> 3 34.29893 18.15992 0.04 0.04 34.29893+18.15992i
#> 4 33.60755 18.98154 0.06 0.06 33.60755+18.98154i
#> 5 32.98020 19.85354 0.08 0.08 32.98020+19.85354i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_5 TrajSim_4_5
#> 2 -0.5847729+1.0340309i Traj_4 Sim_5 TrajSim_4_5
#> 3 -0.6971800+1.1133897i Traj_4 Sim_5 TrajSim_4_5
#> 4 -0.6913808+0.8216154i Traj_4 Sim_5 TrajSim_4_5
#> 5 -0.6273501+0.8720046i Traj_4 Sim_5 TrajSim_4_5
#>
#> [[5]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 31.02441 15.84660 0.02 0.02 31.02441+15.84660i
#> 3 30.68939 16.50582 0.04 0.04 30.68939+16.50582i
#> 4 30.39519 17.09206 0.06 0.06 30.39519+17.09206i
#> 5 29.71467 17.87840 0.08 0.08 29.71467+17.87840i
#> 6 29.21599 18.67425 0.10 0.10 29.21599+18.67425i
#> 7 28.94407 19.26883 0.12 0.12 28.94407+19.26883i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_5 TrajSim_5_5
#> 2 -0.1778024+0.8708653i Traj_5 Sim_5 TrajSim_5_5
#> 3 -0.3350141+0.6592202i Traj_5 Sim_5 TrajSim_5_5
#> 4 -0.2942040+0.5862333i Traj_5 Sim_5 TrajSim_5_5
#> 5 -0.6805215+0.7863429i Traj_5 Sim_5 TrajSim_5_5
#> 6 -0.4986735+0.7958535i Traj_5 Sim_5 TrajSim_5_5
#> 7 -0.2719218+0.5945751i Traj_5 Sim_5 TrajSim_5_5
#>
#> [[5]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.34263 16.07796 0.02 0.02 28.34263+16.07796i
#> 3 27.75839 17.07106 0.04 0.04 27.75839+17.07106i
#> 4 27.16009 17.95828 0.06 0.06 27.16009+17.95828i
#> 5 26.56976 18.93149 0.08 0.08 26.56976+18.93149i
#> 6 25.89819 19.90207 0.10 0.10 25.89819+19.90207i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_5 TrajSim_6_5
#> 2 -0.5522253+0.9698726i Traj_6 Sim_5 TrajSim_6_5
#> 3 -0.5842381+0.9930948i Traj_6 Sim_5 TrajSim_6_5
#> 4 -0.5982990+0.8872246i Traj_6 Sim_5 TrajSim_6_5
#> 5 -0.5903309+0.9732105i Traj_6 Sim_5 TrajSim_6_5
#> 6 -0.6715740+0.9705776i Traj_6 Sim_5 TrajSim_6_5
#>
#> [[5]][[7]]
#> x y time displacementTime polar
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i
#> 2 30.41660 16.57006 0.02 0.02 30.41660+16.57006i
#> 3 31.39151 16.12616 0.04 0.04 31.39151+16.12616i
#> 4 32.53207 15.64533 0.06 0.06 32.53207+15.64533i
#> 5 33.96767 15.10038 0.08 0.08 33.96767+15.10038i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_7 Sim_5 TrajSim_7_5
#> 2 1.2195395-0.5211159i Traj_7 Sim_5 TrajSim_7_5
#> 3 0.9749053-0.4439021i Traj_7 Sim_5 TrajSim_7_5
#> 4 1.1405677-0.4808332i Traj_7 Sim_5 TrajSim_7_5
#> 5 1.4355972-0.5449438i Traj_7 Sim_5 TrajSim_7_5
#>
#> [[5]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.25084 9.321664 0.02 0.02 14.25084+9.32166i
#> 3 13.93133 8.966462 0.04 0.04 13.93133+8.96646i
#> 4 13.63045 8.562550 0.06 0.06 13.63045+8.56255i
#> 5 13.25694 8.241405 0.08 0.08 13.25694+8.24141i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_5 TrajSim_8_5
#> 2 -0.3278336-0.3312780i Traj_8 Sim_5 TrajSim_8_5
#> 3 -0.3195173-0.3552022i Traj_8 Sim_5 TrajSim_8_5
#> 4 -0.3008800-0.4039114i Traj_8 Sim_5 TrajSim_8_5
#> 5 -0.3735103-0.3211450i Traj_8 Sim_5 TrajSim_8_5
#>
#> [[5]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.88221 10.027388 0.02 0.02 16.88221+10.02739i
#> 3 16.33629 11.117791 0.04 0.04 16.33629+11.11779i
#> 4 15.83921 12.141755 0.06 0.06 15.83921+12.14175i
#> 5 15.33610 13.197267 0.08 0.08 15.33610+13.19727i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_9 Sim_5 TrajSim_9_5
#> 2 -0.365580+1.022975i Traj_9 Sim_5 TrajSim_9_5
#> 3 -0.545928+1.090403i Traj_9 Sim_5 TrajSim_9_5
#> 4 -0.497074+1.023964i Traj_9 Sim_5 TrajSim_9_5
#> 5 -0.503113+1.055513i Traj_9 Sim_5 TrajSim_9_5
#>
#> [[5]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.53814 8.388374 0.02 0.02 15.53814+ 8.38837i
#> 3 14.92089 9.222383 0.04 0.04 14.92089+ 9.22238i
#> 4 14.34625 10.194672 0.06 0.06 14.34625+10.19467i
#> 5 13.56127 11.017765 0.08 0.08 13.56127+11.01777i
#> 6 12.90503 11.796235 0.10 0.10 12.90503+11.79623i
#> 7 12.34035 12.623760 0.12 0.12 12.34035+12.62376i
#> 8 11.74648 13.397367 0.14 0.14 11.74648+13.39737i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_5 TrajSim_10_5
#> 2 -0.6728876+0.8905793i Traj_10 Sim_5 TrajSim_10_5
#> 3 -0.6172530+0.8340089i Traj_10 Sim_5 TrajSim_10_5
#> 4 -0.5746402+0.9722890i Traj_10 Sim_5 TrajSim_10_5
#> 5 -0.7849829+0.8230933i Traj_10 Sim_5 TrajSim_10_5
#> 6 -0.6562351+0.7784698i Traj_10 Sim_5 TrajSim_10_5
#> 7 -0.5646778+0.8275248i Traj_10 Sim_5 TrajSim_10_5
#> 8 -0.5938746+0.7736074i Traj_10 Sim_5 TrajSim_10_5
#>
#> [[5]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.92261 8.926982 0.02 0.02 12.92261+ 8.92698i
#> 3 12.47806 9.879881 0.04 0.04 12.47806+ 9.87988i
#> 4 12.12742 10.920979 0.06 0.06 12.12742+10.92098i
#> 5 11.71257 12.054916 0.08 0.08 11.71257+12.05492i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_5 TrajSim_11_5
#> 2 -0.3193069+0.8578640i Traj_11 Sim_5 TrajSim_11_5
#> 3 -0.4445454+0.9528989i Traj_11 Sim_5 TrajSim_11_5
#> 4 -0.3506405+1.0410976i Traj_11 Sim_5 TrajSim_11_5
#> 5 -0.4148467+1.1339373i Traj_11 Sim_5 TrajSim_11_5
#>
#>
#> [[6]]
#> [[6]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.91718 16.08113 0.02 0.02 39.91718+16.08113i
#> 3 39.20061 16.75189 0.04 0.04 39.20061+16.75189i
#> 4 38.42682 17.42712 0.06 0.06 38.42682+17.42712i
#> 5 37.69023 18.13400 0.08 0.08 37.69023+18.13400i
#> 6 37.01137 18.75050 0.10 0.10 37.01137+18.75050i
#> 7 36.24988 19.42608 0.12 0.12 36.24988+19.42608i
#> 8 35.56075 20.02131 0.14 0.14 35.56075+20.02131i
#> 9 34.86929 20.60487 0.16 0.16 34.86929+20.60487i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_6 TrajSim_1_6
#> 2 -0.7614964+0.5781881i Traj_1 Sim_6 TrajSim_1_6
#> 3 -0.7165716+0.6707548i Traj_1 Sim_6 TrajSim_1_6
#> 4 -0.7737891+0.6752309i Traj_1 Sim_6 TrajSim_1_6
#> 5 -0.7365912+0.7068791i Traj_1 Sim_6 TrajSim_1_6
#> 6 -0.6788653+0.6165056i Traj_1 Sim_6 TrajSim_1_6
#> 7 -0.7614814+0.6755823i Traj_1 Sim_6 TrajSim_1_6
#> 8 -0.6891372+0.5952284i Traj_1 Sim_6 TrajSim_1_6
#> 9 -0.6914605+0.5835584i Traj_1 Sim_6 TrajSim_1_6
#>
#> [[6]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.45376 15.83448 0.02 0.02 38.45376+15.83448i
#> 3 37.88621 16.76087 0.04 0.04 37.88621+16.76087i
#> 4 37.17261 17.54849 0.06 0.06 37.17261+17.54849i
#> 5 36.61968 18.43954 0.08 0.08 36.61968+18.43954i
#> 6 36.17731 19.28894 0.10 0.10 36.17731+19.28894i
#> 7 35.65733 20.17289 0.12 0.12 35.65733+20.17289i
#> 8 35.05939 20.88771 0.14 0.14 35.05939+20.88771i
#> 9 34.36207 21.58917 0.16 0.16 34.36207+21.58917i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_6 TrajSim_2_6
#> 2 -0.7359528+0.9271229i Traj_2 Sim_6 TrajSim_2_6
#> 3 -0.5675451+0.9263937i Traj_2 Sim_6 TrajSim_2_6
#> 4 -0.7135971+0.7876167i Traj_2 Sim_6 TrajSim_2_6
#> 5 -0.5529288+0.8910577i Traj_2 Sim_6 TrajSim_2_6
#> 6 -0.4423760+0.8493915i Traj_2 Sim_6 TrajSim_2_6
#> 7 -0.5199815+0.8839549i Traj_2 Sim_6 TrajSim_2_6
#> 8 -0.5979350+0.7148192i Traj_2 Sim_6 TrajSim_2_6
#> 9 -0.6973193+0.7014607i Traj_2 Sim_6 TrajSim_2_6
#>
#> [[6]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.11235 16.60261 0.02 0.02 37.11235+16.60261i
#> 3 36.25138 17.57786 0.04 0.04 36.25138+17.57786i
#> 4 35.38388 18.42512 0.06 0.06 35.38388+18.42512i
#> 5 34.50440 19.28284 0.08 0.08 34.50440+19.28284i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_6 TrajSim_3_6
#> 2 -0.9920665+1.0511343i Traj_3 Sim_6 TrajSim_3_6
#> 3 -0.8609650+0.9752497i Traj_3 Sim_6 TrajSim_3_6
#> 4 -0.8675021+0.8472678i Traj_3 Sim_6 TrajSim_3_6
#> 5 -0.8794784+0.8577132i Traj_3 Sim_6 TrajSim_3_6
#>
#> [[6]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.12777 16.89824 0.02 0.02 35.12777+16.89824i
#> 3 34.46463 17.74845 0.04 0.04 34.46463+17.74845i
#> 4 33.87367 18.75907 0.06 0.06 33.87367+18.75907i
#> 5 33.30687 19.89542 0.08 0.08 33.30687+19.89542i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_6 TrajSim_4_6
#> 2 -0.4531182+0.8857352i Traj_4 Sim_6 TrajSim_4_6
#> 3 -0.6631398+0.8502135i Traj_4 Sim_6 TrajSim_4_6
#> 4 -0.5909617+1.0106190i Traj_4 Sim_6 TrajSim_4_6
#> 5 -0.5667907+1.1363559i Traj_4 Sim_6 TrajSim_4_6
#>
#> [[6]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.53475 15.55613 0.02 0.02 30.53475+15.55613i
#> 3 30.01271 16.16822 0.04 0.04 30.01271+16.16822i
#> 4 29.67439 17.03080 0.06 0.06 29.67439+17.03080i
#> 5 29.17629 17.70314 0.08 0.08 29.17629+17.70314i
#> 6 28.85154 18.39949 0.10 0.10 28.85154+18.39949i
#> 7 28.65357 19.29134 0.12 0.12 28.65357+19.29134i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_6 TrajSim_5_6
#> 2 -0.6674623+0.5803896i Traj_5 Sim_6 TrajSim_5_6
#> 3 -0.5220390+0.6120908i Traj_5 Sim_6 TrajSim_5_6
#> 4 -0.3383150+0.8625840i Traj_5 Sim_6 TrajSim_5_6
#> 5 -0.4981066+0.6723443i Traj_5 Sim_6 TrajSim_5_6
#> 6 -0.3247498+0.6963460i Traj_5 Sim_6 TrajSim_5_6
#> 7 -0.1979631+0.8918534i Traj_5 Sim_6 TrajSim_5_6
#>
#> [[6]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.25637 16.08525 0.02 0.02 28.25637+16.08525i
#> 3 27.52707 17.05625 0.04 0.04 27.52707+17.05625i
#> 4 26.92612 18.05959 0.06 0.06 26.92612+18.05959i
#> 5 26.20462 19.07385 0.08 0.08 26.20462+19.07385i
#> 6 25.56051 20.13350 0.10 0.10 25.56051+20.13350i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_6 TrajSim_6_6
#> 2 -0.6384802+0.9771579i Traj_6 Sim_6 TrajSim_6_6
#> 3 -0.7293042+0.9710060i Traj_6 Sim_6 TrajSim_6_6
#> 4 -0.6009456+1.0033381i Traj_6 Sim_6 TrajSim_6_6
#> 5 -0.7215055+1.0142611i Traj_6 Sim_6 TrajSim_6_6
#> 6 -0.6441066+1.0596433i Traj_6 Sim_6 TrajSim_6_6
#>
#> [[6]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.50350 16.48290 0.02 0.02 30.50350+16.48290i 1.306439-0.608280i
#> 3 31.86401 16.08901 0.04 0.04 31.86401+16.08901i 1.360515-0.393887i
#> 4 33.22972 15.54412 0.06 0.06 33.22972+15.54412i 1.365707-0.544891i
#> 5 34.58513 15.00600 0.08 0.08 34.58513+15.00600i 1.355411-0.538118i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_6 TrajSim_7_6
#> 2 Traj_7 Sim_6 TrajSim_7_6
#> 3 Traj_7 Sim_6 TrajSim_7_6
#> 4 Traj_7 Sim_6 TrajSim_7_6
#> 5 Traj_7 Sim_6 TrajSim_7_6
#>
#> [[6]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.19856 9.360659 0.02 0.02 14.19856+9.36066i
#> 3 13.93368 8.994900 0.04 0.04 13.93368+8.99490i
#> 4 13.71442 8.582255 0.06 0.06 13.71442+8.58226i
#> 5 13.55457 8.217711 0.08 0.08 13.55457+8.21771i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_6 TrajSim_8_6
#> 2 -0.3801211-0.2922830i Traj_8 Sim_6 TrajSim_8_6
#> 3 -0.2648739-0.3657587i Traj_8 Sim_6 TrajSim_8_6
#> 4 -0.2192653-0.4126447i Traj_8 Sim_6 TrajSim_8_6
#> 5 -0.1598520-0.3645443i Traj_8 Sim_6 TrajSim_8_6
#>
#> [[6]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.88364 10.063725 0.02 0.02 16.88364+10.06372i
#> 3 16.45987 11.029411 0.04 0.04 16.45987+11.02941i
#> 4 15.84736 12.071689 0.06 0.06 15.84736+12.07169i
#> 5 15.39745 13.156675 0.08 0.08 15.39745+13.15667i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_6 TrajSim_9_6
#> 2 -0.3641600+1.0593125i Traj_9 Sim_6 TrajSim_9_6
#> 3 -0.4237648+0.9656865i Traj_9 Sim_6 TrajSim_9_6
#> 4 -0.6125134+1.0422776i Traj_9 Sim_6 TrajSim_9_6
#> 5 -0.4499043+1.0849857i Traj_9 Sim_6 TrajSim_9_6
#>
#> [[6]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.60231 8.344028 0.02 0.02 15.60231+ 8.34403i
#> 3 14.93201 9.128791 0.04 0.04 14.93201+ 9.12879i
#> 4 14.58028 9.952322 0.06 0.06 14.58028+ 9.95232i
#> 5 14.13673 10.910317 0.08 0.08 14.13673+10.91032i
#> 6 13.60443 11.836304 0.10 0.10 13.60443+11.83630i
#> 7 13.02126 12.719598 0.12 0.12 13.02126+12.71960i
#> 8 12.23920 13.552382 0.14 0.14 12.23920+13.55238i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_6 TrajSim_10_6
#> 2 -0.6087252+0.8462331i Traj_10 Sim_6 TrajSim_10_6
#> 3 -0.6702961+0.7847637i Traj_10 Sim_6 TrajSim_10_6
#> 4 -0.3517322+0.8235305i Traj_10 Sim_6 TrajSim_10_6
#> 5 -0.4435451+0.9579952i Traj_10 Sim_6 TrajSim_10_6
#> 6 -0.5323040+0.9259871i Traj_10 Sim_6 TrajSim_10_6
#> 7 -0.5831637+0.8832935i Traj_10 Sim_6 TrajSim_10_6
#> 8 -0.7820665+0.8327844i Traj_10 Sim_6 TrajSim_10_6
#>
#> [[6]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.82533 9.168243 0.02 0.02 12.82533+ 9.16824i
#> 3 12.33787 10.342995 0.04 0.04 12.33787+10.34299i
#> 4 11.93806 11.437460 0.06 0.06 11.93806+11.43746i
#> 5 11.57082 12.483718 0.08 0.08 11.57082+12.48372i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_6 TrajSim_11_6
#> 2 -0.416583+1.099125i Traj_11 Sim_6 TrajSim_11_6
#> 3 -0.487463+1.174752i Traj_11 Sim_6 TrajSim_11_6
#> 4 -0.399802+1.094465i Traj_11 Sim_6 TrajSim_11_6
#> 5 -0.367246+1.046258i Traj_11 Sim_6 TrajSim_11_6
#>
#>
#> [[7]]
#> [[7]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.04035 16.14399 0.02 0.02 40.04035+16.14399i
#> 3 39.39451 16.86108 0.04 0.04 39.39451+16.86108i
#> 4 38.60088 17.54707 0.06 0.06 38.60088+17.54707i
#> 5 37.81939 18.19714 0.08 0.08 37.81939+18.19714i
#> 6 37.08785 18.80848 0.10 0.10 37.08785+18.80848i
#> 7 36.56642 19.56135 0.12 0.12 36.56642+19.56135i
#> 8 35.87789 20.24833 0.14 0.14 35.87789+20.24833i
#> 9 35.30070 20.97646 0.16 0.16 35.30070+20.97646i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_7 TrajSim_1_7
#> 2 -0.6383341+0.6410514i Traj_1 Sim_7 TrajSim_1_7
#> 3 -0.6458387+0.7170851i Traj_1 Sim_7 TrajSim_1_7
#> 4 -0.7936302+0.6859955i Traj_1 Sim_7 TrajSim_1_7
#> 5 -0.7814813+0.6500695i Traj_1 Sim_7 TrajSim_1_7
#> 6 -0.7315408+0.6113335i Traj_1 Sim_7 TrajSim_1_7
#> 7 -0.5214304+0.7528709i Traj_1 Sim_7 TrajSim_1_7
#> 8 -0.6885364+0.6869863i Traj_1 Sim_7 TrajSim_1_7
#> 9 -0.5771889+0.7281249i Traj_1 Sim_7 TrajSim_1_7
#>
#> [[7]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.56792 15.77607 0.02 0.02 38.56792+15.77607i
#> 3 37.90410 16.62665 0.04 0.04 37.90410+16.62665i
#> 4 37.27095 17.43520 0.06 0.06 37.27095+17.43520i
#> 5 36.55462 18.19923 0.08 0.08 36.55462+18.19923i
#> 6 36.07704 18.78974 0.10 0.10 36.07704+18.78974i
#> 7 35.45508 19.53707 0.12 0.12 35.45508+19.53707i
#> 8 34.83832 20.24287 0.14 0.14 34.83832+20.24287i
#> 9 34.12712 21.09653 0.16 0.16 34.12712+21.09653i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_7 TrajSim_2_7
#> 2 -0.6217917+0.8687209i Traj_2 Sim_7 TrajSim_2_7
#> 3 -0.6638157+0.8505759i Traj_2 Sim_7 TrajSim_2_7
#> 4 -0.6331527+0.8085462i Traj_2 Sim_7 TrajSim_2_7
#> 5 -0.7163260+0.7640289i Traj_2 Sim_7 TrajSim_2_7
#> 6 -0.4775782+0.5905142i Traj_2 Sim_7 TrajSim_2_7
#> 7 -0.6219644+0.7473286i Traj_2 Sim_7 TrajSim_2_7
#> 8 -0.6167645+0.7057981i Traj_2 Sim_7 TrajSim_2_7
#> 9 -0.7112001+0.8536676i Traj_2 Sim_7 TrajSim_2_7
#>
#> [[7]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.38140 16.30904 0.02 0.02 37.38140+16.30904i
#> 3 36.45284 17.37623 0.04 0.04 36.45284+17.37623i
#> 4 35.53150 18.34212 0.06 0.06 35.53150+18.34212i
#> 5 34.58023 19.36050 0.08 0.08 34.58023+19.36050i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_7 TrajSim_3_7
#> 2 -0.7230115+0.7575680i Traj_3 Sim_7 TrajSim_3_7
#> 3 -0.9285633+1.0671939i Traj_3 Sim_7 TrajSim_3_7
#> 4 -0.9213418+0.9658816i Traj_3 Sim_7 TrajSim_3_7
#> 5 -0.9512676+1.0183873i Traj_3 Sim_7 TrajSim_3_7
#>
#> [[7]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.01102 16.97742 0.02 0.02 35.01102+16.97742i
#> 3 34.33398 17.92136 0.04 0.04 34.33398+17.92136i
#> 4 33.60791 18.78803 0.06 0.06 33.60791+18.78803i
#> 5 33.07089 19.77079 0.08 0.08 33.07089+19.77079i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_7 TrajSim_4_7
#> 2 -0.5698677+0.9649154i Traj_4 Sim_7 TrajSim_4_7
#> 3 -0.6770355+0.9439436i Traj_4 Sim_7 TrajSim_4_7
#> 4 -0.7260708+0.8666672i Traj_4 Sim_7 TrajSim_4_7
#> 5 -0.5370169+0.9827624i Traj_4 Sim_7 TrajSim_4_7
#>
#> [[7]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.70055 15.74818 0.02 0.02 30.70055+15.74818i
#> 3 30.32299 16.54014 0.04 0.04 30.32299+16.54014i
#> 4 29.85056 17.28746 0.06 0.06 29.85056+17.28746i
#> 5 29.63540 18.02563 0.08 0.08 29.63540+18.02563i
#> 6 29.05963 18.99539 0.10 0.10 29.05963+18.99539i
#> 7 28.40681 19.73073 0.12 0.12 28.40681+19.73073i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_7 TrajSim_5_7
#> 2 -0.5016560+0.7724405i Traj_5 Sim_7 TrajSim_5_7
#> 3 -0.3775635+0.7919646i Traj_5 Sim_7 TrajSim_5_7
#> 4 -0.4724283+0.7473160i Traj_5 Sim_7 TrajSim_5_7
#> 5 -0.2151627+0.7381683i Traj_5 Sim_7 TrajSim_5_7
#> 6 -0.5757696+0.9697637i Traj_5 Sim_7 TrajSim_5_7
#> 7 -0.6528136+0.7353424i Traj_5 Sim_7 TrajSim_5_7
#>
#> [[7]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.21079 16.18078 0.02 0.02 28.21079+16.18078i
#> 3 27.56838 17.12844 0.04 0.04 27.56838+17.12844i
#> 4 26.92408 18.13789 0.06 0.06 26.92408+18.13789i
#> 5 26.31686 19.17893 0.08 0.08 26.31686+19.17893i
#> 6 25.77334 20.03103 0.10 0.10 25.77334+20.03103i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_7 TrajSim_6_7
#> 2 -0.6840653+1.0726876i Traj_6 Sim_7 TrajSim_6_7
#> 3 -0.6424103+0.9476625i Traj_6 Sim_7 TrajSim_6_7
#> 4 -0.6443001+1.0094554i Traj_6 Sim_7 TrajSim_6_7
#> 5 -0.6072144+1.0410374i Traj_6 Sim_7 TrajSim_6_7
#> 6 -0.5435246+0.8520968i Traj_6 Sim_7 TrajSim_6_7
#>
#> [[7]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.36688 16.63391 0.02 0.02 30.36688+16.63391i 1.169821-0.457266i
#> 3 31.66985 16.16928 0.04 0.04 31.66985+16.16928i 1.302966-0.464629i
#> 4 33.08146 15.83668 0.06 0.06 33.08146+15.83668i 1.411611-0.332598i
#> 5 34.16051 15.42906 0.08 0.08 34.16051+15.42906i 1.079055-0.407625i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_7 TrajSim_7_7
#> 2 Traj_7 Sim_7 TrajSim_7_7
#> 3 Traj_7 Sim_7 TrajSim_7_7
#> 4 Traj_7 Sim_7 TrajSim_7_7
#> 5 Traj_7 Sim_7 TrajSim_7_7
#>
#> [[7]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.30616 9.352517 0.02 0.02 14.30616+9.35252i
#> 3 13.97637 9.025528 0.04 0.04 13.97637+9.02553i
#> 4 13.69618 8.629354 0.06 0.06 13.69618+8.62935i
#> 5 13.42979 8.298973 0.08 0.08 13.42979+8.29897i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_7 TrajSim_8_7
#> 2 -0.2725127-0.3004246i Traj_8 Sim_7 TrajSim_8_7
#> 3 -0.3297935-0.3269892i Traj_8 Sim_7 TrajSim_8_7
#> 4 -0.2801905-0.3961739i Traj_8 Sim_7 TrajSim_8_7
#> 5 -0.2663895-0.3303808i Traj_8 Sim_7 TrajSim_8_7
#>
#> [[7]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.67097 10.018444 0.02 0.02 16.67097+10.01844i
#> 3 16.19599 11.020824 0.04 0.04 16.19599+11.02082i
#> 4 15.53255 11.890275 0.06 0.06 15.53255+11.89027i
#> 5 15.00498 12.990324 0.08 0.08 15.00498+12.99032i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_7 TrajSim_9_7
#> 2 -0.5768280+1.0140313i Traj_9 Sim_7 TrajSim_9_7
#> 3 -0.4749745+1.0023801i Traj_9 Sim_7 TrajSim_9_7
#> 4 -0.6634476+0.8694511i Traj_9 Sim_7 TrajSim_9_7
#> 5 -0.5275684+1.1000494i Traj_9 Sim_7 TrajSim_9_7
#>
#> [[7]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.47390 8.255184 0.02 0.02 15.47390+ 8.25518i
#> 3 14.83050 8.980847 0.04 0.04 14.83050+ 8.98085i
#> 4 14.35548 10.016985 0.06 0.06 14.35548+10.01698i
#> 5 13.72961 10.723890 0.08 0.08 13.72961+10.72389i
#> 6 13.03414 11.574625 0.10 0.10 13.03414+11.57462i
#> 7 12.52613 12.364723 0.12 0.12 12.52613+12.36472i
#> 8 11.84062 13.111791 0.14 0.14 11.84062+13.11179i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_7 TrajSim_10_7
#> 2 -0.7371344+0.7573889i Traj_10 Sim_7 TrajSim_10_7
#> 3 -0.6433929+0.7256634i Traj_10 Sim_7 TrajSim_10_7
#> 4 -0.4750207+1.0361377i Traj_10 Sim_7 TrajSim_10_7
#> 5 -0.6258772+0.7069056i Traj_10 Sim_7 TrajSim_10_7
#> 6 -0.6954605+0.8507345i Traj_10 Sim_7 TrajSim_10_7
#> 7 -0.5080131+0.7900984i Traj_10 Sim_7 TrajSim_10_7
#> 8 -0.6855071+0.7470676i Traj_10 Sim_7 TrajSim_10_7
#>
#> [[7]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.84460 9.209597 0.02 0.02 12.84460+ 9.20960i
#> 3 12.48851 10.181034 0.04 0.04 12.48851+10.18103i
#> 4 12.10115 11.235414 0.06 0.06 12.10115+11.23541i
#> 5 11.56885 12.450884 0.08 0.08 11.56885+12.45088i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_7 TrajSim_11_7
#> 2 -0.3973156+1.1404792i Traj_11 Sim_7 TrajSim_11_7
#> 3 -0.3560872+0.9714365i Traj_11 Sim_7 TrajSim_11_7
#> 4 -0.3873575+1.0543805i Traj_11 Sim_7 TrajSim_11_7
#> 5 -0.5323009+1.2154695i Traj_11 Sim_7 TrajSim_11_7
#>
#>
#> [[8]]
#> [[8]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.84368 16.18524 0.02 0.02 39.84368+16.18524i
#> 3 39.08220 16.95135 0.04 0.04 39.08220+16.95135i
#> 4 38.30854 17.52408 0.06 0.06 38.30854+17.52408i
#> 5 37.71577 18.10399 0.08 0.08 37.71577+18.10399i
#> 6 36.96494 18.90135 0.10 0.10 36.96494+18.90135i
#> 7 36.23504 19.55310 0.12 0.12 36.23504+19.55310i
#> 8 35.54127 20.33812 0.14 0.14 35.54127+20.33812i
#> 9 34.78667 20.98974 0.16 0.16 34.78667+20.98974i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_8 TrajSim_1_8
#> 2 -0.8349983+0.6822964i Traj_1 Sim_8 TrajSim_1_8
#> 3 -0.7614766+0.7661109i Traj_1 Sim_8 TrajSim_1_8
#> 4 -0.7736643+0.5727257i Traj_1 Sim_8 TrajSim_1_8
#> 5 -0.5927726+0.5799145i Traj_1 Sim_8 TrajSim_1_8
#> 6 -0.7508241+0.7973647i Traj_1 Sim_8 TrajSim_1_8
#> 7 -0.7299024+0.6517441i Traj_1 Sim_8 TrajSim_1_8
#> 8 -0.6937674+0.7850210i Traj_1 Sim_8 TrajSim_1_8
#> 9 -0.7546004+0.6516224i Traj_1 Sim_8 TrajSim_1_8
#>
#> [[8]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.63514 15.66944 0.02 0.02 38.63514+15.66944i
#> 3 37.97000 16.40256 0.04 0.04 37.97000+16.40256i
#> 4 37.33756 17.22433 0.06 0.06 37.33756+17.22433i
#> 5 36.68025 17.91527 0.08 0.08 36.68025+17.91527i
#> 6 35.91339 18.65001 0.10 0.10 35.91339+18.65001i
#> 7 35.21628 19.46790 0.12 0.12 35.21628+19.46790i
#> 8 34.49202 20.32947 0.14 0.14 34.49202+20.32947i
#> 9 33.77766 21.25678 0.16 0.16 33.77766+21.25678i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_8 TrajSim_2_8
#> 2 -0.5545678+0.7620910i Traj_2 Sim_8 TrajSim_2_8
#> 3 -0.6651364+0.7331161i Traj_2 Sim_8 TrajSim_2_8
#> 4 -0.6324462+0.8217732i Traj_2 Sim_8 TrajSim_2_8
#> 5 -0.6573106+0.6909369i Traj_2 Sim_8 TrajSim_2_8
#> 6 -0.7668615+0.7347396i Traj_2 Sim_8 TrajSim_2_8
#> 7 -0.6971015+0.8178898i Traj_2 Sim_8 TrajSim_2_8
#> 8 -0.7242674+0.8615688i Traj_2 Sim_8 TrajSim_2_8
#> 9 -0.7143581+0.9273105i Traj_2 Sim_8 TrajSim_2_8
#>
#> [[8]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.24150 16.47380 0.02 0.02 37.24150+16.47380i
#> 3 36.41125 17.36097 0.04 0.04 36.41125+17.36097i
#> 4 35.60552 18.29669 0.06 0.06 35.60552+18.29669i
#> 5 34.78056 19.23429 0.08 0.08 34.78056+19.23429i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_8 TrajSim_3_8
#> 2 -0.8629160+0.9223263i Traj_3 Sim_8 TrajSim_3_8
#> 3 -0.8302448+0.8871671i Traj_3 Sim_8 TrajSim_3_8
#> 4 -0.8057372+0.9357270i Traj_3 Sim_8 TrajSim_3_8
#> 5 -0.8249582+0.9375942i Traj_3 Sim_8 TrajSim_3_8
#>
#> [[8]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.94737 16.88271 0.02 0.02 34.94737+16.88271i
#> 3 34.31941 17.77118 0.04 0.04 34.31941+17.77118i
#> 4 33.46718 18.73581 0.06 0.06 33.46718+18.73581i
#> 5 32.66735 19.57205 0.08 0.08 32.66735+19.57205i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_8 TrajSim_4_8
#> 2 -0.6335117+0.8702053i Traj_4 Sim_8 TrajSim_4_8
#> 3 -0.6279603+0.8884783i Traj_4 Sim_8 TrajSim_4_8
#> 4 -0.8522328+0.9646258i Traj_4 Sim_8 TrajSim_4_8
#> 5 -0.7998324+0.8362356i Traj_4 Sim_8 TrajSim_4_8
#>
#> [[8]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.56110 15.75941 0.02 0.02 30.56110+15.75941i
#> 3 29.85016 16.33579 0.04 0.04 29.85016+16.33579i
#> 4 29.35755 17.11543 0.06 0.06 29.35755+17.11543i
#> 5 28.91292 17.77941 0.08 0.08 28.91292+17.77941i
#> 6 28.45611 18.29326 0.10 0.10 28.45611+18.29326i
#> 7 27.91288 19.26188 0.12 0.12 27.91288+19.26188i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_8 TrajSim_5_8
#> 2 -0.6411102+0.7836760i Traj_5 Sim_8 TrajSim_5_8
#> 3 -0.7109345+0.5763782i Traj_5 Sim_8 TrajSim_5_8
#> 4 -0.4926171+0.7796367i Traj_5 Sim_8 TrajSim_5_8
#> 5 -0.4446270+0.6639784i Traj_5 Sim_8 TrajSim_5_8
#> 6 -0.4568045+0.5138524i Traj_5 Sim_8 TrajSim_5_8
#> 7 -0.5432300+0.9686212i Traj_5 Sim_8 TrajSim_5_8
#>
#> [[8]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.28966 16.09269 0.02 0.02 28.28966+16.09269i
#> 3 27.57553 17.21653 0.04 0.04 27.57553+17.21653i
#> 4 26.84765 18.30368 0.06 0.06 26.84765+18.30368i
#> 5 26.24235 19.24994 0.08 0.08 26.24235+19.24994i
#> 6 25.57408 20.18062 0.10 0.10 25.57408+20.18062i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_8 TrajSim_6_8
#> 2 -0.6051979+0.9845997i Traj_6 Sim_8 TrajSim_6_8
#> 3 -0.7141272+1.1238397i Traj_6 Sim_8 TrajSim_6_8
#> 4 -0.7278762+1.0871532i Traj_6 Sim_8 TrajSim_6_8
#> 5 -0.6053038+0.9462594i Traj_6 Sim_8 TrajSim_6_8
#> 6 -0.6682702+0.9306746i Traj_6 Sim_8 TrajSim_6_8
#>
#> [[8]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.52926 16.58493 0.02 0.02 30.52926+16.58493i 1.332198-0.506247i
#> 3 31.68962 16.06416 0.04 0.04 31.68962+16.06416i 1.160359-0.520774i
#> 4 33.05741 15.63452 0.06 0.06 33.05741+15.63452i 1.367793-0.429635i
#> 5 34.32389 15.31146 0.08 0.08 34.32389+15.31146i 1.266483-0.323058i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_8 TrajSim_7_8
#> 2 Traj_7 Sim_8 TrajSim_7_8
#> 3 Traj_7 Sim_8 TrajSim_7_8
#> 4 Traj_7 Sim_8 TrajSim_7_8
#> 5 Traj_7 Sim_8 TrajSim_7_8
#>
#> [[8]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.27886 9.347299 0.02 0.02 14.27886+9.34730i
#> 3 14.07124 8.943598 0.04 0.04 14.07124+8.94360i
#> 4 13.82021 8.555883 0.06 0.06 13.82021+8.55588i
#> 5 13.46194 8.230968 0.08 0.08 13.46194+8.23097i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_8 TrajSim_8_8
#> 2 -0.2998190-0.3056425i Traj_8 Sim_8 TrajSim_8_8
#> 3 -0.2076151-0.4037012i Traj_8 Sim_8 TrajSim_8_8
#> 4 -0.2510368-0.3877151i Traj_8 Sim_8 TrajSim_8_8
#> 5 -0.3582626-0.3249150i Traj_8 Sim_8 TrajSim_8_8
#>
#> [[8]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.73418 10.106282 0.02 0.02 16.73418+10.10628i
#> 3 16.20106 11.080101 0.04 0.04 16.20106+11.08010i
#> 4 15.66049 12.086763 0.06 0.06 15.66049+12.08676i
#> 5 15.15761 13.144884 0.08 0.08 15.15761+13.14488i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_8 TrajSim_9_8
#> 2 -0.5136174+1.1018694i Traj_9 Sim_8 TrajSim_9_8
#> 3 -0.5331224+0.9738193i Traj_9 Sim_8 TrajSim_9_8
#> 4 -0.5405617+1.0066622i Traj_9 Sim_8 TrajSim_9_8
#> 5 -0.5028788+1.0581203i Traj_9 Sim_8 TrajSim_9_8
#>
#> [[8]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.67450 8.383588 0.02 0.02 15.67450+ 8.38359i
#> 3 15.09850 9.203967 0.04 0.04 15.09850+ 9.20397i
#> 4 14.34040 9.951717 0.06 0.06 14.34040+ 9.95172i
#> 5 13.93819 10.794007 0.08 0.08 13.93819+10.79401i
#> 6 13.30323 11.667030 0.10 0.10 13.30323+11.66703i
#> 7 12.82724 12.543170 0.12 0.12 12.82724+12.54317i
#> 8 12.34308 13.490166 0.14 0.14 12.34308+13.49017i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_8 TrajSim_10_8
#> 2 -0.5365296+0.8857939i Traj_10 Sim_8 TrajSim_10_8
#> 3 -0.5760052+0.8203786i Traj_10 Sim_8 TrajSim_10_8
#> 4 -0.7580985+0.7477504i Traj_10 Sim_8 TrajSim_10_8
#> 5 -0.4022038+0.8422891i Traj_10 Sim_8 TrajSim_10_8
#> 6 -0.6349645+0.8730230i Traj_10 Sim_8 TrajSim_10_8
#> 7 -0.4759896+0.8761401i Traj_10 Sim_8 TrajSim_10_8
#> 8 -0.4841551+0.9469966i Traj_10 Sim_8 TrajSim_10_8
#>
#> [[8]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.89426 9.245359 0.02 0.02 12.89426+ 9.24536i
#> 3 12.51027 10.354739 0.04 0.04 12.51027+10.35474i
#> 4 12.02866 11.435128 0.06 0.06 12.02866+11.43513i
#> 5 11.65119 12.436853 0.08 0.08 11.65119+12.43685i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_8 TrajSim_11_8
#> 2 -0.347652+1.176241i Traj_11 Sim_8 TrajSim_11_8
#> 3 -0.383986+1.109380i Traj_11 Sim_8 TrajSim_11_8
#> 4 -0.481616+1.080389i Traj_11 Sim_8 TrajSim_11_8
#> 5 -0.377464+1.001725i Traj_11 Sim_8 TrajSim_11_8
#>
#>
#> [[9]]
#> [[9]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.13086 16.15695 0.02 0.02 40.13086+16.15695i
#> 3 39.47439 16.86287 0.04 0.04 39.47439+16.86287i
#> 4 38.74087 17.39473 0.06 0.06 38.74087+17.39473i
#> 5 38.02575 18.10058 0.08 0.08 38.02575+18.10058i
#> 6 37.28047 18.70004 0.10 0.10 37.28047+18.70004i
#> 7 36.53577 19.36566 0.12 0.12 36.53577+19.36566i
#> 8 35.79647 20.08550 0.14 0.14 35.79647+20.08550i
#> 9 35.09695 20.90187 0.16 0.16 35.09695+20.90187i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_9 TrajSim_1_9
#> 2 -0.5478180+0.6540042i Traj_1 Sim_9 TrajSim_1_9
#> 3 -0.6564712+0.7059205i Traj_1 Sim_9 TrajSim_1_9
#> 4 -0.7335173+0.5318634i Traj_1 Sim_9 TrajSim_1_9
#> 5 -0.7151219+0.7058524i Traj_1 Sim_9 TrajSim_1_9
#> 6 -0.7452792+0.5994606i Traj_1 Sim_9 TrajSim_1_9
#> 7 -0.7446998+0.6656214i Traj_1 Sim_9 TrajSim_1_9
#> 8 -0.7392989+0.7198318i Traj_1 Sim_9 TrajSim_1_9
#> 9 -0.6995210+0.8163702i Traj_1 Sim_9 TrajSim_1_9
#>
#> [[9]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.50186 15.78156 0.02 0.02 38.50186+15.78156i
#> 3 37.89205 16.65057 0.04 0.04 37.89205+16.65057i
#> 4 37.38739 17.52490 0.06 0.06 37.38739+17.52490i
#> 5 36.71367 18.28843 0.08 0.08 36.71367+18.28843i
#> 6 36.09852 19.14401 0.10 0.10 36.09852+19.14401i
#> 7 35.61685 19.84058 0.12 0.12 35.61685+19.84058i
#> 8 35.10191 20.63494 0.14 0.14 35.10191+20.63494i
#> 9 34.58376 21.57560 0.16 0.16 34.58376+21.57560i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_9 TrajSim_2_9
#> 2 -0.6878509+0.8742102i Traj_2 Sim_9 TrajSim_2_9
#> 3 -0.6098057+0.8690040i Traj_2 Sim_9 TrajSim_2_9
#> 4 -0.5046646+0.8743296i Traj_2 Sim_9 TrajSim_2_9
#> 5 -0.6737142+0.7635347i Traj_2 Sim_9 TrajSim_2_9
#> 6 -0.6151521+0.8555726i Traj_2 Sim_9 TrajSim_2_9
#> 7 -0.4816685+0.6965746i Traj_2 Sim_9 TrajSim_2_9
#> 8 -0.5149462+0.7943637i Traj_2 Sim_9 TrajSim_2_9
#> 9 -0.5181506+0.9406597i Traj_2 Sim_9 TrajSim_2_9
#>
#> [[9]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.18831 16.48178 0.02 0.02 37.18831+16.48178i
#> 3 36.29799 17.29613 0.04 0.04 36.29799+17.29613i
#> 4 35.49483 18.09926 0.06 0.06 35.49483+18.09926i
#> 5 34.69646 19.01190 0.08 0.08 34.69646+19.01190i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_9 TrajSim_3_9
#> 2 -0.9161052+0.9303108i Traj_3 Sim_9 TrajSim_3_9
#> 3 -0.8903156+0.8143478i Traj_3 Sim_9 TrajSim_3_9
#> 4 -0.8031683+0.8031318i Traj_3 Sim_9 TrajSim_3_9
#> 5 -0.7983609+0.9126352i Traj_3 Sim_9 TrajSim_3_9
#>
#> [[9]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.95060 16.99292 0.02 0.02 34.95060+16.99292i
#> 3 34.26628 17.89202 0.04 0.04 34.26628+17.89202i
#> 4 33.74018 18.77132 0.06 0.06 33.74018+18.77132i
#> 5 33.10794 19.74105 0.08 0.08 33.10794+19.74105i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_9 TrajSim_4_9
#> 2 -0.6302870+0.9804151i Traj_4 Sim_9 TrajSim_4_9
#> 3 -0.6843150+0.8991084i Traj_4 Sim_9 TrajSim_4_9
#> 4 -0.5261064+0.8792984i Traj_4 Sim_9 TrajSim_4_9
#> 5 -0.6322368+0.9697292i Traj_4 Sim_9 TrajSim_4_9
#>
#> [[9]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.76343 15.81713 0.02 0.02 30.76343+15.81713i
#> 3 30.30031 16.63052 0.04 0.04 30.30031+16.63052i
#> 4 30.24917 17.44265 0.06 0.06 30.24917+17.44265i
#> 5 29.77506 18.20077 0.08 0.08 29.77506+18.20077i
#> 6 29.38248 19.19499 0.10 0.10 29.38248+19.19499i
#> 7 28.76358 19.76312 0.12 0.12 28.76358+19.76312i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_9 TrajSim_5_9
#> 2 -0.4387794+0.8413930i Traj_5 Sim_9 TrajSim_5_9
#> 3 -0.4631192+0.8133908i Traj_5 Sim_9 TrajSim_5_9
#> 4 -0.0511356+0.8121250i Traj_5 Sim_9 TrajSim_5_9
#> 5 -0.4741140+0.7581259i Traj_5 Sim_9 TrajSim_5_9
#> 6 -0.3925805+0.9942145i Traj_5 Sim_9 TrajSim_5_9
#> 7 -0.6188974+0.5681355i Traj_5 Sim_9 TrajSim_5_9
#>
#> [[9]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.10814 16.08850 0.02 0.02 28.10814+16.08850i
#> 3 27.54461 17.07068 0.04 0.04 27.54461+17.07068i
#> 4 26.89202 18.04266 0.06 0.06 26.89202+18.04266i
#> 5 26.17778 19.01300 0.08 0.08 26.17778+19.01300i
#> 6 25.59571 20.00353 0.10 0.10 25.59571+20.00353i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_9 TrajSim_6_9
#> 2 -0.7867161+0.9804139i Traj_6 Sim_9 TrajSim_6_9
#> 3 -0.5635244+0.9821759i Traj_6 Sim_9 TrajSim_6_9
#> 4 -0.6525924+0.9719833i Traj_6 Sim_9 TrajSim_6_9
#> 5 -0.7142453+0.9703373i Traj_6 Sim_9 TrajSim_6_9
#> 6 -0.5820708+0.9905337i Traj_6 Sim_9 TrajSim_6_9
#>
#> [[9]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.50242 16.45595 0.02 0.02 30.50242+16.45595i 1.305364-0.635226i
#> 3 32.02248 15.71670 0.04 0.04 32.02248+15.71670i 1.520051-0.739249i
#> 4 33.41935 15.16015 0.06 0.06 33.41935+15.16015i 1.396875-0.556557i
#> 5 34.66164 14.71282 0.08 0.08 34.66164+14.71282i 1.242290-0.447329i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_9 TrajSim_7_9
#> 2 Traj_7 Sim_9 TrajSim_7_9
#> 3 Traj_7 Sim_9 TrajSim_7_9
#> 4 Traj_7 Sim_9 TrajSim_7_9
#> 5 Traj_7 Sim_9 TrajSim_7_9
#>
#> [[9]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.20573 9.415200 0.02 0.02 14.20573+9.41520i
#> 3 13.97796 9.053118 0.04 0.04 13.97796+9.05312i
#> 4 13.69106 8.676435 0.06 0.06 13.69106+8.67644i
#> 5 13.42303 8.288989 0.08 0.08 13.42303+8.28899i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_9 TrajSim_8_9
#> 2 -0.3729451-0.2377419i Traj_8 Sim_9 TrajSim_8_9
#> 3 -0.2277741-0.3620815i Traj_8 Sim_9 TrajSim_8_9
#> 4 -0.2868983-0.3766831i Traj_8 Sim_9 TrajSim_8_9
#> 5 -0.2680255-0.3874466i Traj_8 Sim_9 TrajSim_8_9
#>
#> [[9]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.85203 10.065019 0.02 0.02 16.85203+10.06502i
#> 3 16.27735 11.088591 0.04 0.04 16.27735+11.08859i
#> 4 15.64067 12.025518 0.06 0.06 15.64067+12.02552i
#> 5 15.20338 13.010127 0.08 0.08 15.20338+13.01013i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_9 TrajSim_9_9
#> 2 -0.3957697+1.0606069i Traj_9 Sim_9 TrajSim_9_9
#> 3 -0.5746733+1.0235714i Traj_9 Sim_9 TrajSim_9_9
#> 4 -0.6366829+0.9369271i Traj_9 Sim_9 TrajSim_9_9
#> 5 -0.4372888+0.9846094i Traj_9 Sim_9 TrajSim_9_9
#>
#> [[9]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.57009 8.169147 0.02 0.02 15.57009+ 8.16915i
#> 3 14.93713 8.989932 0.04 0.04 14.93713+ 8.98993i
#> 4 14.27088 9.787031 0.06 0.06 14.27088+ 9.78703i
#> 5 13.70170 10.676512 0.08 0.08 13.70170+10.67651i
#> 6 12.91775 11.397002 0.10 0.10 12.91775+11.39700i
#> 7 12.27354 12.182347 0.12 0.12 12.27354+12.18235i
#> 8 11.62440 13.020369 0.14 0.14 11.62440+13.02037i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_9 TrajSim_10_9
#> 2 -0.6409400+0.6713520i Traj_10 Sim_9 TrajSim_10_9
#> 3 -0.6329595+0.8207856i Traj_10 Sim_9 TrajSim_10_9
#> 4 -0.6662553+0.7970983i Traj_10 Sim_9 TrajSim_10_9
#> 5 -0.5691750+0.8894811i Traj_10 Sim_9 TrajSim_10_9
#> 6 -0.7839525+0.7204903i Traj_10 Sim_9 TrajSim_10_9
#> 7 -0.6442066+0.7853452i Traj_10 Sim_9 TrajSim_10_9
#> 8 -0.6491425+0.8380216i Traj_10 Sim_9 TrajSim_10_9
#>
#> [[9]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.76934 9.130121 0.02 0.02 12.76934+ 9.13012i
#> 3 12.35265 10.187258 0.04 0.04 12.35265+10.18726i
#> 4 11.90706 11.402114 0.06 0.06 11.90706+11.40211i
#> 5 11.55298 12.505589 0.08 0.08 11.55298+12.50559i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_9 TrajSim_11_9
#> 2 -0.472571+1.061003i Traj_11 Sim_9 TrajSim_11_9
#> 3 -0.416691+1.057137i Traj_11 Sim_9 TrajSim_11_9
#> 4 -0.445593+1.214856i Traj_11 Sim_9 TrajSim_11_9
#> 5 -0.354080+1.103475i Traj_11 Sim_9 TrajSim_11_9
#>
#>
#> [[10]]
#> [[10]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.98185 16.23630 0.02 0.02 39.98185+16.23630i
#> 3 39.28003 16.90173 0.04 0.04 39.28003+16.90173i
#> 4 38.67139 17.61091 0.06 0.06 38.67139+17.61091i
#> 5 38.07322 18.18856 0.08 0.08 38.07322+18.18856i
#> 6 37.48319 18.90185 0.10 0.10 37.48319+18.90185i
#> 7 36.83330 19.53367 0.12 0.12 36.83330+19.53367i
#> 8 35.96988 20.09030 0.14 0.14 35.96988+20.09030i
#> 9 35.26270 20.82403 0.16 0.16 35.26270+20.82403i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_10 TrajSim_1_10
#> 2 -0.6968326+0.7333584i Traj_1 Sim_10 TrajSim_1_10
#> 3 -0.7018162+0.6654283i Traj_1 Sim_10 TrajSim_1_10
#> 4 -0.6086360+0.7091817i Traj_1 Sim_10 TrajSim_1_10
#> 5 -0.5981762+0.5776490i Traj_1 Sim_10 TrajSim_1_10
#> 6 -0.5900242+0.7132939i Traj_1 Sim_10 TrajSim_1_10
#> 7 -0.6498897+0.6318194i Traj_1 Sim_10 TrajSim_1_10
#> 8 -0.8634214+0.5566318i Traj_1 Sim_10 TrajSim_1_10
#> 9 -0.7071873+0.7337249i Traj_1 Sim_10 TrajSim_1_10
#>
#> [[10]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.42480 15.71427 0.02 0.02 38.42480+15.71427i
#> 3 37.68981 16.56226 0.04 0.04 37.68981+16.56226i
#> 4 36.98353 17.24485 0.06 0.06 36.98353+17.24485i
#> 5 36.39937 18.01163 0.08 0.08 36.39937+18.01163i
#> 6 35.82135 18.98821 0.10 0.10 35.82135+18.98821i
#> 7 35.15951 19.68392 0.12 0.12 35.15951+19.68392i
#> 8 34.27622 20.45479 0.14 0.14 34.27622+20.45479i
#> 9 33.63670 21.19949 0.16 0.16 33.63670+21.19949i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_10 TrajSim_2_10
#> 2 -0.7649067+0.8069194i Traj_2 Sim_10 TrajSim_2_10
#> 3 -0.7349931+0.8479911i Traj_2 Sim_10 TrajSim_2_10
#> 4 -0.7062769+0.6825817i Traj_2 Sim_10 TrajSim_2_10
#> 5 -0.5841624+0.7667797i Traj_2 Sim_10 TrajSim_2_10
#> 6 -0.5780182+0.9765802i Traj_2 Sim_10 TrajSim_2_10
#> 7 -0.6618395+0.6957155i Traj_2 Sim_10 TrajSim_2_10
#> 8 -0.8832924+0.7708701i Traj_2 Sim_10 TrajSim_2_10
#> 9 -0.6395234+0.7447022i Traj_2 Sim_10 TrajSim_2_10
#>
#> [[10]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.33194 16.43142 0.02 0.02 37.33194+16.43142i
#> 3 36.53197 17.29994 0.04 0.04 36.53197+17.29994i
#> 4 35.67520 18.23930 0.06 0.06 35.67520+18.23930i
#> 5 34.82755 19.11031 0.08 0.08 34.82755+19.11031i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_10 TrajSim_3_10
#> 2 -0.7724695+0.8799487i Traj_3 Sim_10 TrajSim_3_10
#> 3 -0.7999793+0.8685232i Traj_3 Sim_10 TrajSim_3_10
#> 4 -0.8567653+0.9393565i Traj_3 Sim_10 TrajSim_3_10
#> 5 -0.8476454+0.8710126i Traj_3 Sim_10 TrajSim_3_10
#>
#> [[10]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.04626 16.81405 0.02 0.02 35.04626+16.81405i
#> 3 34.38484 17.69979 0.04 0.04 34.38484+17.69979i
#> 4 33.77056 18.52472 0.06 0.06 33.77056+18.52472i
#> 5 33.07052 19.35428 0.08 0.08 33.07052+19.35428i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_10 TrajSim_4_10
#> 2 -0.5346273+0.8015495i Traj_4 Sim_10 TrajSim_4_10
#> 3 -0.6614177+0.8857347i Traj_4 Sim_10 TrajSim_4_10
#> 4 -0.6142842+0.8249322i Traj_4 Sim_10 TrajSim_4_10
#> 5 -0.7000377+0.8295638i Traj_4 Sim_10 TrajSim_4_10
#>
#> [[10]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.90001 15.74004 0.02 0.02 30.90001+15.74004i
#> 3 30.59370 16.54463 0.04 0.04 30.59370+16.54463i
#> 4 30.30403 17.29543 0.06 0.06 30.30403+17.29543i
#> 5 29.78982 17.82693 0.08 0.08 29.78982+17.82693i
#> 6 29.19532 18.66427 0.10 0.10 29.19532+18.66427i
#> 7 28.95234 19.38669 0.12 0.12 28.95234+19.38669i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_10 TrajSim_5_10
#> 2 -0.3022015+0.7643036i Traj_5 Sim_10 TrajSim_5_10
#> 3 -0.3063032+0.8045905i Traj_5 Sim_10 TrajSim_5_10
#> 4 -0.2896759+0.7508023i Traj_5 Sim_10 TrajSim_5_10
#> 5 -0.5142065+0.5314997i Traj_5 Sim_10 TrajSim_5_10
#> 6 -0.5944972+0.8373360i Traj_5 Sim_10 TrajSim_5_10
#> 7 -0.2429879+0.7224182i Traj_5 Sim_10 TrajSim_5_10
#>
#> [[10]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.28094 16.09668 0.02 0.02 28.28094+16.09668i
#> 3 27.59354 17.17424 0.04 0.04 27.59354+17.17424i
#> 4 27.07287 18.18224 0.06 0.06 27.07287+18.18224i
#> 5 26.36199 19.28625 0.08 0.08 26.36199+19.28625i
#> 6 25.61579 20.33893 0.10 0.10 25.61579+20.33893i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_10 TrajSim_6_10
#> 2 -0.6139123+0.9885927i Traj_6 Sim_10 TrajSim_6_10
#> 3 -0.6874009+1.0775577i Traj_6 Sim_10 TrajSim_6_10
#> 4 -0.5206689+1.0079995i Traj_6 Sim_10 TrajSim_6_10
#> 5 -0.7108839+1.1040092i Traj_6 Sim_10 TrajSim_6_10
#> 6 -0.7462008+1.0526826i Traj_6 Sim_10 TrajSim_6_10
#>
#> [[10]][[7]]
#> x y time displacementTime polar
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i
#> 2 30.45256 16.53208 0.02 0.02 30.45256+16.53208i
#> 3 31.71939 16.00669 0.04 0.04 31.71939+16.00669i
#> 4 32.49567 15.74083 0.06 0.06 32.49567+15.74083i
#> 5 33.87487 15.20270 0.08 0.08 33.87487+15.20270i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_7 Sim_10 TrajSim_7_10
#> 2 1.2555038-0.5590983i Traj_7 Sim_10 TrajSim_7_10
#> 3 1.2668286-0.5253883i Traj_7 Sim_10 TrajSim_7_10
#> 4 0.7762743-0.2658595i Traj_7 Sim_10 TrajSim_7_10
#> 5 1.3792007-0.5381323i Traj_7 Sim_10 TrajSim_7_10
#>
#> [[10]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.17104 9.389901 0.02 0.02 14.17104+9.38990i
#> 3 13.89876 9.047646 0.04 0.04 13.89876+9.04765i
#> 4 13.58834 8.668334 0.06 0.06 13.58834+8.66833i
#> 5 13.27902 8.308572 0.08 0.08 13.27902+8.30857i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_10 TrajSim_8_10
#> 2 -0.4076354-0.2630407i Traj_8 Sim_10 TrajSim_8_10
#> 3 -0.2722866-0.3422553i Traj_8 Sim_10 TrajSim_8_10
#> 4 -0.3104129-0.3793114i Traj_8 Sim_10 TrajSim_8_10
#> 5 -0.3093202-0.3597627i Traj_8 Sim_10 TrajSim_8_10
#>
#> [[10]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.71297 9.968455 0.02 0.02 16.71297+ 9.96845i
#> 3 16.48475 11.078136 0.04 0.04 16.48475+11.07814i
#> 4 16.04110 12.159559 0.06 0.06 16.04110+12.15956i
#> 5 15.39360 13.181696 0.08 0.08 15.39360+13.18170i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_10 TrajSim_9_10
#> 2 -0.5348291+0.9640425i Traj_9 Sim_10 TrajSim_9_10
#> 3 -0.2282168+1.1096816i Traj_9 Sim_10 TrajSim_9_10
#> 4 -0.4436478+1.0814225i Traj_9 Sim_10 TrajSim_9_10
#> 5 -0.6474979+1.0221374i Traj_9 Sim_10 TrajSim_9_10
#>
#> [[10]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.58444 8.327180 0.02 0.02 15.58444+ 8.32718i
#> 3 14.91163 9.046702 0.04 0.04 14.91163+ 9.04670i
#> 4 14.32779 10.022818 0.06 0.06 14.32779+10.02282i
#> 5 13.92343 10.943073 0.08 0.08 13.92343+10.94307i
#> 6 13.30429 11.724468 0.10 0.10 13.30429+11.72447i
#> 7 12.82576 12.573246 0.12 0.12 12.82576+12.57325i
#> 8 12.22378 13.353506 0.14 0.14 12.22378+13.35351i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_10 TrajSim_10_10
#> 2 -0.6265864+0.8293849i Traj_10 Sim_10 TrajSim_10_10
#> 3 -0.6728130+0.7195228i Traj_10 Sim_10 TrajSim_10_10
#> 4 -0.5838383+0.9761161i Traj_10 Sim_10 TrajSim_10_10
#> 5 -0.4043601+0.9202542i Traj_10 Sim_10 TrajSim_10_10
#> 6 -0.6191384+0.7813958i Traj_10 Sim_10 TrajSim_10_10
#> 7 -0.4785295+0.8487778i Traj_10 Sim_10 TrajSim_10_10
#> 8 -0.6019886+0.7802599i Traj_10 Sim_10 TrajSim_10_10
#>
#> [[10]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.80258 9.305939 0.02 0.02 12.80258+ 9.30594i
#> 3 12.32757 10.385840 0.04 0.04 12.32757+10.38584i
#> 4 11.92659 11.296929 0.06 0.06 11.92659+11.29693i
#> 5 11.47624 12.238687 0.08 0.08 11.47624+12.23869i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_10 TrajSim_11_10
#> 2 -0.4393334+1.2368205i Traj_11 Sim_10 TrajSim_11_10
#> 3 -0.4750099+1.0799016i Traj_11 Sim_10 TrajSim_11_10
#> 4 -0.4009775+0.9110886i Traj_11 Sim_10 TrajSim_11_10
#> 5 -0.4503500+0.9417586i Traj_11 Sim_10 TrajSim_11_10
sim_constrained_mount <- simulate_track(sbMountTom, nsim = 100, model = "Constrained")
print(sim_constrained_mount[1:10])
#> [[1]]
#> [[1]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.90097 16.19336 0.02 0.02 39.90097+16.19336i
#> 3 39.20818 16.82436 0.04 0.04 39.20818+16.82436i
#> 4 38.56564 17.63263 0.06 0.06 38.56564+17.63263i
#> 5 37.82069 18.28744 0.08 0.08 37.82069+18.28744i
#> 6 37.06458 18.90338 0.10 0.10 37.06458+18.90338i
#> 7 36.23192 19.49590 0.12 0.12 36.23192+19.49590i
#> 8 35.38789 19.99090 0.14 0.14 35.38789+19.99090i
#> 9 34.55574 20.41402 0.16 0.16 34.55574+20.41402i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_1 TrajSim_1_1
#> 2 -0.7777141+0.6904176i Traj_1 Sim_1 TrajSim_1_1
#> 3 -0.6927857+0.6309994i Traj_1 Sim_1 TrajSim_1_1
#> 4 -0.6425438+0.8082727i Traj_1 Sim_1 TrajSim_1_1
#> 5 -0.7449416+0.6548049i Traj_1 Sim_1 TrajSim_1_1
#> 6 -0.7561183+0.6159465i Traj_1 Sim_1 TrajSim_1_1
#> 7 -0.8326603+0.5925205i Traj_1 Sim_1 TrajSim_1_1
#> 8 -0.8440257+0.4949927i Traj_1 Sim_1 TrajSim_1_1
#> 9 -0.8321539+0.4231284i Traj_1 Sim_1 TrajSim_1_1
#>
#> [[1]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.48548 15.69091 0.02 0.02 38.48548+15.69091i
#> 3 37.76131 16.47670 0.04 0.04 37.76131+16.47670i
#> 4 37.05867 17.26586 0.06 0.06 37.05867+17.26586i
#> 5 36.28726 17.99524 0.08 0.08 36.28726+17.99524i
#> 6 35.39715 18.75699 0.10 0.10 35.39715+18.75699i
#> 7 34.57497 19.36204 0.12 0.12 34.57497+19.36204i
#> 8 33.72806 19.94993 0.14 0.14 33.72806+19.94993i
#> 9 32.88129 20.54923 0.16 0.16 32.88129+20.54923i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_1 TrajSim_2_1
#> 2 -0.7042312+0.7835598i Traj_2 Sim_1 TrajSim_2_1
#> 3 -0.7241707+0.7857861i Traj_2 Sim_1 TrajSim_2_1
#> 4 -0.7026317+0.7891587i Traj_2 Sim_1 TrajSim_2_1
#> 5 -0.7714121+0.7293860i Traj_2 Sim_1 TrajSim_2_1
#> 6 -0.8901126+0.7617437i Traj_2 Sim_1 TrajSim_2_1
#> 7 -0.8221827+0.6050507i Traj_2 Sim_1 TrajSim_2_1
#> 8 -0.8469064+0.5878952i Traj_2 Sim_1 TrajSim_2_1
#> 9 -0.8467729+0.5992968i Traj_2 Sim_1 TrajSim_2_1
#>
#> [[1]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.36515 16.42921 0.02 0.02 37.36515+16.42921i
#> 3 36.62265 17.36490 0.04 0.04 36.62265+17.36490i
#> 4 36.01028 18.17405 0.06 0.06 36.01028+18.17405i
#> 5 35.15981 19.33736 0.08 0.08 35.15981+19.33736i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_1 TrajSim_3_1
#> 2 -0.7392663+0.8777400i Traj_3 Sim_1 TrajSim_3_1
#> 3 -0.7424964+0.9356896i Traj_3 Sim_1 TrajSim_3_1
#> 4 -0.6123743+0.8091484i Traj_3 Sim_1 TrajSim_3_1
#> 5 -0.8504635+1.1633124i Traj_3 Sim_1 TrajSim_3_1
#>
#> [[1]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.03509 17.04460 0.02 0.02 35.03509+17.04460i
#> 3 34.47036 17.90860 0.04 0.04 34.47036+17.90860i
#> 4 33.91252 18.70622 0.06 0.06 33.91252+18.70622i
#> 5 33.19749 19.73320 0.08 0.08 33.19749+19.73320i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_1 TrajSim_4_1
#> 2 -0.5457980+1.0321024i Traj_4 Sim_1 TrajSim_4_1
#> 3 -0.5647234+0.8639930i Traj_4 Sim_1 TrajSim_4_1
#> 4 -0.5578390+0.7976232i Traj_4 Sim_1 TrajSim_4_1
#> 5 -0.7150381+1.0269853i Traj_4 Sim_1 TrajSim_4_1
#>
#> [[1]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.77224 15.89441 0.02 0.02 30.77224+15.89441i
#> 3 30.51047 16.61385 0.04 0.04 30.51047+16.61385i
#> 4 30.21352 17.44536 0.06 0.06 30.21352+17.44536i
#> 5 29.95145 18.26145 0.08 0.08 29.95145+18.26145i
#> 6 29.72621 19.05831 0.10 0.10 29.72621+19.05831i
#> 7 29.24983 19.95428 0.12 0.12 29.24983+19.95428i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_1 TrajSim_5_1
#> 2 -0.4299664+0.9186691i Traj_5 Sim_1 TrajSim_5_1
#> 3 -0.2617748+0.7194488i Traj_5 Sim_1 TrajSim_5_1
#> 4 -0.2969433+0.8315019i Traj_5 Sim_1 TrajSim_5_1
#> 5 -0.2620709+0.8160934i Traj_5 Sim_1 TrajSim_5_1
#> 6 -0.2252409+0.7968609i Traj_5 Sim_1 TrajSim_5_1
#> 7 -0.4763851+0.8959730i Traj_5 Sim_1 TrajSim_5_1
#>
#> [[1]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.26787 16.16457 0.02 0.02 28.26787+16.16457i
#> 3 27.54593 17.19546 0.04 0.04 27.54593+17.19546i
#> 4 26.98571 18.15647 0.06 0.06 26.98571+18.15647i
#> 5 26.45820 19.20055 0.08 0.08 26.45820+19.20055i
#> 6 25.91100 20.21125 0.10 0.10 25.91100+20.21125i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_1 TrajSim_6_1
#> 2 -0.6269870+1.0564763i Traj_6 Sim_1 TrajSim_6_1
#> 3 -0.7219399+1.0308984i Traj_6 Sim_1 TrajSim_6_1
#> 4 -0.5602202+0.9610086i Traj_6 Sim_1 TrajSim_6_1
#> 5 -0.5275084+1.0440778i Traj_6 Sim_1 TrajSim_6_1
#> 6 -0.5472023+1.0107005i Traj_6 Sim_1 TrajSim_6_1
#>
#> [[1]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.55185 16.64613 0.02 0.02 30.55185+16.64613i 1.354790-0.445044i
#> 3 31.86275 16.19808 0.04 0.04 31.86275+16.19808i 1.310900-0.448056i
#> 4 33.06405 15.86085 0.06 0.06 33.06405+15.86085i 1.201296-0.337225i
#> 5 34.25479 15.52785 0.08 0.08 34.25479+15.52785i 1.190744-0.333002i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_1 TrajSim_7_1
#> 2 Traj_7 Sim_1 TrajSim_7_1
#> 3 Traj_7 Sim_1 TrajSim_7_1
#> 4 Traj_7 Sim_1 TrajSim_7_1
#> 5 Traj_7 Sim_1 TrajSim_7_1
#>
#> [[1]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.25205 9.360927 0.02 0.02 14.25205+9.36093i
#> 3 13.99853 9.034722 0.04 0.04 13.99853+9.03472i
#> 4 13.78517 8.720568 0.06 0.06 13.78517+8.72057i
#> 5 13.59914 8.293327 0.08 0.08 13.59914+8.29333i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_1 TrajSim_8_1
#> 2 -0.3266264-0.2920145i Traj_8 Sim_1 TrajSim_8_1
#> 3 -0.2535190-0.3262050i Traj_8 Sim_1 TrajSim_8_1
#> 4 -0.2133585-0.3141539i Traj_8 Sim_1 TrajSim_8_1
#> 5 -0.1860329-0.4272417i Traj_8 Sim_1 TrajSim_8_1
#>
#> [[1]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.69443 10.021104 0.02 0.02 16.69443+10.02110i
#> 3 16.11890 10.951945 0.04 0.04 16.11890+10.95195i
#> 4 15.63293 12.000275 0.06 0.06 15.63293+12.00028i
#> 5 15.31157 13.019452 0.08 0.08 15.31157+13.01945i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_1 TrajSim_9_1
#> 2 -0.5533694+1.0166916i Traj_9 Sim_1 TrajSim_9_1
#> 3 -0.5755246+0.9308411i Traj_9 Sim_1 TrajSim_9_1
#> 4 -0.4859706+1.0483302i Traj_9 Sim_1 TrajSim_9_1
#> 5 -0.3213611+1.0191763i Traj_9 Sim_1 TrajSim_9_1
#>
#> [[1]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.53397 8.365419 0.02 0.02 15.53397+ 8.36542i
#> 3 14.95247 9.131602 0.04 0.04 14.95247+ 9.13160i
#> 4 14.47090 9.995206 0.06 0.06 14.47090+ 9.99521i
#> 5 13.95704 10.883817 0.08 0.08 13.95704+10.88382i
#> 6 13.39300 11.836336 0.10 0.10 13.39300+11.83634i
#> 7 12.81667 12.628915 0.12 0.12 12.81667+12.62892i
#> 8 12.14659 13.330090 0.14 0.14 12.14659+13.33009i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_1 TrajSim_10_1
#> 2 -0.6770653+0.8676248i Traj_10 Sim_1 TrajSim_10_1
#> 3 -0.5814944+0.7661824i Traj_10 Sim_1 TrajSim_10_1
#> 4 -0.4815734+0.8636040i Traj_10 Sim_1 TrajSim_10_1
#> 5 -0.5138587+0.8886111i Traj_10 Sim_1 TrajSim_10_1
#> 6 -0.5640382+0.9525188i Traj_10 Sim_1 TrajSim_10_1
#> 7 -0.5763334+0.7925798i Traj_10 Sim_1 TrajSim_10_1
#> 8 -0.6700792+0.7011747i Traj_10 Sim_1 TrajSim_10_1
#>
#> [[1]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.61458 9.186976 0.02 0.02 12.61458+ 9.18698i
#> 3 11.98933 10.288119 0.04 0.04 11.98933+10.28812i
#> 4 11.32024 11.171199 0.06 0.06 11.32024+11.17120i
#> 5 10.68292 12.110185 0.08 0.08 10.68292+12.11018i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_1 TrajSim_11_1
#> 2 -0.6273373+1.1178580i Traj_11 Sim_1 TrajSim_11_1
#> 3 -0.6252419+1.1011427i Traj_11 Sim_1 TrajSim_11_1
#> 4 -0.6690911+0.8830802i Traj_11 Sim_1 TrajSim_11_1
#> 5 -0.6373177+0.9389858i Traj_11 Sim_1 TrajSim_11_1
#>
#>
#> [[2]]
#> [[2]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.00225 16.24517 0.02 0.02 40.00225+16.24517i
#> 3 39.38040 16.98335 0.04 0.04 39.38040+16.98335i
#> 4 38.79616 17.68077 0.06 0.06 38.79616+17.68077i
#> 5 38.19847 18.44577 0.08 0.08 38.19847+18.44577i
#> 6 37.54491 19.19886 0.10 0.10 37.54491+19.19886i
#> 7 37.00124 19.98918 0.12 0.12 37.00124+19.98918i
#> 8 36.38703 20.80794 0.14 0.14 36.38703+20.80794i
#> 9 35.81093 21.66239 0.16 0.16 35.81093+21.66239i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_2 TrajSim_1_2
#> 2 -0.6764321+0.7422295i Traj_1 Sim_2 TrajSim_1_2
#> 3 -0.6218517+0.7381769i Traj_1 Sim_2 TrajSim_1_2
#> 4 -0.5842387+0.6974253i Traj_1 Sim_2 TrajSim_1_2
#> 5 -0.5976896+0.7649998i Traj_1 Sim_2 TrajSim_1_2
#> 6 -0.6535525+0.7530832i Traj_1 Sim_2 TrajSim_1_2
#> 7 -0.5436785+0.7903231i Traj_1 Sim_2 TrajSim_1_2
#> 8 -0.6142045+0.8187601i Traj_1 Sim_2 TrajSim_1_2
#> 9 -0.5761013+0.8544487i Traj_1 Sim_2 TrajSim_1_2
#>
#> [[2]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.46128 15.82706 0.02 0.02 38.46128+15.82706i
#> 3 37.93369 16.68902 0.04 0.04 37.93369+16.68902i
#> 4 37.43707 17.50840 0.06 0.06 37.43707+17.50840i
#> 5 36.89457 18.32294 0.08 0.08 36.89457+18.32294i
#> 6 36.30803 19.28830 0.10 0.10 36.30803+19.28830i
#> 7 35.80462 20.26694 0.12 0.12 35.80462+20.26694i
#> 8 35.42866 21.12430 0.14 0.14 35.42866+21.12430i
#> 9 35.15532 22.08217 0.16 0.16 35.15532+22.08217i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_2 TrajSim_2_2
#> 2 -0.7284325+0.9197083i Traj_2 Sim_2 TrajSim_2_2
#> 3 -0.5275820+0.8619600i Traj_2 Sim_2 TrajSim_2_2
#> 4 -0.4966200+0.8193806i Traj_2 Sim_2 TrajSim_2_2
#> 5 -0.5425050+0.8145375i Traj_2 Sim_2 TrajSim_2_2
#> 6 -0.5865369+0.9653559i Traj_2 Sim_2 TrajSim_2_2
#> 7 -0.5034121+0.9786444i Traj_2 Sim_2 TrajSim_2_2
#> 8 -0.3759645+0.8573638i Traj_2 Sim_2 TrajSim_2_2
#> 9 -0.2733327+0.9578638i Traj_2 Sim_2 TrajSim_2_2
#>
#> [[2]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.34658 16.43105 0.02 0.02 37.34658+16.43105i
#> 3 36.47440 17.43547 0.04 0.04 36.47440+17.43547i
#> 4 35.70463 18.43602 0.06 0.06 35.70463+18.43602i
#> 5 35.06724 19.44086 0.08 0.08 35.06724+19.44086i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.000000i Traj_3 Sim_2 TrajSim_3_2
#> 2 -0.7578356+0.879575i Traj_3 Sim_2 TrajSim_3_2
#> 3 -0.8721813+1.004425i Traj_3 Sim_2 TrajSim_3_2
#> 4 -0.7697719+1.000552i Traj_3 Sim_2 TrajSim_3_2
#> 5 -0.6373877+1.004834i Traj_3 Sim_2 TrajSim_3_2
#>
#> [[2]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.95618 17.05851 0.02 0.02 34.95618+17.05851i
#> 3 34.24907 18.10481 0.04 0.04 34.24907+18.10481i
#> 4 33.53101 18.89676 0.06 0.06 33.53101+18.89676i
#> 5 32.72426 19.68176 0.08 0.08 32.72426+19.68176i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_2 TrajSim_4_2
#> 2 -0.6247047+1.0460118i Traj_4 Sim_2 TrajSim_4_2
#> 3 -0.7071089+1.0463019i Traj_4 Sim_2 TrajSim_4_2
#> 4 -0.7180604+0.7919492i Traj_4 Sim_2 TrajSim_4_2
#> 5 -0.8067547+0.7849952i Traj_4 Sim_2 TrajSim_4_2
#>
#> [[2]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.52764 15.76316 0.02 0.02 30.52764+15.76316i
#> 3 29.96918 16.43497 0.04 0.04 29.96918+16.43497i
#> 4 29.39599 17.01419 0.06 0.06 29.39599+17.01419i
#> 5 28.92607 17.55118 0.08 0.08 28.92607+17.55118i
#> 6 28.50348 18.28231 0.10 0.10 28.50348+18.28231i
#> 7 27.98535 18.86315 0.12 0.12 27.98535+18.86315i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_2 TrajSim_5_2
#> 2 -0.6745707+0.7874287i Traj_5 Sim_2 TrajSim_5_2
#> 3 -0.5584559+0.6718055i Traj_5 Sim_2 TrajSim_5_2
#> 4 -0.5731924+0.5792219i Traj_5 Sim_2 TrajSim_5_2
#> 5 -0.4699141+0.5369844i Traj_5 Sim_2 TrajSim_5_2
#> 6 -0.4225935+0.7311331i Traj_5 Sim_2 TrajSim_5_2
#> 7 -0.5181270+0.5808423i Traj_5 Sim_2 TrajSim_5_2
#>
#> [[2]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.35323 16.18143 0.02 0.02 28.35323+16.18143i
#> 3 28.00009 17.26871 0.04 0.04 28.00009+17.26871i
#> 4 27.70863 18.42086 0.06 0.06 27.70863+18.42086i
#> 5 27.30427 19.69335 0.08 0.08 27.30427+19.69335i
#> 6 26.98320 20.91456 0.10 0.10 26.98320+20.91456i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_6 Sim_2 TrajSim_6_2
#> 2 -0.541625+1.073338i Traj_6 Sim_2 TrajSim_6_2
#> 3 -0.353136+1.087282i Traj_6 Sim_2 TrajSim_6_2
#> 4 -0.291461+1.152153i Traj_6 Sim_2 TrajSim_6_2
#> 5 -0.404360+1.272487i Traj_6 Sim_2 TrajSim_6_2
#> 6 -0.321070+1.221210i Traj_6 Sim_2 TrajSim_6_2
#>
#> [[2]][[7]]
#> x y time displacementTime polar
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i
#> 2 30.42962 16.52039 0.02 0.02 30.42962+16.52039i
#> 3 31.72999 15.88546 0.04 0.04 31.72999+15.88546i
#> 4 32.61653 15.44746 0.06 0.06 32.61653+15.44746i
#> 5 34.05104 14.79028 0.08 0.08 34.05104+14.79028i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_7 Sim_2 TrajSim_7_2
#> 2 1.2325572-0.5707862i Traj_7 Sim_2 TrajSim_7_2
#> 3 1.3003741-0.6349267i Traj_7 Sim_2 TrajSim_7_2
#> 4 0.8865368-0.4380003i Traj_7 Sim_2 TrajSim_7_2
#> 5 1.4345124-0.6571845i Traj_7 Sim_2 TrajSim_7_2
#>
#> [[2]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.34429 9.278776 0.02 0.02 14.34429+9.27878i
#> 3 14.03143 8.956676 0.04 0.04 14.03143+8.95668i
#> 4 13.63722 8.725008 0.06 0.06 13.63722+8.72501i
#> 5 13.24597 8.475854 0.08 0.08 13.24597+8.47585i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_2 TrajSim_8_2
#> 2 -0.2343910-0.3741663i Traj_8 Sim_2 TrajSim_8_2
#> 3 -0.3128518-0.3220991i Traj_8 Sim_2 TrajSim_8_2
#> 4 -0.3942145-0.2316684i Traj_8 Sim_2 TrajSim_8_2
#> 5 -0.3912465-0.2491538i Traj_8 Sim_2 TrajSim_8_2
#>
#> [[2]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.55055 10.013523 0.02 0.02 16.55055+10.01352i
#> 3 15.94901 10.948067 0.04 0.04 15.94901+10.94807i
#> 4 15.27927 11.874352 0.06 0.06 15.27927+11.87435i
#> 5 14.56297 12.742272 0.08 0.08 14.56297+12.74227i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_2 TrajSim_9_2
#> 2 -0.6972466+1.0091107i Traj_9 Sim_2 TrajSim_9_2
#> 3 -0.6015396+0.9345435i Traj_9 Sim_2 TrajSim_9_2
#> 4 -0.6697411+0.9262857i Traj_9 Sim_2 TrajSim_9_2
#> 5 -0.7163020+0.8679201i Traj_9 Sim_2 TrajSim_9_2
#>
#> [[2]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.81002 8.343147 0.02 0.02 15.81002+ 8.34315i
#> 3 15.33893 9.222946 0.04 0.04 15.33893+ 9.22295i
#> 4 14.90294 10.141522 0.06 0.06 14.90294+10.14152i
#> 5 14.43468 11.156944 0.08 0.08 14.43468+11.15694i
#> 6 14.02916 12.132647 0.10 0.10 14.02916+12.13265i
#> 7 13.69975 13.013132 0.12 0.12 13.69975+13.01313i
#> 8 13.36052 13.967946 0.14 0.14 13.36052+13.96795i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_2 TrajSim_10_2
#> 2 -0.4010094+0.8453527i Traj_10 Sim_2 TrajSim_10_2
#> 3 -0.4710871+0.8797992i Traj_10 Sim_2 TrajSim_10_2
#> 4 -0.4359975+0.9185754i Traj_10 Sim_2 TrajSim_10_2
#> 5 -0.4682582+1.0154218i Traj_10 Sim_2 TrajSim_10_2
#> 6 -0.4055184+0.9757030i Traj_10 Sim_2 TrajSim_10_2
#> 7 -0.3294130+0.8804855i Traj_10 Sim_2 TrajSim_10_2
#> 8 -0.3392258+0.9548142i Traj_10 Sim_2 TrajSim_10_2
#>
#> [[2]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.78333 9.159376 0.02 0.02 12.78333+ 9.15938i
#> 3 12.30972 10.139919 0.04 0.04 12.30972+10.13992i
#> 4 11.72206 11.212082 0.06 0.06 11.72206+11.21208i
#> 5 11.18118 12.399942 0.08 0.08 11.18118+12.39994i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_2 TrajSim_11_2
#> 2 -0.4585830+1.0902576i Traj_11 Sim_2 TrajSim_11_2
#> 3 -0.4736145+0.9805431i Traj_11 Sim_2 TrajSim_11_2
#> 4 -0.5876579+1.0721627i Traj_11 Sim_2 TrajSim_11_2
#> 5 -0.5408726+1.1878605i Traj_11 Sim_2 TrajSim_11_2
#>
#>
#> [[3]]
#> [[3]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.07806 16.25706 0.02 0.02 40.07806+16.25706i
#> 3 39.57061 17.15899 0.04 0.04 39.57061+17.15899i
#> 4 38.97618 18.04377 0.06 0.06 38.97618+18.04377i
#> 5 38.55818 18.83730 0.08 0.08 38.55818+18.83730i
#> 6 38.17473 19.68395 0.10 0.10 38.17473+19.68395i
#> 7 37.74292 20.53847 0.12 0.12 37.74292+20.53847i
#> 8 37.17784 21.41595 0.14 0.14 37.17784+21.41595i
#> 9 36.47550 22.17770 0.16 0.16 36.47550+22.17770i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_3 TrajSim_1_3
#> 2 -0.6006212+0.7541200i Traj_1 Sim_3 TrajSim_1_3
#> 3 -0.5074511+0.9019258i Traj_1 Sim_3 TrajSim_1_3
#> 4 -0.5944306+0.8847794i Traj_1 Sim_3 TrajSim_1_3
#> 5 -0.4180008+0.7935345i Traj_1 Sim_3 TrajSim_1_3
#> 6 -0.3834481+0.8466464i Traj_1 Sim_3 TrajSim_1_3
#> 7 -0.4318057+0.8545199i Traj_1 Sim_3 TrajSim_1_3
#> 8 -0.5650854+0.8774783i Traj_1 Sim_3 TrajSim_1_3
#> 9 -0.7023371+0.7617542i Traj_1 Sim_3 TrajSim_1_3
#>
#> [[3]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.60656 15.81180 0.02 0.02 38.60656+15.81180i
#> 3 37.95834 16.60444 0.04 0.04 37.95834+16.60444i
#> 4 37.20080 17.47380 0.06 0.06 37.20080+17.47380i
#> 5 36.57902 18.28931 0.08 0.08 36.57902+18.28931i
#> 6 35.98168 19.00535 0.10 0.10 35.98168+19.00535i
#> 7 35.45884 19.86914 0.12 0.12 35.45884+19.86914i
#> 8 34.97052 20.82048 0.14 0.14 34.97052+20.82048i
#> 9 34.30544 21.72618 0.16 0.16 34.30544+21.72618i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_3 TrajSim_2_3
#> 2 -0.5831452+0.9044465i Traj_2 Sim_3 TrajSim_2_3
#> 3 -0.6482263+0.7926414i Traj_2 Sim_3 TrajSim_2_3
#> 4 -0.7575369+0.8693553i Traj_2 Sim_3 TrajSim_2_3
#> 5 -0.6217784+0.8155153i Traj_2 Sim_3 TrajSim_2_3
#> 6 -0.5973377+0.7160363i Traj_2 Sim_3 TrajSim_2_3
#> 7 -0.5228420+0.8637872i Traj_2 Sim_3 TrajSim_2_3
#> 8 -0.4883254+0.9513401i Traj_2 Sim_3 TrajSim_2_3
#> 9 -0.6650782+0.9056996i Traj_2 Sim_3 TrajSim_2_3
#>
#> [[3]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.35319 16.50050 0.02 0.02 37.35319+16.50050i
#> 3 36.48713 17.60622 0.04 0.04 36.48713+17.60622i
#> 4 35.68838 18.62672 0.06 0.06 35.68838+18.62672i
#> 5 34.94914 19.63002 0.08 0.08 34.94914+19.63002i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_3 TrajSim_3_3
#> 2 -0.7512289+0.9490284i Traj_3 Sim_3 TrajSim_3_3
#> 3 -0.8660536+1.1057186i Traj_3 Sim_3 TrajSim_3_3
#> 4 -0.7987540+1.0205048i Traj_3 Sim_3 TrajSim_3_3
#> 5 -0.7392394+1.0032948i Traj_3 Sim_3 TrajSim_3_3
#>
#> [[3]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.85410 16.86104 0.02 0.02 34.85410+16.86104i
#> 3 34.30148 17.83438 0.04 0.04 34.30148+17.83438i
#> 4 33.80108 18.84577 0.06 0.06 33.80108+18.84577i
#> 5 33.37538 19.80065 0.08 0.08 33.37538+19.80065i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_3 TrajSim_4_3
#> 2 -0.7267816+0.8485400i Traj_4 Sim_3 TrajSim_4_3
#> 3 -0.5526196+0.9733413i Traj_4 Sim_3 TrajSim_4_3
#> 4 -0.5003985+1.0113882i Traj_4 Sim_3 TrajSim_4_3
#> 5 -0.4257095+0.9548798i Traj_4 Sim_3 TrajSim_4_3
#>
#> [[3]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.91363 15.60901 0.02 0.02 30.91363+15.60901i
#> 3 30.68949 16.55171 0.04 0.04 30.68949+16.55171i
#> 4 30.40431 17.50353 0.06 0.06 30.40431+17.50353i
#> 5 30.20574 18.52366 0.08 0.08 30.20574+18.52366i
#> 6 30.11586 19.42201 0.10 0.10 30.11586+19.42201i
#> 7 30.13728 20.17947 0.12 0.12 30.13728+20.17947i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_3 TrajSim_5_3
#> 2 -0.2885750+0.6332698i Traj_5 Sim_3 TrajSim_5_3
#> 3 -0.2241425+0.9427057i Traj_5 Sim_3 TrajSim_5_3
#> 4 -0.2851775+0.9518172i Traj_5 Sim_3 TrajSim_5_3
#> 5 -0.1985748+1.0201347i Traj_5 Sim_3 TrajSim_5_3
#> 6 -0.0898760+0.8983418i Traj_5 Sim_3 TrajSim_5_3
#> 7 0.0214157+0.7574600i Traj_5 Sim_3 TrajSim_5_3
#>
#> [[3]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.24459 16.06951 0.02 0.02 28.24459+16.06951i
#> 3 27.43388 17.08927 0.04 0.04 27.43388+17.08927i
#> 4 26.56062 17.90473 0.06 0.06 26.56062+17.90473i
#> 5 25.74387 18.60116 0.08 0.08 25.74387+18.60116i
#> 6 24.85066 19.36251 0.10 0.10 24.85066+19.36251i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_3 TrajSim_6_3
#> 2 -0.6502695+0.9614256i Traj_6 Sim_3 TrajSim_6_3
#> 3 -0.8107046+1.0197541i Traj_6 Sim_3 TrajSim_6_3
#> 4 -0.8732581+0.8154569i Traj_6 Sim_3 TrajSim_6_3
#> 5 -0.8167529+0.6964371i Traj_6 Sim_3 TrajSim_6_3
#> 6 -0.8932066+0.7613480i Traj_6 Sim_3 TrajSim_6_3
#>
#> [[3]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.50848 16.54439 0.02 0.02 30.50848+16.54439i 1.311420-0.546784i
#> 3 31.79836 15.97088 0.04 0.04 31.79836+15.97088i 1.289876-0.573511i
#> 4 32.84074 15.47834 0.06 0.06 32.84074+15.47834i 1.042382-0.492543i
#> 5 34.09648 14.92915 0.08 0.08 34.09648+14.92915i 1.255746-0.549195i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_3 TrajSim_7_3
#> 2 Traj_7 Sim_3 TrajSim_7_3
#> 3 Traj_7 Sim_3 TrajSim_7_3
#> 4 Traj_7 Sim_3 TrajSim_7_3
#> 5 Traj_7 Sim_3 TrajSim_7_3
#>
#> [[3]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.22142 9.339533 0.02 0.02 14.22142+9.33953i
#> 3 13.97228 8.984010 0.04 0.04 13.97228+8.98401i
#> 4 13.62559 8.643958 0.06 0.06 13.62559+8.64396i
#> 5 13.32076 8.300426 0.08 0.08 13.32076+8.30043i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_3 TrajSim_8_3
#> 2 -0.3572574-0.3134093i Traj_8 Sim_3 TrajSim_8_3
#> 3 -0.2491362-0.3555222i Traj_8 Sim_3 TrajSim_8_3
#> 4 -0.3466905-0.3400525i Traj_8 Sim_3 TrajSim_8_3
#> 5 -0.3048354-0.3435316i Traj_8 Sim_3 TrajSim_8_3
#>
#> [[3]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.79296 10.010680 0.02 0.02 16.79296+10.01068i
#> 3 16.30502 10.940920 0.04 0.04 16.30502+10.94092i
#> 4 15.82835 12.001210 0.06 0.06 15.82835+12.00121i
#> 5 15.36989 13.080127 0.08 0.08 15.36989+13.08013i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_3 TrajSim_9_3
#> 2 -0.4548385+1.0062678i Traj_9 Sim_3 TrajSim_9_3
#> 3 -0.4879326+0.9302402i Traj_9 Sim_3 TrajSim_9_3
#> 4 -0.4766712+1.0602894i Traj_9 Sim_3 TrajSim_9_3
#> 5 -0.4584623+1.0789176i Traj_9 Sim_3 TrajSim_9_3
#>
#> [[3]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.59325 8.253129 0.02 0.02 15.59325+ 8.25313i
#> 3 14.82191 9.128521 0.04 0.04 14.82191+ 9.12852i
#> 4 14.18969 9.805286 0.06 0.06 14.18969+ 9.80529i
#> 5 13.45232 10.514612 0.08 0.08 13.45232+10.51461i
#> 6 12.65466 11.197693 0.10 0.10 12.65466+11.19769i
#> 7 11.84557 11.914279 0.12 0.12 11.84557+11.91428i
#> 8 11.00726 12.603153 0.14 0.14 11.00726+12.60315i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_3 TrajSim_10_3
#> 2 -0.6177842+0.7553340i Traj_10 Sim_3 TrajSim_10_3
#> 3 -0.7713377+0.8753924i Traj_10 Sim_3 TrajSim_10_3
#> 4 -0.6322198+0.6767645i Traj_10 Sim_3 TrajSim_10_3
#> 5 -0.7373652+0.7093266i Traj_10 Sim_3 TrajSim_10_3
#> 6 -0.7976660+0.6830807i Traj_10 Sim_3 TrajSim_10_3
#> 7 -0.8090838+0.7165863i Traj_10 Sim_3 TrajSim_10_3
#> 8 -0.8383178+0.6888740i Traj_10 Sim_3 TrajSim_10_3
#>
#> [[3]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.77916 9.138018 0.02 0.02 12.77916+ 9.13802i
#> 3 12.32739 10.394039 0.04 0.04 12.32739+10.39404i
#> 4 11.91861 11.436005 0.06 0.06 11.91861+11.43600i
#> 5 11.44171 12.579705 0.08 0.08 11.44171+12.57971i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_3 TrajSim_11_3
#> 2 -0.462748+1.068900i Traj_11 Sim_3 TrajSim_11_3
#> 3 -0.451770+1.256021i Traj_11 Sim_3 TrajSim_11_3
#> 4 -0.408783+1.041966i Traj_11 Sim_3 TrajSim_11_3
#> 5 -0.476905+1.143700i Traj_11 Sim_3 TrajSim_11_3
#>
#>
#> [[4]]
#> [[4]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.94519 16.20402 0.02 0.02 39.94519+16.20402i
#> 3 39.13923 16.66491 0.04 0.04 39.13923+16.66491i
#> 4 38.31596 17.20746 0.06 0.06 38.31596+17.20746i
#> 5 37.53254 17.71451 0.08 0.08 37.53254+17.71451i
#> 6 36.75906 18.25721 0.10 0.10 36.75906+18.25721i
#> 7 35.94218 18.90079 0.12 0.12 35.94218+18.90079i
#> 8 35.23598 19.58952 0.14 0.14 35.23598+19.58952i
#> 9 34.65490 20.31659 0.16 0.16 34.65490+20.31659i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_4 TrajSim_1_4
#> 2 -0.7334917+0.7010814i Traj_1 Sim_4 TrajSim_1_4
#> 3 -0.8059558+0.4608833i Traj_1 Sim_4 TrajSim_1_4
#> 4 -0.8232711+0.5425515i Traj_1 Sim_4 TrajSim_1_4
#> 5 -0.7834225+0.5070501i Traj_1 Sim_4 TrajSim_1_4
#> 6 -0.7734787+0.5426996i Traj_1 Sim_4 TrajSim_1_4
#> 7 -0.8168814+0.6435802i Traj_1 Sim_4 TrajSim_1_4
#> 8 -0.7061983+0.6887317i Traj_1 Sim_4 TrajSim_1_4
#> 9 -0.5810827+0.7270749i Traj_1 Sim_4 TrajSim_1_4
#>
#> [[4]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.59917 15.76148 0.02 0.02 38.59917+15.76148i
#> 3 37.90008 16.49779 0.04 0.04 37.90008+16.49779i
#> 4 37.35413 17.32962 0.06 0.06 37.35413+17.32962i
#> 5 36.64410 18.29716 0.08 0.08 36.64410+18.29716i
#> 6 36.09850 19.21417 0.10 0.10 36.09850+19.21417i
#> 7 35.48890 20.01174 0.12 0.12 35.48890+20.01174i
#> 8 34.94441 21.03999 0.14 0.14 34.94441+21.03999i
#> 9 34.38961 22.01561 0.16 0.16 34.38961+22.01561i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_4 TrajSim_2_4
#> 2 -0.5905380+0.8541238i Traj_2 Sim_4 TrajSim_2_4
#> 3 -0.6990878+0.7363080i Traj_2 Sim_4 TrajSim_2_4
#> 4 -0.5459531+0.8318341i Traj_2 Sim_4 TrajSim_2_4
#> 5 -0.7100295+0.9675359i Traj_2 Sim_4 TrajSim_2_4
#> 6 -0.5456012+0.9170098i Traj_2 Sim_4 TrajSim_2_4
#> 7 -0.6096014+0.7975780i Traj_2 Sim_4 TrajSim_2_4
#> 8 -0.5444862+1.0282480i Traj_2 Sim_4 TrajSim_2_4
#> 9 -0.5548010+0.9756203i Traj_2 Sim_4 TrajSim_2_4
#>
#> [[4]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.33736 16.40811 0.02 0.02 37.33736+16.40811i
#> 3 36.31563 17.61495 0.04 0.04 36.31563+17.61495i
#> 4 35.45392 18.66071 0.06 0.06 35.45392+18.66071i
#> 5 34.60196 19.62310 0.08 0.08 34.60196+19.62310i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_4 TrajSim_3_4
#> 2 -0.7670582+0.8566387i Traj_3 Sim_4 TrajSim_3_4
#> 3 -1.0217236+1.2068360i Traj_3 Sim_4 TrajSim_3_4
#> 4 -0.8617076+1.0457646i Traj_3 Sim_4 TrajSim_3_4
#> 5 -0.8519681+0.9623930i Traj_3 Sim_4 TrajSim_3_4
#>
#> [[4]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.90057 16.98064 0.02 0.02 34.90057+16.98064i
#> 3 34.09625 17.85808 0.04 0.04 34.09625+17.85808i
#> 4 33.14856 18.48550 0.06 0.06 33.14856+18.48550i
#> 5 32.22821 19.10422 0.08 0.08 32.22821+19.10422i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_4 TrajSim_4_4
#> 2 -0.6803113+0.9681343i Traj_4 Sim_4 TrajSim_4_4
#> 3 -0.8043246+0.8774483i Traj_4 Sim_4 TrajSim_4_4
#> 4 -0.9476917+0.6274162i Traj_4 Sim_4 TrajSim_4_4
#> 5 -0.9203426+0.6187177i Traj_4 Sim_4 TrajSim_4_4
#>
#> [[4]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.92652 15.65025 0.02 0.02 30.92652+15.65025i
#> 3 30.56451 16.45082 0.04 0.04 30.56451+16.45082i
#> 4 30.17513 17.30629 0.06 0.06 30.17513+17.30629i
#> 5 29.59900 18.08996 0.08 0.08 29.59900+18.08996i
#> 6 28.92224 18.82505 0.10 0.10 28.92224+18.82505i
#> 7 28.58767 19.19624 0.12 0.12 28.58767+19.19624i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_4 TrajSim_5_4
#> 2 -0.2756860+0.6745177i Traj_5 Sim_4 TrajSim_5_4
#> 3 -0.3620087+0.8005663i Traj_5 Sim_4 TrajSim_5_4
#> 4 -0.3893840+0.8554713i Traj_5 Sim_4 TrajSim_5_4
#> 5 -0.5761342+0.7836666i Traj_5 Sim_4 TrajSim_5_4
#> 6 -0.6767549+0.7350907i Traj_5 Sim_4 TrajSim_5_4
#> 7 -0.3345708+0.3711883i Traj_5 Sim_4 TrajSim_5_4
#>
#> [[4]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.24404 16.20973 0.02 0.02 28.24404+16.20973i
#> 3 27.52676 17.33352 0.04 0.04 27.52676+17.33352i
#> 4 26.91182 18.29693 0.06 0.06 26.91182+18.29693i
#> 5 26.15901 19.27618 0.08 0.08 26.15901+19.27618i
#> 6 25.32426 20.15625 0.10 0.10 25.32426+20.15625i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_4 TrajSim_6_4
#> 2 -0.6508129+1.1016419i Traj_6 Sim_4 TrajSim_6_4
#> 3 -0.7172810+1.1237882i Traj_6 Sim_4 TrajSim_6_4
#> 4 -0.6149380+0.9634058i Traj_6 Sim_4 TrajSim_6_4
#> 5 -0.7528117+0.9792578i Traj_6 Sim_4 TrajSim_6_4
#> 6 -0.8347464+0.8800639i Traj_6 Sim_4 TrajSim_6_4
#>
#> [[4]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.54671 16.46925 0.02 0.02 30.54671+16.46925i 1.349645-0.621932i
#> 3 31.58744 16.02759 0.04 0.04 31.58744+16.02759i 1.040731-0.441657i
#> 4 33.12386 15.38890 0.06 0.06 33.12386+15.38890i 1.536418-0.638688i
#> 5 34.28874 14.86575 0.08 0.08 34.28874+14.86575i 1.164888-0.523150i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_4 TrajSim_7_4
#> 2 Traj_7 Sim_4 TrajSim_7_4
#> 3 Traj_7 Sim_4 TrajSim_7_4
#> 4 Traj_7 Sim_4 TrajSim_7_4
#> 5 Traj_7 Sim_4 TrajSim_7_4
#>
#> [[4]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.31757 9.301829 0.02 0.02 14.31757+9.30183i
#> 3 13.98731 8.953406 0.04 0.04 13.98731+8.95341i
#> 4 13.70936 8.567539 0.06 0.06 13.70936+8.56754i
#> 5 13.36693 8.286858 0.08 0.08 13.36693+8.28686i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_4 TrajSim_8_4
#> 2 -0.2611070-0.3511127i Traj_8 Sim_4 TrajSim_8_4
#> 3 -0.3302559-0.3484233i Traj_8 Sim_4 TrajSim_8_4
#> 4 -0.2779559-0.3858672i Traj_8 Sim_4 TrajSim_8_4
#> 5 -0.3424299-0.2806803i Traj_8 Sim_4 TrajSim_8_4
#>
#> [[4]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.87495 10.090596 0.02 0.02 16.87495+10.09060i
#> 3 16.40810 11.160938 0.04 0.04 16.40810+11.16094i
#> 4 16.03052 12.123187 0.06 0.06 16.03052+12.12319i
#> 5 15.43087 13.121588 0.08 0.08 15.43087+13.12159i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_4 TrajSim_9_4
#> 2 -0.3728410+1.0861836i Traj_9 Sim_4 TrajSim_9_4
#> 3 -0.4668565+1.0703416i Traj_9 Sim_4 TrajSim_9_4
#> 4 -0.3775739+0.9622497i Traj_9 Sim_4 TrajSim_9_4
#> 5 -0.5996546+0.9984010i Traj_9 Sim_4 TrajSim_9_4
#>
#> [[4]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.56659 8.279532 0.02 0.02 15.56659+ 8.27953i
#> 3 14.97433 9.049227 0.04 0.04 14.97433+ 9.04923i
#> 4 14.23328 9.864531 0.06 0.06 14.23328+ 9.86453i
#> 5 13.57358 10.639816 0.08 0.08 13.57358+10.63982i
#> 6 12.85483 11.376249 0.10 0.10 12.85483+11.37625i
#> 7 12.17199 12.032483 0.12 0.12 12.17199+12.03248i
#> 8 11.38510 12.720733 0.14 0.14 11.38510+12.72073i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_4 TrajSim_10_4
#> 2 -0.6444377+0.7817372i Traj_10 Sim_4 TrajSim_10_4
#> 3 -0.5922658+0.7696951i Traj_10 Sim_4 TrajSim_10_4
#> 4 -0.7410483+0.8153042i Traj_10 Sim_4 TrajSim_10_4
#> 5 -0.6596969+0.7752846i Traj_10 Sim_4 TrajSim_10_4
#> 6 -0.7187540+0.7364333i Traj_10 Sim_4 TrajSim_10_4
#> 7 -0.6828423+0.6562342i Traj_10 Sim_4 TrajSim_10_4
#> 8 -0.7868891+0.6882495i Traj_10 Sim_4 TrajSim_10_4
#>
#> [[4]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.78520 9.048572 0.02 0.02 12.78520+ 9.04857i
#> 3 12.23461 10.122748 0.04 0.04 12.23461+10.12275i
#> 4 11.68578 11.119875 0.06 0.06 11.68578+11.11988i
#> 5 11.10964 12.330634 0.08 0.08 11.10964+12.33063i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_4 TrajSim_11_4
#> 2 -0.4567169+0.9794542i Traj_11 Sim_4 TrajSim_11_4
#> 3 -0.5505815+1.0741760i Traj_11 Sim_4 TrajSim_11_4
#> 4 -0.5488338+0.9971266i Traj_11 Sim_4 TrajSim_11_4
#> 5 -0.5761437+1.2107586i Traj_11 Sim_4 TrajSim_11_4
#>
#>
#> [[5]]
#> [[5]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.99908 16.08757 0.02 0.02 39.99908+16.08757i
#> 3 39.25077 16.67411 0.04 0.04 39.25077+16.67411i
#> 4 38.59684 17.30835 0.06 0.06 38.59684+17.30835i
#> 5 37.79970 18.00331 0.08 0.08 37.79970+18.00331i
#> 6 37.13392 18.74303 0.10 0.10 37.13392+18.74303i
#> 7 36.49414 19.53903 0.12 0.12 36.49414+19.53903i
#> 8 35.96186 20.30561 0.14 0.14 35.96186+20.30561i
#> 9 35.50051 21.06025 0.16 0.16 35.50051+21.06025i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_5 TrajSim_1_5
#> 2 -0.6795965+0.5846326i Traj_1 Sim_5 TrajSim_1_5
#> 3 -0.7483141+0.5865348i Traj_1 Sim_5 TrajSim_1_5
#> 4 -0.6539284+0.6342406i Traj_1 Sim_5 TrajSim_1_5
#> 5 -0.7971436+0.6949621i Traj_1 Sim_5 TrajSim_1_5
#> 6 -0.6657788+0.7397193i Traj_1 Sim_5 TrajSim_1_5
#> 7 -0.6397801+0.7959951i Traj_1 Sim_5 TrajSim_1_5
#> 8 -0.5322806+0.7665805i Traj_1 Sim_5 TrajSim_1_5
#> 9 -0.4613421+0.7546435i Traj_1 Sim_5 TrajSim_1_5
#>
#> [[5]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.52934 15.88112 0.02 0.02 38.52934+15.88112i
#> 3 37.82740 16.68096 0.04 0.04 37.82740+16.68096i
#> 4 37.22782 17.40598 0.06 0.06 37.22782+17.40598i
#> 5 36.54478 18.32113 0.08 0.08 36.54478+18.32113i
#> 6 35.80649 19.23592 0.10 0.10 35.80649+19.23592i
#> 7 35.35456 20.14373 0.12 0.12 35.35456+20.14373i
#> 8 35.02467 21.19273 0.14 0.14 35.02467+21.19273i
#> 9 34.49258 22.31406 0.16 0.16 34.49258+22.31406i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_5 TrajSim_2_5
#> 2 -0.6603690+0.9737614i Traj_2 Sim_5 TrajSim_2_5
#> 3 -0.7019444+0.7998407i Traj_2 Sim_5 TrajSim_2_5
#> 4 -0.5995735+0.7250268i Traj_2 Sim_5 TrajSim_2_5
#> 5 -0.6830458+0.9151495i Traj_2 Sim_5 TrajSim_2_5
#> 6 -0.7382892+0.9147874i Traj_2 Sim_5 TrajSim_2_5
#> 7 -0.4519275+0.9078129i Traj_2 Sim_5 TrajSim_2_5
#> 8 -0.3298932+1.0489965i Traj_2 Sim_5 TrajSim_2_5
#> 9 -0.5320844+1.1213284i Traj_2 Sim_5 TrajSim_2_5
#>
#> [[5]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.28324 16.50071 0.02 0.02 37.28324+16.50071i
#> 3 36.35048 17.43554 0.04 0.04 36.35048+17.43554i
#> 4 35.42713 18.31177 0.06 0.06 35.42713+18.31177i
#> 5 34.38988 19.27893 0.08 0.08 34.38988+19.27893i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_5 TrajSim_3_5
#> 2 -0.8211786+0.9492405i Traj_3 Sim_5 TrajSim_3_5
#> 3 -0.9327549+0.9348315i Traj_3 Sim_5 TrajSim_3_5
#> 4 -0.9233525+0.8762287i Traj_3 Sim_5 TrajSim_3_5
#> 5 -1.0372476+0.9671601i Traj_3 Sim_5 TrajSim_3_5
#>
#> [[5]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.95984 16.88532 0.02 0.02 34.95984+16.88532i
#> 3 34.20439 17.75763 0.04 0.04 34.20439+17.75763i
#> 4 33.55766 18.55950 0.06 0.06 33.55766+18.55950i
#> 5 32.81792 19.43461 0.08 0.08 32.81792+19.43461i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_5 TrajSim_4_5
#> 2 -0.6210416+0.8728166i Traj_4 Sim_5 TrajSim_4_5
#> 3 -0.7554519+0.8723159i Traj_4 Sim_5 TrajSim_4_5
#> 4 -0.6467302+0.8018638i Traj_4 Sim_5 TrajSim_4_5
#> 5 -0.7397409+0.8751144i Traj_4 Sim_5 TrajSim_4_5
#>
#> [[5]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.62225 15.87021 0.02 0.02 30.62225+15.87021i
#> 3 30.05187 16.58551 0.04 0.04 30.05187+16.58551i
#> 4 29.38436 17.23619 0.06 0.06 29.38436+17.23619i
#> 5 28.66410 17.84896 0.08 0.08 28.66410+17.84896i
#> 6 27.98940 18.42823 0.10 0.10 27.98940+18.42823i
#> 7 27.40016 19.05269 0.12 0.12 27.40016+19.05269i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_5 TrajSim_5_5
#> 2 -0.5799535+0.8944688i Traj_5 Sim_5 TrajSim_5_5
#> 3 -0.5703835+0.7153080i Traj_5 Sim_5 TrajSim_5_5
#> 4 -0.6675148+0.6506817i Traj_5 Sim_5 TrajSim_5_5
#> 5 -0.7202609+0.6127609i Traj_5 Sim_5 TrajSim_5_5
#> 6 -0.6746931+0.5792733i Traj_5 Sim_5 TrajSim_5_5
#> 7 -0.5892376+0.6244617i Traj_5 Sim_5 TrajSim_5_5
#>
#> [[5]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.17412 15.97518 0.02 0.02 28.17412+15.97518i
#> 3 27.34259 17.03785 0.04 0.04 27.34259+17.03785i
#> 4 26.72636 18.21005 0.06 0.06 26.72636+18.21005i
#> 5 26.32285 19.39101 0.08 0.08 26.32285+19.39101i
#> 6 25.98724 20.71659 0.10 0.10 25.98724+20.71659i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_5 TrajSim_6_5
#> 2 -0.7207343+0.8670925i Traj_6 Sim_5 TrajSim_6_5
#> 3 -0.8315258+1.0626633i Traj_6 Sim_5 TrajSim_6_5
#> 4 -0.6162326+1.1722045i Traj_6 Sim_5 TrajSim_6_5
#> 5 -0.4035155+1.1809624i Traj_6 Sim_5 TrajSim_6_5
#> 6 -0.3356104+1.3255741i Traj_6 Sim_5 TrajSim_6_5
#>
#> [[5]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.41904 16.54990 0.02 0.02 30.41904+16.54990i 1.221975-0.541281i
#> 3 31.74035 15.78033 0.04 0.04 31.74035+15.78033i 1.321315-0.769568i
#> 4 32.95187 15.07174 0.06 0.06 32.95187+15.07174i 1.211520-0.708592i
#> 5 34.13243 14.24794 0.08 0.08 34.13243+14.24794i 1.180561-0.823800i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_5 TrajSim_7_5
#> 2 Traj_7 Sim_5 TrajSim_7_5
#> 3 Traj_7 Sim_5 TrajSim_7_5
#> 4 Traj_7 Sim_5 TrajSim_7_5
#> 5 Traj_7 Sim_5 TrajSim_7_5
#>
#> [[5]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.13299 9.388484 0.02 0.02 14.13299+9.38848i
#> 3 13.69956 9.197320 0.04 0.04 13.69956+9.19732i
#> 4 13.31729 9.018828 0.06 0.06 13.31729+9.01883i
#> 5 12.84033 8.941313 0.08 0.08 12.84033+8.94131i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_5 TrajSim_8_5
#> 2 -0.4456830-0.2644580i Traj_8 Sim_5 TrajSim_8_5
#> 3 -0.4334370-0.1911639i Traj_8 Sim_5 TrajSim_8_5
#> 4 -0.3822701-0.1784919i Traj_8 Sim_5 TrajSim_8_5
#> 5 -0.4769548-0.0775153i Traj_8 Sim_5 TrajSim_8_5
#>
#> [[5]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.89861 10.049908 0.02 0.02 16.89861+10.04991i
#> 3 16.54616 11.244449 0.04 0.04 16.54616+11.24445i
#> 4 16.33128 12.315074 0.06 0.06 16.33128+12.31507i
#> 5 16.11129 13.469445 0.08 0.08 16.11129+13.46945i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_9 Sim_5 TrajSim_9_5
#> 2 -0.349185+1.045496i Traj_9 Sim_5 TrajSim_9_5
#> 3 -0.352451+1.194542i Traj_9 Sim_5 TrajSim_9_5
#> 4 -0.214874+1.070624i Traj_9 Sim_5 TrajSim_9_5
#> 5 -0.219990+1.154371i Traj_9 Sim_5 TrajSim_9_5
#>
#> [[5]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.65923 8.299226 0.02 0.02 15.65923+ 8.29923i
#> 3 15.13623 9.118961 0.04 0.04 15.13623+ 9.11896i
#> 4 14.69920 10.103645 0.06 0.06 14.69920+10.10365i
#> 5 14.29029 11.046780 0.08 0.08 14.29029+11.04678i
#> 6 13.83779 12.067767 0.10 0.10 13.83779+12.06777i
#> 7 13.40836 12.899827 0.12 0.12 13.40836+12.89983i
#> 8 12.92786 13.691287 0.14 0.14 12.92786+13.69129i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_5 TrajSim_10_5
#> 2 -0.5518017+0.8014311i Traj_10 Sim_5 TrajSim_10_5
#> 3 -0.5229976+0.8197357i Traj_10 Sim_5 TrajSim_10_5
#> 4 -0.4370272+0.9846836i Traj_10 Sim_5 TrajSim_10_5
#> 5 -0.4089126+0.9431352i Traj_10 Sim_5 TrajSim_10_5
#> 6 -0.4525012+1.0209868i Traj_10 Sim_5 TrajSim_10_5
#> 7 -0.4294314+0.8320603i Traj_10 Sim_5 TrajSim_10_5
#> 8 -0.4804975+0.7914595i Traj_10 Sim_5 TrajSim_10_5
#>
#> [[5]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.77718 9.391231 0.02 0.02 12.77718+ 9.39123i
#> 3 12.38302 10.709575 0.04 0.04 12.38302+10.70957i
#> 4 12.08875 11.904891 0.06 0.06 12.08875+11.90489i
#> 5 11.71655 13.057069 0.08 0.08 11.71655+13.05707i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_5 TrajSim_11_5
#> 2 -0.464732+1.322113i Traj_11 Sim_5 TrajSim_11_5
#> 3 -0.394156+1.318344i Traj_11 Sim_5 TrajSim_11_5
#> 4 -0.294278+1.195316i Traj_11 Sim_5 TrajSim_11_5
#> 5 -0.372196+1.152178i Traj_11 Sim_5 TrajSim_11_5
#>
#>
#> [[6]]
#> [[6]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.02703 16.12190 0.02 0.02 40.02703+16.12190i
#> 3 39.57396 16.87784 0.04 0.04 39.57396+16.87784i
#> 4 39.15657 17.79947 0.06 0.06 39.15657+17.79947i
#> 5 38.80958 18.70412 0.08 0.08 38.80958+18.70412i
#> 6 38.35028 19.56087 0.10 0.10 38.35028+19.56087i
#> 7 37.90299 20.45532 0.12 0.12 37.90299+20.45532i
#> 8 37.42086 21.23401 0.14 0.14 37.42086+21.23401i
#> 9 36.90603 22.23248 0.16 0.16 36.90603+22.23248i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_6 TrajSim_1_6
#> 2 -0.6516488+0.6189542i Traj_1 Sim_6 TrajSim_1_6
#> 3 -0.4530685+0.7559480i Traj_1 Sim_6 TrajSim_1_6
#> 4 -0.4173944+0.9216293i Traj_1 Sim_6 TrajSim_1_6
#> 5 -0.3469859+0.9046440i Traj_1 Sim_6 TrajSim_1_6
#> 6 -0.4592997+0.8567484i Traj_1 Sim_6 TrajSim_1_6
#> 7 -0.4472882+0.8944564i Traj_1 Sim_6 TrajSim_1_6
#> 8 -0.4821374+0.7786886i Traj_1 Sim_6 TrajSim_1_6
#> 9 -0.5148289+0.9984706i Traj_1 Sim_6 TrajSim_1_6
#>
#> [[6]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.62091 15.63718 0.02 0.02 38.62091+15.63718i
#> 3 37.95256 16.39394 0.04 0.04 37.95256+16.39394i
#> 4 37.30417 17.00804 0.06 0.06 37.30417+17.00804i
#> 5 36.59271 17.74828 0.08 0.08 36.59271+17.74828i
#> 6 35.91571 18.49503 0.10 0.10 35.91571+18.49503i
#> 7 35.16488 19.49738 0.12 0.12 35.16488+19.49738i
#> 8 34.35873 20.28249 0.14 0.14 34.35873+20.28249i
#> 9 33.42392 20.84511 0.16 0.16 33.42392+20.84511i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_6 TrajSim_2_6
#> 2 -0.5687965+0.7298225i Traj_2 Sim_6 TrajSim_2_6
#> 3 -0.6683494+0.7567630i Traj_2 Sim_6 TrajSim_2_6
#> 4 -0.6483886+0.6141053i Traj_2 Sim_6 TrajSim_2_6
#> 5 -0.7114605+0.7402321i Traj_2 Sim_6 TrajSim_2_6
#> 6 -0.6770037+0.7467489i Traj_2 Sim_6 TrajSim_2_6
#> 7 -0.7508284+1.0023505i Traj_2 Sim_6 TrajSim_2_6
#> 8 -0.8061548+0.7851165i Traj_2 Sim_6 TrajSim_2_6
#> 9 -0.9348056+0.5626125i Traj_2 Sim_6 TrajSim_2_6
#>
#> [[6]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.06780 16.53134 0.02 0.02 37.06780+16.53134i
#> 3 36.24985 17.29206 0.04 0.04 36.24985+17.29206i
#> 4 35.27994 18.12464 0.06 0.06 35.27994+18.12464i
#> 5 34.35124 18.94643 0.08 0.08 34.35124+18.94643i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_6 TrajSim_3_6
#> 2 -1.0366164+0.9798660i Traj_3 Sim_6 TrajSim_3_6
#> 3 -0.8179449+0.7607195i Traj_3 Sim_6 TrajSim_3_6
#> 4 -0.9699144+0.8325871i Traj_3 Sim_6 TrajSim_3_6
#> 5 -0.9287024+0.8217867i Traj_3 Sim_6 TrajSim_3_6
#>
#> [[6]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.98468 16.88595 0.02 0.02 34.98468+16.88595i
#> 3 34.36917 17.91202 0.04 0.04 34.36917+17.91202i
#> 4 33.68857 18.83447 0.06 0.06 33.68857+18.83447i
#> 5 32.96037 19.62602 0.08 0.08 32.96037+19.62602i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_6 TrajSim_4_6
#> 2 -0.5962091+0.8734453i Traj_4 Sim_6 TrajSim_4_6
#> 3 -0.6155064+1.0260747i Traj_4 Sim_6 TrajSim_4_6
#> 4 -0.6806011+0.9224527i Traj_4 Sim_6 TrajSim_4_6
#> 5 -0.7281995+0.7915432i Traj_4 Sim_6 TrajSim_4_6
#>
#> [[6]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.78023 15.69949 0.02 0.02 30.78023+15.69949i
#> 3 30.15320 16.46551 0.04 0.04 30.15320+16.46551i
#> 4 29.52412 17.02701 0.06 0.06 29.52412+17.02701i
#> 5 28.91649 17.65705 0.08 0.08 28.91649+17.65705i
#> 6 28.39967 18.44128 0.10 0.10 28.39967+18.44128i
#> 7 27.88913 19.07132 0.12 0.12 27.88913+19.07132i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_6 TrajSim_5_6
#> 2 -0.4219813+0.7237565i Traj_5 Sim_6 TrajSim_5_6
#> 3 -0.6270298+0.7660149i Traj_5 Sim_6 TrajSim_5_6
#> 4 -0.6290813+0.5614987i Traj_5 Sim_6 TrajSim_5_6
#> 5 -0.6076208+0.6300466i Traj_5 Sim_6 TrajSim_5_6
#> 6 -0.5168216+0.7842227i Traj_5 Sim_6 TrajSim_5_6
#> 7 -0.5105390+0.6300449i Traj_5 Sim_6 TrajSim_5_6
#>
#> [[6]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.36520 16.21952 0.02 0.02 28.36520+16.21952i
#> 3 27.74673 17.25061 0.04 0.04 27.74673+17.25061i
#> 4 27.06067 18.31658 0.06 0.06 27.06067+18.31658i
#> 5 26.38445 19.29133 0.08 0.08 26.38445+19.29133i
#> 6 25.81513 20.28475 0.10 0.10 25.81513+20.28475i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_6 TrajSim_6_6
#> 2 -0.5296570+1.1114340i Traj_6 Sim_6 TrajSim_6_6
#> 3 -0.6184633+1.0310868i Traj_6 Sim_6 TrajSim_6_6
#> 4 -0.6860656+1.0659679i Traj_6 Sim_6 TrajSim_6_6
#> 5 -0.6762200+0.9747501i Traj_6 Sim_6 TrajSim_6_6
#> 6 -0.5693203+0.9934257i Traj_6 Sim_6 TrajSim_6_6
#>
#> [[6]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.51084 16.61874 0.02 0.02 30.51084+16.61874i 1.313777-0.472437i
#> 3 31.68154 16.06982 0.04 0.04 31.68154+16.06982i 1.170702-0.548917i
#> 4 32.79341 15.67561 0.06 0.06 32.79341+15.67561i 1.111873-0.394215i
#> 5 34.17936 15.10621 0.08 0.08 34.17936+15.10621i 1.385944-0.569397i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_6 TrajSim_7_6
#> 2 Traj_7 Sim_6 TrajSim_7_6
#> 3 Traj_7 Sim_6 TrajSim_7_6
#> 4 Traj_7 Sim_6 TrajSim_7_6
#> 5 Traj_7 Sim_6 TrajSim_7_6
#>
#> [[6]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.32452 9.292050 0.02 0.02 14.32452+9.29205i
#> 3 14.10043 8.895571 0.04 0.04 14.10043+8.89557i
#> 4 13.77369 8.603995 0.06 0.06 13.77369+8.60400i
#> 5 13.43526 8.305328 0.08 0.08 13.43526+8.30533i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_6 TrajSim_8_6
#> 2 -0.2541620-0.3608921i Traj_8 Sim_6 TrajSim_8_6
#> 3 -0.2240844-0.3964783i Traj_8 Sim_6 TrajSim_8_6
#> 4 -0.3267421-0.2915764i Traj_8 Sim_6 TrajSim_8_6
#> 5 -0.3384259-0.2986671i Traj_8 Sim_6 TrajSim_8_6
#>
#> [[6]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.75141 10.049826 0.02 0.02 16.75141+10.04983i
#> 3 16.36778 11.142251 0.04 0.04 16.36778+11.14225i
#> 4 15.83334 12.233816 0.06 0.06 15.83334+12.23382i
#> 5 15.31360 13.317391 0.08 0.08 15.31360+13.31739i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_9 Sim_6 TrajSim_9_6
#> 2 -0.496390+1.045414i Traj_9 Sim_6 TrajSim_9_6
#> 3 -0.383627+1.092425i Traj_9 Sim_6 TrajSim_9_6
#> 4 -0.534441+1.091565i Traj_9 Sim_6 TrajSim_9_6
#> 5 -0.519739+1.083575i Traj_9 Sim_6 TrajSim_9_6
#>
#> [[6]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.65515 8.377454 0.02 0.02 15.65515+ 8.37745i
#> 3 15.06537 9.292973 0.04 0.04 15.06537+ 9.29297i
#> 4 14.34970 10.142392 0.06 0.06 14.34970+10.14239i
#> 5 13.68471 10.882158 0.08 0.08 13.68471+10.88216i
#> 6 12.96584 11.614082 0.10 0.10 12.96584+11.61408i
#> 7 12.24611 12.393229 0.12 0.12 12.24611+12.39323i
#> 8 11.51872 13.105969 0.14 0.14 11.51872+13.10597i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_6 TrajSim_10_6
#> 2 -0.5558759+0.8796595i Traj_10 Sim_6 TrajSim_10_6
#> 3 -0.5897895+0.9155187i Traj_10 Sim_6 TrajSim_10_6
#> 4 -0.7156655+0.8494192i Traj_10 Sim_6 TrajSim_10_6
#> 5 -0.6649928+0.7397664i Traj_10 Sim_6 TrajSim_10_6
#> 6 -0.7188705+0.7319239i Traj_10 Sim_6 TrajSim_10_6
#> 7 -0.7197265+0.7791463i Traj_10 Sim_6 TrajSim_10_6
#> 8 -0.7273918+0.7127405i Traj_10 Sim_6 TrajSim_10_6
#>
#> [[6]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.71632 9.298198 0.02 0.02 12.71632+ 9.29820i
#> 3 12.26561 10.334789 0.04 0.04 12.26561+10.33479i
#> 4 11.73994 11.393531 0.06 0.06 11.73994+11.39353i
#> 5 11.15262 12.504754 0.08 0.08 11.15262+12.50475i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_6 TrajSim_11_6
#> 2 -0.525597+1.229080i Traj_11 Sim_6 TrajSim_11_6
#> 3 -0.450700+1.036591i Traj_11 Sim_6 TrajSim_11_6
#> 4 -0.525677+1.058742i Traj_11 Sim_6 TrajSim_11_6
#> 5 -0.587320+1.111223i Traj_11 Sim_6 TrajSim_11_6
#>
#>
#> [[7]]
#> [[7]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.88395 16.27531 0.02 0.02 39.88395+16.27531i
#> 3 39.06216 16.93370 0.04 0.04 39.06216+16.93370i
#> 4 38.12840 17.56063 0.06 0.06 38.12840+17.56063i
#> 5 37.33903 18.11580 0.08 0.08 37.33903+18.11580i
#> 6 36.60059 18.71617 0.10 0.10 36.60059+18.71617i
#> 7 35.90920 19.32634 0.12 0.12 35.90920+19.32634i
#> 8 35.13814 19.88268 0.14 0.14 35.13814+19.88268i
#> 9 34.27251 20.38973 0.16 0.16 34.27251+20.38973i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_7 TrajSim_1_7
#> 2 -0.7947242+0.7723634i Traj_1 Sim_7 TrajSim_1_7
#> 3 -0.8217902+0.6583976i Traj_1 Sim_7 TrajSim_1_7
#> 4 -0.9337628+0.6269217i Traj_1 Sim_7 TrajSim_1_7
#> 5 -0.7893751+0.5551703i Traj_1 Sim_7 TrajSim_1_7
#> 6 -0.7384330+0.6003743i Traj_1 Sim_7 TrajSim_1_7
#> 7 -0.6913896+0.6101718i Traj_1 Sim_7 TrajSim_1_7
#> 8 -0.7710672+0.5563348i Traj_1 Sim_7 TrajSim_1_7
#> 9 -0.8656227+0.5070506i Traj_1 Sim_7 TrajSim_1_7
#>
#> [[7]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.44004 15.75642 0.02 0.02 38.44004+15.75642i
#> 3 37.85053 16.56047 0.04 0.04 37.85053+16.56047i
#> 4 37.24641 17.52672 0.06 0.06 37.24641+17.52672i
#> 5 36.62780 18.44618 0.08 0.08 36.62780+18.44618i
#> 6 36.07971 19.33520 0.10 0.10 36.07971+19.33520i
#> 7 35.55587 20.20621 0.12 0.12 35.55587+20.20621i
#> 8 34.98576 21.16718 0.14 0.14 34.98576+21.16718i
#> 9 34.44935 21.98405 0.16 0.16 34.44935+21.98405i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_7 TrajSim_2_7
#> 2 -0.7496663+0.8490703i Traj_2 Sim_7 TrajSim_2_7
#> 3 -0.5895108+0.8040497i Traj_2 Sim_7 TrajSim_2_7
#> 4 -0.6041254+0.9662434i Traj_2 Sim_7 TrajSim_2_7
#> 5 -0.6186038+0.9194579i Traj_2 Sim_7 TrajSim_2_7
#> 6 -0.5480950+0.8890287i Traj_2 Sim_7 TrajSim_2_7
#> 7 -0.5238363+0.8710049i Traj_2 Sim_7 TrajSim_2_7
#> 8 -0.5701110+0.9609668i Traj_2 Sim_7 TrajSim_2_7
#> 9 -0.5364090+0.8168781i Traj_2 Sim_7 TrajSim_2_7
#>
#> [[7]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.16205 16.54632 0.02 0.02 37.16205+16.54632i
#> 3 36.26685 17.40888 0.04 0.04 36.26685+17.40888i
#> 4 35.14462 18.40841 0.06 0.06 35.14462+18.40841i
#> 5 34.07641 19.33419 0.08 0.08 34.07641+19.33419i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_7 TrajSim_3_7
#> 2 -0.9423667+0.9948516i Traj_3 Sim_7 TrajSim_3_7
#> 3 -0.8952018+0.8625593i Traj_3 Sim_7 TrajSim_3_7
#> 4 -1.1222225+0.9995291i Traj_3 Sim_7 TrajSim_3_7
#> 5 -1.0682180+0.9257757i Traj_3 Sim_7 TrajSim_3_7
#>
#> [[7]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.92128 16.94525 0.02 0.02 34.92128+16.94525i
#> 3 34.22726 17.88012 0.04 0.04 34.22726+17.88012i
#> 4 33.54625 18.87011 0.06 0.06 33.54625+18.87011i
#> 5 32.98700 19.81137 0.08 0.08 32.98700+19.81137i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_7 TrajSim_4_7
#> 2 -0.6596029+0.9327536i Traj_4 Sim_7 TrajSim_4_7
#> 3 -0.6940205+0.9348625i Traj_4 Sim_7 TrajSim_4_7
#> 4 -0.6810140+0.9899900i Traj_4 Sim_7 TrajSim_4_7
#> 5 -0.5592450+0.9412624i Traj_4 Sim_7 TrajSim_4_7
#>
#> [[7]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.77144 15.85995 0.02 0.02 30.77144+15.85995i
#> 3 30.43116 16.65546 0.04 0.04 30.43116+16.65546i
#> 4 29.88094 17.40386 0.06 0.06 29.88094+17.40386i
#> 5 29.48628 18.27498 0.08 0.08 29.48628+18.27498i
#> 6 28.91432 19.05475 0.10 0.10 28.91432+19.05475i
#> 7 28.52379 19.85702 0.12 0.12 28.52379+19.85702i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_7 TrajSim_5_7
#> 2 -0.4307691+0.8842153i Traj_5 Sim_7 TrajSim_5_7
#> 3 -0.3402827+0.7955117i Traj_5 Sim_7 TrajSim_5_7
#> 4 -0.5502168+0.7483949i Traj_5 Sim_7 TrajSim_5_7
#> 5 -0.3946545+0.8711228i Traj_5 Sim_7 TrajSim_5_7
#> 6 -0.5719604+0.7797716i Traj_5 Sim_7 TrajSim_5_7
#> 7 -0.3905363+0.8022643i Traj_5 Sim_7 TrajSim_5_7
#>
#> [[7]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.15911 16.23283 0.02 0.02 28.15911+16.23283i
#> 3 27.42848 17.25247 0.04 0.04 27.42848+17.25247i
#> 4 26.79774 18.16067 0.06 0.06 26.79774+18.16067i
#> 5 26.28783 19.12388 0.08 0.08 26.28783+19.12388i
#> 6 25.75460 20.06948 0.10 0.10 25.75460+20.06948i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_7 TrajSim_6_7
#> 2 -0.7357463+1.1247396i Traj_6 Sim_7 TrajSim_6_7
#> 3 -0.7306245+1.0196380i Traj_6 Sim_7 TrajSim_6_7
#> 4 -0.6307456+0.9082039i Traj_6 Sim_7 TrajSim_6_7
#> 5 -0.5099057+0.9632119i Traj_6 Sim_7 TrajSim_6_7
#> 6 -0.5332285+0.9455977i Traj_6 Sim_7 TrajSim_6_7
#>
#> [[7]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.42817 16.65771 0.02 0.02 30.42817+16.65771i 1.231109-0.433471i
#> 3 31.71694 16.35471 0.04 0.04 31.71694+16.35471i 1.288768-0.303002i
#> 4 32.93672 16.18967 0.06 0.06 32.93672+16.18967i 1.219785-0.165031i
#> 5 34.55467 16.08876 0.08 0.08 34.55467+16.08876i 1.617947-0.100913i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_7 TrajSim_7_7
#> 2 Traj_7 Sim_7 TrajSim_7_7
#> 3 Traj_7 Sim_7 TrajSim_7_7
#> 4 Traj_7 Sim_7 TrajSim_7_7
#> 5 Traj_7 Sim_7 TrajSim_7_7
#>
#> [[7]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.23374 9.287696 0.02 0.02 14.23374+9.28770i
#> 3 13.96750 8.853390 0.04 0.04 13.96750+8.85339i
#> 4 13.73544 8.437787 0.06 0.06 13.73544+8.43779i
#> 5 13.59388 8.000955 0.08 0.08 13.59388+8.00096i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_7 TrajSim_8_7
#> 2 -0.3449348-0.3652462i Traj_8 Sim_7 TrajSim_8_7
#> 3 -0.2662429-0.4343061i Traj_8 Sim_7 TrajSim_8_7
#> 4 -0.2320608-0.4156021i Traj_8 Sim_7 TrajSim_8_7
#> 5 -0.1415575-0.4368321i Traj_8 Sim_7 TrajSim_8_7
#>
#> [[7]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.61607 9.901606 0.02 0.02 16.61607+ 9.90161i
#> 3 15.94599 10.890647 0.04 0.04 15.94599+10.89065i
#> 4 15.23871 11.713462 0.06 0.06 15.23871+11.71346i
#> 5 14.39656 12.503795 0.08 0.08 14.39656+12.50379i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_7 TrajSim_9_7
#> 2 -0.6317287+0.8971937i Traj_9 Sim_7 TrajSim_9_7
#> 3 -0.6700723+0.9890408i Traj_9 Sim_7 TrajSim_9_7
#> 4 -0.7072847+0.8228154i Traj_9 Sim_7 TrajSim_9_7
#> 5 -0.8421504+0.7903321i Traj_9 Sim_7 TrajSim_9_7
#>
#> [[7]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.60983 8.343162 0.02 0.02 15.60983+ 8.34316i
#> 3 15.16257 9.150180 0.04 0.04 15.16257+ 9.15018i
#> 4 14.65162 9.947517 0.06 0.06 14.65162+ 9.94752i
#> 5 14.03494 10.798775 0.08 0.08 14.03494+10.79878i
#> 6 13.50651 11.640272 0.10 0.10 13.50651+11.64027i
#> 7 13.03020 12.427112 0.12 0.12 13.03020+12.42711i
#> 8 12.54680 13.247003 0.14 0.14 12.54680+13.24700i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_7 TrajSim_10_7
#> 2 -0.6011991+0.8453669i Traj_10 Sim_7 TrajSim_10_7
#> 3 -0.4472590+0.8070188i Traj_10 Sim_7 TrajSim_10_7
#> 4 -0.5109497+0.7973364i Traj_10 Sim_7 TrajSim_10_7
#> 5 -0.6166821+0.8512586i Traj_10 Sim_7 TrajSim_10_7
#> 6 -0.5284256+0.8414962i Traj_10 Sim_7 TrajSim_10_7
#> 7 -0.4763148+0.7868403i Traj_10 Sim_7 TrajSim_10_7
#> 8 -0.4834038+0.8198914i Traj_10 Sim_7 TrajSim_10_7
#>
#> [[7]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.82355 9.132445 0.02 0.02 12.82355+ 9.13245i
#> 3 12.42065 10.293742 0.04 0.04 12.42065+10.29374i
#> 4 11.93707 11.545404 0.06 0.06 11.93707+11.54540i
#> 5 11.42565 12.507022 0.08 0.08 11.42565+12.50702i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_7 TrajSim_11_7
#> 2 -0.4183595+1.0633268i Traj_11 Sim_7 TrajSim_11_7
#> 3 -0.4029063+1.1612972i Traj_11 Sim_7 TrajSim_11_7
#> 4 -0.4835790+1.2516617i Traj_11 Sim_7 TrajSim_11_7
#> 5 -0.5114164+0.9616183i Traj_11 Sim_7 TrajSim_11_7
#>
#>
#> [[8]]
#> [[8]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.07581 16.20095 0.02 0.02 40.07581+16.20095i
#> 3 39.46624 16.97011 0.04 0.04 39.46624+16.97011i
#> 4 39.10584 17.74246 0.06 0.06 39.10584+17.74246i
#> 5 38.55404 18.51295 0.08 0.08 38.55404+18.51295i
#> 6 38.10833 19.38517 0.10 0.10 38.10833+19.38517i
#> 7 37.64155 20.22560 0.12 0.12 37.64155+20.22560i
#> 8 37.00679 20.91654 0.14 0.14 37.00679+20.91654i
#> 9 36.50880 21.59934 0.16 0.16 36.50880+21.59934i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_8 TrajSim_1_8
#> 2 -0.6028649+0.6980127i Traj_1 Sim_8 TrajSim_1_8
#> 3 -0.6095702+0.7691589i Traj_1 Sim_8 TrajSim_1_8
#> 4 -0.3604038+0.7723486i Traj_1 Sim_8 TrajSim_1_8
#> 5 -0.5518037+0.7704878i Traj_1 Sim_8 TrajSim_1_8
#> 6 -0.4457113+0.8722157i Traj_1 Sim_8 TrajSim_1_8
#> 7 -0.4667793+0.8404386i Traj_1 Sim_8 TrajSim_1_8
#> 8 -0.6347598+0.6909343i Traj_1 Sim_8 TrajSim_1_8
#> 9 -0.4979820+0.6828050i Traj_1 Sim_8 TrajSim_1_8
#>
#> [[8]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.37367 15.70833 0.02 0.02 38.37367+15.70833i
#> 3 37.56844 16.43825 0.04 0.04 37.56844+16.43825i
#> 4 36.70340 17.16285 0.06 0.06 36.70340+17.16285i
#> 5 35.91694 17.87002 0.08 0.08 35.91694+17.87002i
#> 6 35.06748 18.55544 0.10 0.10 35.06748+18.55544i
#> 7 34.36487 19.27027 0.12 0.12 34.36487+19.27027i
#> 8 33.57748 20.05235 0.14 0.14 33.57748+20.05235i
#> 9 32.89992 20.71711 0.16 0.16 32.89992+20.71711i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_8 TrajSim_2_8
#> 2 -0.8160349+0.8009755i Traj_2 Sim_8 TrajSim_2_8
#> 3 -0.8052356+0.7299227i Traj_2 Sim_8 TrajSim_2_8
#> 4 -0.8650331+0.7245988i Traj_2 Sim_8 TrajSim_2_8
#> 5 -0.7864637+0.7071663i Traj_2 Sim_8 TrajSim_2_8
#> 6 -0.8494590+0.6854269i Traj_2 Sim_8 TrajSim_2_8
#> 7 -0.7026149+0.7148257i Traj_2 Sim_8 TrajSim_2_8
#> 8 -0.7873884+0.7820779i Traj_2 Sim_8 TrajSim_2_8
#> 9 -0.6775639+0.6647615i Traj_2 Sim_8 TrajSim_2_8
#>
#> [[8]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.18771 16.68321 0.02 0.02 37.18771+16.68321i
#> 3 36.46143 17.70730 0.04 0.04 36.46143+17.70730i
#> 4 35.70244 18.70041 0.06 0.06 35.70244+18.70041i
#> 5 34.98240 19.72213 0.08 0.08 34.98240+19.72213i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_8 TrajSim_3_8
#> 2 -0.9167080+1.1317390i Traj_3 Sim_8 TrajSim_3_8
#> 3 -0.7262781+1.0240875i Traj_3 Sim_8 TrajSim_3_8
#> 4 -0.7589902+0.9931135i Traj_3 Sim_8 TrajSim_3_8
#> 5 -0.7200421+1.0217167i Traj_3 Sim_8 TrajSim_3_8
#>
#> [[8]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.87222 16.94553 0.02 0.02 34.87222+16.94553i
#> 3 34.27408 17.91761 0.04 0.04 34.27408+17.91761i
#> 4 33.65726 18.75595 0.06 0.06 33.65726+18.75595i
#> 5 32.99413 19.67365 0.08 0.08 32.99413+19.67365i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_8 TrajSim_4_8
#> 2 -0.7086646+0.9330283i Traj_4 Sim_8 TrajSim_4_8
#> 3 -0.5981442+0.9720856i Traj_4 Sim_8 TrajSim_4_8
#> 4 -0.6168191+0.8383381i Traj_4 Sim_8 TrajSim_4_8
#> 5 -0.6631231+0.9176981i Traj_4 Sim_8 TrajSim_4_8
#>
#> [[8]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.71032 15.94674 0.02 0.02 30.71032+15.94674i
#> 3 30.29192 16.78652 0.04 0.04 30.29192+16.78652i
#> 4 29.90337 17.64440 0.06 0.06 29.90337+17.64440i
#> 5 29.54280 18.39392 0.08 0.08 29.54280+18.39392i
#> 6 29.26995 19.09036 0.10 0.10 29.26995+19.09036i
#> 7 28.90785 19.87944 0.12 0.12 28.90785+19.87944i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_8 TrajSim_5_8
#> 2 -0.4918879+0.9710001i Traj_5 Sim_8 TrajSim_5_8
#> 3 -0.4184049+0.8397788i Traj_5 Sim_8 TrajSim_5_8
#> 4 -0.3885494+0.8578855i Traj_5 Sim_8 TrajSim_5_8
#> 5 -0.3605703+0.7495208i Traj_5 Sim_8 TrajSim_5_8
#> 6 -0.2728413+0.6964375i Traj_5 Sim_8 TrajSim_5_8
#> 7 -0.3620998+0.7890839i Traj_5 Sim_8 TrajSim_5_8
#>
#> [[8]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.21330 16.13826 0.02 0.02 28.21330+16.13826i
#> 3 27.54979 17.26951 0.04 0.04 27.54979+17.26951i
#> 4 26.93550 18.30825 0.06 0.06 26.93550+18.30825i
#> 5 26.27474 19.26160 0.08 0.08 26.27474+19.26160i
#> 6 25.59662 20.29019 0.10 0.10 25.59662+20.29019i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.0000000i Traj_6 Sim_8 TrajSim_6_8
#> 2 -0.681559+1.0301674i Traj_6 Sim_8 TrajSim_6_8
#> 3 -0.663506+1.1312567i Traj_6 Sim_8 TrajSim_6_8
#> 4 -0.614287+1.0387355i Traj_6 Sim_8 TrajSim_6_8
#> 5 -0.660761+0.9533514i Traj_6 Sim_8 TrajSim_6_8
#> 6 -0.678119+1.0285857i Traj_6 Sim_8 TrajSim_6_8
#>
#> [[8]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.61023 16.51426 0.02 0.02 30.61023+16.51426i 1.413164-0.576914i
#> 3 32.12414 15.95861 0.04 0.04 32.12414+15.95861i 1.513910-0.555658i
#> 4 33.44339 15.46870 0.06 0.06 33.44339+15.46870i 1.319255-0.489910i
#> 5 34.92780 15.00346 0.08 0.08 34.92780+15.00346i 1.484406-0.465238i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_8 TrajSim_7_8
#> 2 Traj_7 Sim_8 TrajSim_7_8
#> 3 Traj_7 Sim_8 TrajSim_7_8
#> 4 Traj_7 Sim_8 TrajSim_7_8
#> 5 Traj_7 Sim_8 TrajSim_7_8
#>
#> [[8]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.24109 9.333455 0.02 0.02 14.24109+9.33346i
#> 3 13.86835 9.082766 0.04 0.04 13.86835+9.08277i
#> 4 13.50517 8.795965 0.06 0.06 13.50517+8.79596i
#> 5 13.14402 8.466306 0.08 0.08 13.14402+8.46631i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_8 TrajSim_8_8
#> 2 -0.3375844-0.3194864i Traj_8 Sim_8 TrajSim_8_8
#> 3 -0.3727436-0.2506895i Traj_8 Sim_8 TrajSim_8_8
#> 4 -0.3631830-0.2868010i Traj_8 Sim_8 TrajSim_8_8
#> 5 -0.3611456-0.3296586i Traj_8 Sim_8 TrajSim_8_8
#>
#> [[8]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.69520 9.992735 0.02 0.02 16.69520+ 9.99274i
#> 3 16.28263 10.969381 0.04 0.04 16.28263+10.96938i
#> 4 15.90677 11.971637 0.06 0.06 15.90677+11.97164i
#> 5 15.22723 13.031631 0.08 0.08 15.22723+13.03163i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.000000i Traj_9 Sim_8 TrajSim_9_8
#> 2 -0.5525937+0.988323i Traj_9 Sim_8 TrajSim_9_8
#> 3 -0.4125708+0.976646i Traj_9 Sim_8 TrajSim_9_8
#> 4 -0.3758628+1.002256i Traj_9 Sim_8 TrajSim_9_8
#> 5 -0.6795413+1.059994i Traj_9 Sim_8 TrajSim_9_8
#>
#> [[8]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.73172 8.403653 0.02 0.02 15.73172+ 8.40365i
#> 3 15.25713 9.335327 0.04 0.04 15.25713+ 9.33533i
#> 4 14.81441 10.206272 0.06 0.06 14.81441+10.20627i
#> 5 14.41471 11.133766 0.08 0.08 14.41471+11.13377i
#> 6 13.96925 12.011563 0.10 0.10 13.96925+12.01156i
#> 7 13.52445 12.936416 0.12 0.12 13.52445+12.93642i
#> 8 13.04042 13.874991 0.14 0.14 13.04042+13.87499i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_8 TrajSim_10_8
#> 2 -0.4793077+0.9058587i Traj_10 Sim_8 TrajSim_10_8
#> 3 -0.4745971+0.9316733i Traj_10 Sim_8 TrajSim_10_8
#> 4 -0.4427109+0.8709449i Traj_10 Sim_8 TrajSim_10_8
#> 5 -0.3997024+0.9274947i Traj_10 Sim_8 TrajSim_10_8
#> 6 -0.4454639+0.8777971i Traj_10 Sim_8 TrajSim_10_8
#> 7 -0.4448020+0.9248525i Traj_10 Sim_8 TrajSim_10_8
#> 8 -0.4840280+0.9385748i Traj_10 Sim_8 TrajSim_10_8
#>
#> [[8]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.89527 9.057812 0.02 0.02 12.89527+ 9.05781i
#> 3 12.48705 10.250034 0.04 0.04 12.48705+10.25003i
#> 4 12.22034 11.443629 0.06 0.06 12.22034+11.44363i
#> 5 11.94542 12.765064 0.08 0.08 11.94542+12.76506i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_11 Sim_8 TrajSim_11_8
#> 2 -0.3466404+0.9886934i Traj_11 Sim_8 TrajSim_11_8
#> 3 -0.4082186+1.1922228i Traj_11 Sim_8 TrajSim_11_8
#> 4 -0.2667159+1.1935944i Traj_11 Sim_8 TrajSim_11_8
#> 5 -0.2749210+1.3214352i Traj_11 Sim_8 TrajSim_11_8
#>
#>
#> [[9]]
#> [[9]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 40.09153 16.37059 0.02 0.02 40.09153+16.37059i
#> 3 39.65271 17.20110 0.04 0.04 39.65271+17.20110i
#> 4 39.18418 17.89419 0.06 0.06 39.18418+17.89419i
#> 5 38.63043 18.76513 0.08 0.08 38.63043+18.76513i
#> 6 38.09507 19.51942 0.10 0.10 38.09507+19.51942i
#> 7 37.56633 20.28734 0.12 0.12 37.56633+20.28734i
#> 8 37.06958 21.17218 0.14 0.14 37.06958+21.17218i
#> 9 36.85248 22.05888 0.16 0.16 36.85248+22.05888i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_9 TrajSim_1_9
#> 2 -0.5871450+0.8676499i Traj_1 Sim_9 TrajSim_1_9
#> 3 -0.4388268+0.8305075i Traj_1 Sim_9 TrajSim_1_9
#> 4 -0.4685322+0.6930886i Traj_1 Sim_9 TrajSim_1_9
#> 5 -0.5537414+0.8709463i Traj_1 Sim_9 TrajSim_1_9
#> 6 -0.5353682+0.7542830i Traj_1 Sim_9 TrajSim_1_9
#> 7 -0.5287343+0.7679263i Traj_1 Sim_9 TrajSim_1_9
#> 8 -0.4967511+0.8848389i Traj_1 Sim_9 TrajSim_1_9
#> 9 -0.2171035+0.8866944i Traj_1 Sim_9 TrajSim_1_9
#>
#> [[9]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.57959 15.82264 0.02 0.02 38.57959+15.82264i
#> 3 38.00137 16.71460 0.04 0.04 38.00137+16.71460i
#> 4 37.47861 17.92287 0.06 0.06 37.47861+17.92287i
#> 5 37.08748 18.85078 0.08 0.08 37.08748+18.85078i
#> 6 36.78898 19.83232 0.10 0.10 36.78898+19.83232i
#> 7 36.41239 20.88101 0.12 0.12 36.41239+20.88101i
#> 8 36.07130 21.65266 0.14 0.14 36.07130+21.65266i
#> 9 35.76040 22.58366 0.16 0.16 35.76040+22.58366i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_9 TrajSim_2_9
#> 2 -0.6101150+0.9152859i Traj_2 Sim_9 TrajSim_2_9
#> 3 -0.5782192+0.8919630i Traj_2 Sim_9 TrajSim_2_9
#> 4 -0.5227613+1.2082680i Traj_2 Sim_9 TrajSim_2_9
#> 5 -0.3911376+0.9279087i Traj_2 Sim_9 TrajSim_2_9
#> 6 -0.2984998+0.9815376i Traj_2 Sim_9 TrajSim_2_9
#> 7 -0.3765897+1.0486941i Traj_2 Sim_9 TrajSim_2_9
#> 8 -0.3410877+0.7716473i Traj_2 Sim_9 TrajSim_2_9
#> 9 -0.3109001+0.9309998i Traj_2 Sim_9 TrajSim_2_9
#>
#> [[9]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.35141 16.53618 0.02 0.02 37.35141+16.53618i
#> 3 36.66967 17.33375 0.04 0.04 36.66967+17.33375i
#> 4 35.82562 18.24375 0.06 0.06 35.82562+18.24375i
#> 5 35.03074 19.25522 0.08 0.08 35.03074+19.25522i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_9 TrajSim_3_9
#> 2 -0.7529994+0.9847109i Traj_3 Sim_9 TrajSim_3_9
#> 3 -0.6817492+0.7975667i Traj_3 Sim_9 TrajSim_3_9
#> 4 -0.8440430+0.9100014i Traj_3 Sim_9 TrajSim_3_9
#> 5 -0.7948823+1.0114734i Traj_3 Sim_9 TrajSim_3_9
#>
#> [[9]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 35.00351 17.11145 0.02 0.02 35.00351+17.11145i
#> 3 34.49088 18.02573 0.04 0.04 34.49088+18.02573i
#> 4 33.84671 19.07612 0.06 0.06 33.84671+19.07612i
#> 5 33.40772 19.94622 0.08 0.08 33.40772+19.94622i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_9 TrajSim_4_9
#> 2 -0.5773795+1.0989503i Traj_4 Sim_9 TrajSim_4_9
#> 3 -0.5126240+0.9142773i Traj_4 Sim_9 TrajSim_4_9
#> 4 -0.6441716+1.0503922i Traj_4 Sim_9 TrajSim_4_9
#> 5 -0.4389904+0.8700998i Traj_4 Sim_9 TrajSim_4_9
#>
#> [[9]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.69468 15.88883 0.02 0.02 30.69468+15.88883i
#> 3 30.29077 16.45799 0.04 0.04 30.29077+16.45799i
#> 4 29.74638 17.08578 0.06 0.06 29.74638+17.08578i
#> 5 29.18333 18.04030 0.08 0.08 29.18333+18.04030i
#> 6 28.48983 18.95063 0.10 0.10 28.48983+18.95063i
#> 7 27.63372 19.67822 0.12 0.12 27.63372+19.67822i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_9 TrajSim_5_9
#> 2 -0.5075297+0.9130952i Traj_5 Sim_9 TrajSim_5_9
#> 3 -0.4039115+0.5691563i Traj_5 Sim_9 TrajSim_5_9
#> 4 -0.5443863+0.6277906i Traj_5 Sim_9 TrajSim_5_9
#> 5 -0.5630547+0.9545227i Traj_5 Sim_9 TrajSim_5_9
#> 6 -0.6934914+0.9103335i Traj_5 Sim_9 TrajSim_5_9
#> 7 -0.8561123+0.7275839i Traj_5 Sim_9 TrajSim_5_9
#>
#> [[9]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.39740 16.07019 0.02 0.02 28.39740+16.07019i
#> 3 27.68366 17.04833 0.04 0.04 27.68366+17.04833i
#> 4 27.07468 17.96123 0.06 0.06 27.07468+17.96123i
#> 5 26.35315 19.00597 0.08 0.08 26.35315+19.00597i
#> 6 25.72271 20.04861 0.10 0.10 25.72271+20.04861i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_9 TrajSim_6_9
#> 2 -0.4974589+0.9621018i Traj_6 Sim_9 TrajSim_6_9
#> 3 -0.7137343+0.9781422i Traj_6 Sim_9 TrajSim_6_9
#> 4 -0.6089802+0.9128969i Traj_6 Sim_9 TrajSim_6_9
#> 5 -0.7215277+1.0447442i Traj_6 Sim_9 TrajSim_6_9
#> 6 -0.6304458+1.0426368i Traj_6 Sim_9 TrajSim_6_9
#>
#> [[9]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.54176 16.67488 0.02 0.02 30.54176+16.67488i 1.344698-0.416294i
#> 3 31.72943 16.31681 0.04 0.04 31.72943+16.31681i 1.187673-0.358072i
#> 4 33.12194 15.87485 0.06 0.06 33.12194+15.87485i 1.392510-0.441964i
#> 5 34.47478 15.34462 0.08 0.08 34.47478+15.34462i 1.352836-0.530229i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_9 TrajSim_7_9
#> 2 Traj_7 Sim_9 TrajSim_7_9
#> 3 Traj_7 Sim_9 TrajSim_7_9
#> 4 Traj_7 Sim_9 TrajSim_7_9
#> 5 Traj_7 Sim_9 TrajSim_7_9
#>
#> [[9]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.26584 9.298369 0.02 0.02 14.26584+9.29837i
#> 3 14.01232 8.937067 0.04 0.04 14.01232+8.93707i
#> 4 13.81839 8.569438 0.06 0.06 13.81839+8.56944i
#> 5 13.50843 8.252304 0.08 0.08 13.50843+8.25230i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_9 TrajSim_8_9
#> 2 -0.3128395-0.3545726i Traj_8 Sim_9 TrajSim_8_9
#> 3 -0.2535191-0.3613020i Traj_8 Sim_9 TrajSim_8_9
#> 4 -0.1939286-0.3676292i Traj_8 Sim_9 TrajSim_8_9
#> 5 -0.3099589-0.3171341i Traj_8 Sim_9 TrajSim_8_9
#>
#> [[9]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.63227 9.852730 0.02 0.02 16.63227+ 9.85273i
#> 3 15.77497 10.796673 0.04 0.04 15.77497+10.79667i
#> 4 14.96877 11.728085 0.06 0.06 14.96877+11.72808i
#> 5 14.31012 12.539719 0.08 0.08 14.31012+12.53972i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_9 TrajSim_9_9
#> 2 -0.6155238+0.8483179i Traj_9 Sim_9 TrajSim_9_9
#> 3 -0.8573036+0.9439428i Traj_9 Sim_9 TrajSim_9_9
#> 4 -0.8062002+0.9314115i Traj_9 Sim_9 TrajSim_9_9
#> 5 -0.6586469+0.8116347i Traj_9 Sim_9 TrajSim_9_9
#>
#> [[9]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.71257 8.285774 0.02 0.02 15.71257+ 8.28577i
#> 3 15.19934 9.136273 0.04 0.04 15.19934+ 9.13627i
#> 4 14.70909 10.014662 0.06 0.06 14.70909+10.01466i
#> 5 14.02045 10.880932 0.08 0.08 14.02045+10.88093i
#> 6 13.44879 11.693952 0.10 0.10 13.44879+11.69395i
#> 7 12.84743 12.458956 0.12 0.12 12.84743+12.45896i
#> 8 12.15201 13.140334 0.14 0.14 12.15201+13.14033i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_9 TrajSim_10_9
#> 2 -0.4984578+0.7879789i Traj_10 Sim_9 TrajSim_10_9
#> 3 -0.5132319+0.8504997i Traj_10 Sim_9 TrajSim_10_9
#> 4 -0.4902498+0.8783886i Traj_10 Sim_9 TrajSim_10_9
#> 5 -0.6886423+0.8662705i Traj_10 Sim_9 TrajSim_10_9
#> 6 -0.5716552+0.8130197i Traj_10 Sim_9 TrajSim_10_9
#> 7 -0.6013668+0.7650044i Traj_10 Sim_9 TrajSim_10_9
#> 8 -0.6954150+0.6813775i Traj_10 Sim_9 TrajSim_10_9
#>
#> [[9]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.85695 9.174933 0.02 0.02 12.85695+ 9.17493i
#> 3 12.58351 10.245202 0.04 0.04 12.58351+10.24520i
#> 4 12.40356 11.467701 0.06 0.06 12.40356+11.46770i
#> 5 12.20377 12.562517 0.08 0.08 12.20377+12.56252i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_9 TrajSim_11_9
#> 2 -0.384961+1.105815i Traj_11 Sim_9 TrajSim_11_9
#> 3 -0.273438+1.070269i Traj_11 Sim_9 TrajSim_11_9
#> 4 -0.179950+1.222499i Traj_11 Sim_9 TrajSim_11_9
#> 5 -0.199789+1.094817i Traj_11 Sim_9 TrajSim_11_9
#>
#>
#> [[10]]
#> [[10]][[1]]
#> x y time displacementTime polar
#> 1 40.67868 15.50294 0.00 0.00 40.67868+15.50294i
#> 2 39.82124 16.22005 0.02 0.02 39.82124+16.22005i
#> 3 38.99552 16.69542 0.04 0.04 38.99552+16.69542i
#> 4 38.22088 17.26446 0.06 0.06 38.22088+17.26446i
#> 5 37.30245 17.71863 0.08 0.08 37.30245+17.71863i
#> 6 36.47996 18.33286 0.10 0.10 36.47996+18.33286i
#> 7 35.57087 18.88904 0.12 0.12 35.57087+18.88904i
#> 8 34.88298 19.48292 0.14 0.14 34.88298+19.48292i
#> 9 34.15785 20.15925 0.16 0.16 34.15785+20.15925i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_1 Sim_10 TrajSim_1_10
#> 2 -0.8574366+0.7171044i Traj_1 Sim_10 TrajSim_1_10
#> 3 -0.8257258+0.4753708i Traj_1 Sim_10 TrajSim_1_10
#> 4 -0.7746341+0.5690389i Traj_1 Sim_10 TrajSim_1_10
#> 5 -0.9184313+0.4541754i Traj_1 Sim_10 TrajSim_1_10
#> 6 -0.8224869+0.6142306i Traj_1 Sim_10 TrajSim_1_10
#> 7 -0.9090984+0.5561744i Traj_1 Sim_10 TrajSim_1_10
#> 8 -0.6878852+0.5938816i Traj_1 Sim_10 TrajSim_1_10
#> 9 -0.7251267+0.6763342i Traj_1 Sim_10 TrajSim_1_10
#>
#> [[10]][[2]]
#> x y time displacementTime polar
#> 1 39.18971 14.90735 0.00 0.00 39.18971+14.90735i
#> 2 38.55503 15.68746 0.02 0.02 38.55503+15.68746i
#> 3 38.02288 16.56351 0.04 0.04 38.02288+16.56351i
#> 4 37.49596 17.54383 0.06 0.06 37.49596+17.54383i
#> 5 36.87188 18.49532 0.08 0.08 36.87188+18.49532i
#> 6 36.34418 19.37565 0.10 0.10 36.34418+19.37565i
#> 7 35.92464 20.37880 0.12 0.12 35.92464+20.37880i
#> 8 35.65290 21.14851 0.14 0.14 35.65290+21.14851i
#> 9 35.47330 22.21267 0.16 0.16 35.47330+22.21267i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_2 Sim_10 TrajSim_2_10
#> 2 -0.6346772+0.7801025i Traj_2 Sim_10 TrajSim_2_10
#> 3 -0.5321562+0.8760549i Traj_2 Sim_10 TrajSim_2_10
#> 4 -0.5269198+0.9803207i Traj_2 Sim_10 TrajSim_2_10
#> 5 -0.6240753+0.9514848i Traj_2 Sim_10 TrajSim_2_10
#> 6 -0.5276992+0.8803317i Traj_2 Sim_10 TrajSim_2_10
#> 7 -0.4195407+1.0031557i Traj_2 Sim_10 TrajSim_2_10
#> 8 -0.2717353+0.7697087i Traj_2 Sim_10 TrajSim_2_10
#> 9 -0.1796036+1.0641583i Traj_2 Sim_10 TrajSim_2_10
#>
#> [[10]][[3]]
#> x y time displacementTime polar
#> 1 38.10441 15.55147 0.00 0.00 38.10441+15.55147i
#> 2 37.22071 16.48615 0.02 0.02 37.22071+16.48615i
#> 3 36.34426 17.42091 0.04 0.04 36.34426+17.42091i
#> 4 35.46412 18.43818 0.06 0.06 35.46412+18.43818i
#> 5 34.79211 19.30564 0.08 0.08 34.79211+19.30564i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_3 Sim_10 TrajSim_3_10
#> 2 -0.8837037+0.9346813i Traj_3 Sim_10 TrajSim_3_10
#> 3 -0.8764549+0.9347563i Traj_3 Sim_10 TrajSim_3_10
#> 4 -0.8801338+1.0172674i Traj_3 Sim_10 TrajSim_3_10
#> 5 -0.6720091+0.8674651i Traj_3 Sim_10 TrajSim_3_10
#>
#> [[10]][[4]]
#> x y time displacementTime polar
#> 1 35.58088 16.01250 0.00 0.00 35.58088+16.01250i
#> 2 34.98180 16.99681 0.02 0.02 34.98180+16.99681i
#> 3 34.50252 17.99988 0.04 0.04 34.50252+17.99988i
#> 4 34.04735 19.06934 0.06 0.06 34.04735+19.06934i
#> 5 33.59873 20.02071 0.08 0.08 33.59873+20.02071i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_4 Sim_10 TrajSim_4_10
#> 2 -0.5990896+0.9843095i Traj_4 Sim_10 TrajSim_4_10
#> 3 -0.4792781+1.0030710i Traj_4 Sim_10 TrajSim_4_10
#> 4 -0.4551686+1.0694632i Traj_4 Sim_10 TrajSim_4_10
#> 5 -0.4486141+0.9513608i Traj_4 Sim_10 TrajSim_4_10
#>
#> [[10]][[5]]
#> x y time displacementTime polar
#> 1 31.20221 14.97574 0.00 0.00 31.20221+14.97574i
#> 2 30.62720 15.76511 0.02 0.02 30.62720+15.76511i
#> 3 30.24326 16.44559 0.04 0.04 30.24326+16.44559i
#> 4 30.18580 17.41334 0.06 0.06 30.18580+17.41334i
#> 5 29.99619 18.18124 0.08 0.08 29.99619+18.18124i
#> 6 29.87819 18.95912 0.10 0.10 29.87819+18.95912i
#> 7 29.64559 19.95721 0.12 0.12 29.64559+19.95721i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_5 Sim_10 TrajSim_5_10
#> 2 -0.5750048+0.7893690i Traj_5 Sim_10 TrajSim_5_10
#> 3 -0.3839460+0.6804883i Traj_5 Sim_10 TrajSim_5_10
#> 4 -0.0574573+0.9677417i Traj_5 Sim_10 TrajSim_5_10
#> 5 -0.1896052+0.7679075i Traj_5 Sim_10 TrajSim_5_10
#> 6 -0.1179997+0.7778778i Traj_5 Sim_10 TrajSim_5_10
#> 7 -0.2326032+0.9980874i Traj_5 Sim_10 TrajSim_5_10
#>
#> [[10]][[6]]
#> x y time displacementTime polar
#> 1 28.89485 15.10809 0.00 0.00 28.89485+15.10809i
#> 2 28.26651 16.03419 0.02 0.02 28.26651+16.03419i
#> 3 27.60545 16.92806 0.04 0.04 27.60545+16.92806i
#> 4 26.95547 17.78325 0.06 0.06 26.95547+17.78325i
#> 5 26.21641 18.73762 0.08 0.08 26.21641+18.73762i
#> 6 25.52534 19.52044 0.10 0.10 25.52534+19.52044i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_6 Sim_10 TrajSim_6_10
#> 2 -0.6283435+0.9261034i Traj_6 Sim_10 TrajSim_6_10
#> 3 -0.6610601+0.8938719i Traj_6 Sim_10 TrajSim_6_10
#> 4 -0.6499852+0.8551881i Traj_6 Sim_10 TrajSim_6_10
#> 5 -0.7390590+0.9543718i Traj_6 Sim_10 TrajSim_6_10
#> 6 -0.6910710+0.7828150i Traj_6 Sim_10 TrajSim_6_10
#>
#> [[10]][[7]]
#> x y time displacementTime polar displacement
#> 1 29.19706 17.09118 0.00 0.00 29.19706+17.09118i 0.000000+0.000000i
#> 2 30.54467 16.52931 0.02 0.02 30.54467+16.52931i 1.347609-0.561866i
#> 3 31.69199 16.08159 0.04 0.04 31.69199+16.08159i 1.147318-0.447719i
#> 4 32.92221 15.54944 0.06 0.06 32.92221+15.54944i 1.230218-0.532149i
#> 5 34.29933 15.05887 0.08 0.08 34.29933+15.05887i 1.377127-0.490575i
#> Trajectory Simulation TrajSim
#> 1 Traj_7 Sim_10 TrajSim_7_10
#> 2 Traj_7 Sim_10 TrajSim_7_10
#> 3 Traj_7 Sim_10 TrajSim_7_10
#> 4 Traj_7 Sim_10 TrajSim_7_10
#> 5 Traj_7 Sim_10 TrajSim_7_10
#>
#> [[10]][[8]]
#> x y time displacementTime polar
#> 1 14.57868 9.652942 0.00 0.00 14.57868+9.65294i
#> 2 14.25335 9.279574 0.02 0.02 14.25335+9.27957i
#> 3 13.92483 8.979006 0.04 0.04 13.92483+8.97901i
#> 4 13.59393 8.685651 0.06 0.06 13.59393+8.68565i
#> 5 13.34567 8.261193 0.08 0.08 13.34567+8.26119i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_8 Sim_10 TrajSim_8_10
#> 2 -0.3253243-0.3733675i Traj_8 Sim_10 TrajSim_8_10
#> 3 -0.3285254-0.3005678i Traj_8 Sim_10 TrajSim_8_10
#> 4 -0.3308980-0.2933550i Traj_8 Sim_10 TrajSim_8_10
#> 5 -0.2482562-0.4244588i Traj_8 Sim_10 TrajSim_8_10
#>
#> [[10]][[9]]
#> x y time displacementTime polar
#> 1 17.24780 9.004412 0.00 0.00 17.24780+ 9.00441i
#> 2 16.72440 9.975320 0.02 0.02 16.72440+ 9.97532i
#> 3 16.20115 10.939704 0.04 0.04 16.20115+10.93970i
#> 4 15.73316 12.048064 0.06 0.06 15.73316+12.04806i
#> 5 15.28044 13.121209 0.08 0.08 15.28044+13.12121i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_9 Sim_10 TrajSim_9_10
#> 2 -0.5233918+0.9709072i Traj_9 Sim_10 TrajSim_9_10
#> 3 -0.5232560+0.9643843i Traj_9 Sim_10 TrajSim_9_10
#> 4 -0.4679898+1.1083596i Traj_9 Sim_10 TrajSim_9_10
#> 5 -0.4527136+1.0731451i Traj_9 Sim_10 TrajSim_9_10
#>
#> [[10]][[10]]
#> x y time displacementTime polar
#> 1 16.21103 7.497795 0.00 0.00 16.21103+ 7.49779i
#> 2 15.62692 8.316952 0.02 0.02 15.62692+ 8.31695i
#> 3 15.00922 9.186693 0.04 0.04 15.00922+ 9.18669i
#> 4 14.44560 10.140220 0.06 0.06 14.44560+10.14022i
#> 5 13.93203 10.971900 0.08 0.08 13.93203+10.97190i
#> 6 13.30418 11.771719 0.10 0.10 13.30418+11.77172i
#> 7 12.69859 12.646353 0.12 0.12 12.69859+12.64635i
#> 8 12.12726 13.526699 0.14 0.14 12.12726+13.52670i
#> displacement Trajectory Simulation TrajSim
#> 1 0.0000000+0.0000000i Traj_10 Sim_10 TrajSim_10_10
#> 2 -0.5841087+0.8191576i Traj_10 Sim_10 TrajSim_10_10
#> 3 -0.6176987+0.8697410i Traj_10 Sim_10 TrajSim_10_10
#> 4 -0.5636235+0.9535266i Traj_10 Sim_10 TrajSim_10_10
#> 5 -0.5135688+0.8316804i Traj_10 Sim_10 TrajSim_10_10
#> 6 -0.6278556+0.7998184i Traj_10 Sim_10 TrajSim_10_10
#> 7 -0.6055834+0.8746348i Traj_10 Sim_10 TrajSim_10_10
#> 8 -0.5713317+0.8803461i Traj_10 Sim_10 TrajSim_10_10
#>
#> [[10]][[11]]
#> x y time displacementTime polar
#> 1 13.24191 8.069118 0.00 0.00 13.24191+ 8.06912i
#> 2 12.84530 9.228584 0.02 0.02 12.84530+ 9.22858i
#> 3 12.36514 10.308929 0.04 0.04 12.36514+10.30893i
#> 4 11.90468 11.349227 0.06 0.06 11.90468+11.34923i
#> 5 11.48004 12.450362 0.08 0.08 11.48004+12.45036i
#> displacement Trajectory Simulation TrajSim
#> 1 0.000000+0.000000i Traj_11 Sim_10 TrajSim_11_10
#> 2 -0.396616+1.159466i Traj_11 Sim_10 TrajSim_11_10
#> 3 -0.480160+1.080345i Traj_11 Sim_10 TrajSim_11_10
#> 4 -0.460454+1.040298i Traj_11 Sim_10 TrajSim_11_10
#> 5 -0.424644+1.101135i Traj_11 Sim_10 TrajSim_11_10
The plot_sim()
function provides a
visual comparison between simulated movement
trajectories and the actual observed tracks,
allowing users to evaluate how closely the simulations replicate
real movement patterns. The function requires two main
inputs: a track
R object representing the
original track data and a track simulation
R
object generated by the
simulate_track()
function, which contains
the simulated trajectories to be compared against the original
tracks.
The function relies on the ggplot2
package to create plots with two primary components: simulated
and actual trajectories. Simulated
trajectories are displayed with paths colored according to the
user-specified colors via the colours_sim
argument. The user can also adjust transparency and
line width through the
alpha_sim
and
lwd_sim
arguments. The default color for
simulated tracks is black, and the default transparency
level is set to a low value (0.1
) to avoid
visual clutter when many simulated tracks are plotted. The
original trajectories are plotted on top of the
simulated trajectories using the colors specified by the
colours_act
argument. Users can also
adjust transparency
(alpha_act
) and line
width (lwd_act
) to enhance
visibility. This overlay helps in visually comparing the
similarity between actual and simulated tracks.
The function returns a ggplot
R object
that overlays the original and simulated tracks, allowing for further
customization using additional ggplot2
functions if desired. This visualization tool is essential for assessing
whether the chosen simulation model (Directed,
Constrained, or Unconstrained)
adequately captures the movement dynamics represented
by the original tracks and for comparing how well a specific model
replicates the original track patterns under various conditions.
Visualizing the Unconstrained simulation for the Paluxy River
dataset using default settings.
This plot provides a basic comparison of the simulated tracks over the
original tracks.
Visualizing the Directed simulation for the Paluxy River dataset with customized colors, transparency, and line width. Simulated tracks are plotted using light blue and orange colors with moderate transparency, making them easily distinguishable from the actual tracks plotted in black.
plot_sim(PaluxyRiver, sim_directed_paluxy,
colours_sim = c("#E69F00", "#56B4E9"),
alpha_sim = 0.4, lwd_sim = 1,
colours_act = c("black", "black"), alpha_act = 0.7, lwd_act = 2
)
Visualizing the Constrained simulation for the Paluxy River dataset with enhanced transparency and a reduced line width for the simulated tracks. This approach highlights the actual tracks more clearly, emphasizing the contrast between real and simulated data.
plot_sim(PaluxyRiver, sim_constrained_paluxy,
colours_sim = c("#E69F00", "#56B4E9"),
alpha_sim = 0.6, lwd_sim = 0.1,
alpha_act = 0.5, lwd_act = 2
)
Visualizing the Unconstrained simulation for the MountTom
dataset using default settings.
This plot provides a straightforward comparison of the simulated tracks
over the actual tracks without any customization.
Visualizing the Directed simulation for the MountTom dataset with a custom color palette, higher transparency, and thicker lines for simulated tracks. This setup allows for better differentiation between the various simulated tracks and the original ones.
plot_sim(sbMountTom, sim_directed_mount,
colours_sim = c("#6BAED6", "#FF7F00", "#1F77B4", "#D62728",
"#2CA02C", "#9467BD", "#8C564B", "#E377C2",
"#7F7F7F", "#BCBD22", "#17BECF"),
alpha_sim = 0.3, lwd_sim = 1.5,
alpha_act = 0.8, lwd_act = 2
)
Visualizing the Constrained simulation for the MountTom dataset with a diverse color palette and thinner simulated tracks for better clarity. The high transparency of simulated tracks ensures the original tracks remain clearly visible.
plot_sim(sbMountTom, sim_constrained_mount,
colours_sim = c("#6BAED6", "#FF7F00", "#1F77B4", "#D62728",
"#2CA02C", "#9467BD", "#8C564B", "#E377C2",
"#7F7F7F", "#BCBD22", "#17BECF"),
alpha_sim = 0.5, lwd_sim = 0.2,
alpha_act = 0.6, lwd_act = 2
)
The simil_DTW_metric()
and
simil_Frechet_metric()
functions provide
robust tools for comparing movement trajectories by
quantifying their similarity through distinct mathematical approaches.
Both functions operate on a track
R
object, allowing users to evaluate whether observed patterns
deviate from random expectations by comparing real tracks to simulated
ones.
The simil_DTW_metric()
function applies
the Dynamic Time Warping (DTW) algorithm, which is
especially suitable for analyzing animal movement
patterns with temporal distortions or varying
lengths. By minimizing the cumulative distance between
corresponding points, it effectively aligns sequences even when
timing or pacing differs between trajectories. The calculation uses the
dtw::dtw()
function from the
dtw
package, employing Euclidean
distance to compute local distances between points. This method
excels at assessing how well simulated tracks replicate real movements,
although it can be sensitive to noise and outliers, particularly when
comparing trajectories of different lengths.
In contrast, the simil_Frechet_metric()
function calculates similarity based on the Fréchet
distance, a metric that evaluates the overall shape of
trajectories by considering both the order and location
of points. Unlike DTW, which focuses on pointwise alignment,
the Fréchet distance measures similarity by assessing how closely two
paths follow each other over their entire length. This approach is often
illustrated by the analogy of a person walking a dog on a
leash, where both can adjust their speed independently but must
remain connected. It is particularly effective for comparing
trajectories where the overall path shape matters, such as
migration routes, travel paths, or animal tracks.
However, because the Fréchet distance evaluates all points along the
path, this method is particularly sensitive to noise
and may return an invalid measurement (-1) when
comparing highly disparate tracks, especially those generated under
fully Unconstrained models. It is essential for users
to check for the presence of -1 values in the resulting
track similarity
R object, as these
invalid measurements cannot be used in further analyses. Ignoring this
warning may lead to incorrect conclusions or errors when processing the
results.
Both functions include the
superposition
argument, which provides
options for aligning trajectories before calculating similarity metrics:
"None"
,
"Centroid"
, and
"Origin"
. The
"None"
option compares trajectories as
they are, while "Centroid"
alignment
shifts trajectories to their centroids, eliminating positional
differences while preserving shape. The
"Origin"
option aligns trajectories to
their starting points, making comparisons independent of absolute
positions. These alignment methods ensure comparisons are based on
movement patterns rather than arbitrary spatial
differences.
Statistical testing is supported when
test = TRUE
, requiring a
track simulation
R object to be provided
through the sim
argument. This allows
users to compare similarity metrics between real tracks and simulated
trajectories, determining whether observed similarities are
significantly greater than those expected under random conditions. The
functions provide two types of p-values:
pairwise p-values, which represent the
proportion of simulated distances smaller than the observed distance for
each trajectory pair, and combined p-values,
which reflect the overall proportion of simulations where all observed
distances are smaller than the simulated ones. This statistical
framework offers a comprehensive approach for evaluating similarity
metrics and testing hypotheses about track similarity.
The simil_DTW_metric()
and
simil_Frechet_metric()
functions return a
track similarity
R object, which contains
valuable information about the similarity between trajectories. This
object includes a matrix called
DTW_distance_metric
(for the DTW metric)
or Frechet_distance_metric
(for the
Fréchet metric), which stores the pairwise distances calculated between
all trajectories. If the test
argument is
set to TRUE
, additional components are
included in the output. Specifically, a matrix of
DTW_distance_metric_p_values
or
Frechet_distance_metric_p_values
is
provided, containing the p-values for the pairwise distances
obtained by comparing the observed tracks to those generated through
simulations. The
DTW_metric_p_values_combined
and
Frechet_metric_p_values_combined
elements
report the overall p-value, summarizing the significance of the
similarity between all tracks when considering the simulated datasets.
Moreover, the output includes
DTW_distance_metric_simulations
or
Frechet_distance_metric_simulations
, a
list of matrices with the similarity metrics calculated from each
simulated dataset. This comprehensive output structure allows users to
thoroughly evaluate whether the observed similarity between trajectories
is greater than expected under random conditions, providing robust
statistical support for their analyses.
The combination of flexible alignment options, statistical testing, and compatibility with simulated datasets makes these functions highly valuable for investigating animal movement patterns, testing hypotheses about track similarity, and assessing the accuracy of simulations.
Comparing Paluxy River tracks against Directed model simulations using Centroid superposition.
simil_dtw_directed_paluxy <- simil_DTW_metric(PaluxyRiver, test = TRUE,
sim = sim_directed_paluxy,
superposition = "Centroid")
#> $DTW_distance_metric
#> Track_1 Track_2
#> Track_1 NA 13.04388
#> Track_2 NA NA
#>
#> $DTW_distance_metric_p_values
#> Track_1 Track_2
#> Track_1 NA 0.17
#> Track_2 NA NA
#>
#> $DTW_metric_p_values_combined
#> [1] 0.17
#>
#> $DTW_distance_metric_simulations
#> $DTW_distance_metric_simulations[[1]]
#> Track_1 Track_2
#> Track_1 NA 14.15756
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[2]]
#> Track_1 Track_2
#> Track_1 NA 23.40619
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[3]]
#> Track_1 Track_2
#> Track_1 NA 14.24359
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[4]]
#> Track_1 Track_2
#> Track_1 NA 27.79692
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[5]]
#> Track_1 Track_2
#> Track_1 NA 21.07817
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[6]]
#> Track_1 Track_2
#> Track_1 NA 11.90617
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[7]]
#> Track_1 Track_2
#> Track_1 NA 14.04351
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[8]]
#> Track_1 Track_2
#> Track_1 NA 14.98554
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[9]]
#> Track_1 Track_2
#> Track_1 NA 21.68609
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[10]]
#> Track_1 Track_2
#> Track_1 NA 11.07161
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[11]]
#> Track_1 Track_2
#> Track_1 NA 15.62964
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[12]]
#> Track_1 Track_2
#> Track_1 NA 15.67301
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[13]]
#> Track_1 Track_2
#> Track_1 NA 23.1903
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[14]]
#> Track_1 Track_2
#> Track_1 NA 14.86692
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[15]]
#> Track_1 Track_2
#> Track_1 NA 21.81192
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[16]]
#> Track_1 Track_2
#> Track_1 NA 26.49042
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[17]]
#> Track_1 Track_2
#> Track_1 NA 16.04789
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[18]]
#> Track_1 Track_2
#> Track_1 NA 11.48634
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[19]]
#> Track_1 Track_2
#> Track_1 NA 16.78357
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[20]]
#> Track_1 Track_2
#> Track_1 NA 14.26499
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[21]]
#> Track_1 Track_2
#> Track_1 NA 24.17646
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[22]]
#> Track_1 Track_2
#> Track_1 NA 29.48131
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[23]]
#> Track_1 Track_2
#> Track_1 NA 14.49277
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[24]]
#> Track_1 Track_2
#> Track_1 NA 16.7293
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[25]]
#> Track_1 Track_2
#> Track_1 NA 12.61434
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[26]]
#> Track_1 Track_2
#> Track_1 NA 20.0954
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[27]]
#> Track_1 Track_2
#> Track_1 NA 22.94626
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[28]]
#> Track_1 Track_2
#> Track_1 NA 13.59654
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[29]]
#> Track_1 Track_2
#> Track_1 NA 14.23551
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[30]]
#> Track_1 Track_2
#> Track_1 NA 24.83216
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[31]]
#> Track_1 Track_2
#> Track_1 NA 19.20853
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[32]]
#> Track_1 Track_2
#> Track_1 NA 23.35655
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[33]]
#> Track_1 Track_2
#> Track_1 NA 24.10178
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[34]]
#> Track_1 Track_2
#> Track_1 NA 17.48941
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[35]]
#> Track_1 Track_2
#> Track_1 NA 13.64808
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[36]]
#> Track_1 Track_2
#> Track_1 NA 20.26628
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[37]]
#> Track_1 Track_2
#> Track_1 NA 11.79679
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[38]]
#> Track_1 Track_2
#> Track_1 NA 16.87541
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[39]]
#> Track_1 Track_2
#> Track_1 NA 15.77293
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[40]]
#> Track_1 Track_2
#> Track_1 NA 20.85598
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[41]]
#> Track_1 Track_2
#> Track_1 NA 14.21874
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[42]]
#> Track_1 Track_2
#> Track_1 NA 10.8413
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[43]]
#> Track_1 Track_2
#> Track_1 NA 30.92515
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[44]]
#> Track_1 Track_2
#> Track_1 NA 26.67765
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[45]]
#> Track_1 Track_2
#> Track_1 NA 16.45148
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[46]]
#> Track_1 Track_2
#> Track_1 NA 11.47072
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[47]]
#> Track_1 Track_2
#> Track_1 NA 15.32259
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[48]]
#> Track_1 Track_2
#> Track_1 NA 15.88378
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[49]]
#> Track_1 Track_2
#> Track_1 NA 21.25064
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[50]]
#> Track_1 Track_2
#> Track_1 NA 16.7099
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[51]]
#> Track_1 Track_2
#> Track_1 NA 12.02206
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[52]]
#> Track_1 Track_2
#> Track_1 NA 11.68184
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[53]]
#> Track_1 Track_2
#> Track_1 NA 11.85036
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[54]]
#> Track_1 Track_2
#> Track_1 NA 13.04277
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[55]]
#> Track_1 Track_2
#> Track_1 NA 30.74225
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[56]]
#> Track_1 Track_2
#> Track_1 NA 14.61468
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[57]]
#> Track_1 Track_2
#> Track_1 NA 14.22608
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[58]]
#> Track_1 Track_2
#> Track_1 NA 16.53039
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[59]]
#> Track_1 Track_2
#> Track_1 NA 23.21678
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[60]]
#> Track_1 Track_2
#> Track_1 NA 13.97278
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[61]]
#> Track_1 Track_2
#> Track_1 NA 17.9569
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[62]]
#> Track_1 Track_2
#> Track_1 NA 11.98652
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[63]]
#> Track_1 Track_2
#> Track_1 NA 20.99193
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[64]]
#> Track_1 Track_2
#> Track_1 NA 15.38522
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[65]]
#> Track_1 Track_2
#> Track_1 NA 18.82603
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[66]]
#> Track_1 Track_2
#> Track_1 NA 17.23096
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[67]]
#> Track_1 Track_2
#> Track_1 NA 21.21017
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[68]]
#> Track_1 Track_2
#> Track_1 NA 21.12722
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[69]]
#> Track_1 Track_2
#> Track_1 NA 25.37891
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[70]]
#> Track_1 Track_2
#> Track_1 NA 12.51377
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[71]]
#> Track_1 Track_2
#> Track_1 NA 16.47828
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[72]]
#> Track_1 Track_2
#> Track_1 NA 19.33368
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[73]]
#> Track_1 Track_2
#> Track_1 NA 28.99527
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[74]]
#> Track_1 Track_2
#> Track_1 NA 13.32521
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[75]]
#> Track_1 Track_2
#> Track_1 NA 13.48527
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[76]]
#> Track_1 Track_2
#> Track_1 NA 15.9871
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[77]]
#> Track_1 Track_2
#> Track_1 NA 14.30173
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[78]]
#> Track_1 Track_2
#> Track_1 NA 12.78865
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[79]]
#> Track_1 Track_2
#> Track_1 NA 15.09492
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[80]]
#> Track_1 Track_2
#> Track_1 NA 18.922
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[81]]
#> Track_1 Track_2
#> Track_1 NA 15.40781
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[82]]
#> Track_1 Track_2
#> Track_1 NA 22.88214
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[83]]
#> Track_1 Track_2
#> Track_1 NA 19.34219
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[84]]
#> Track_1 Track_2
#> Track_1 NA 14.02907
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[85]]
#> Track_1 Track_2
#> Track_1 NA 21.6011
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[86]]
#> Track_1 Track_2
#> Track_1 NA 12.7596
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[87]]
#> Track_1 Track_2
#> Track_1 NA 13.98672
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[88]]
#> Track_1 Track_2
#> Track_1 NA 13.36299
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[89]]
#> Track_1 Track_2
#> Track_1 NA 16.78047
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[90]]
#> Track_1 Track_2
#> Track_1 NA 14.38821
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[91]]
#> Track_1 Track_2
#> Track_1 NA 19.77919
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[92]]
#> Track_1 Track_2
#> Track_1 NA 17.77305
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[93]]
#> Track_1 Track_2
#> Track_1 NA 13.13442
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[94]]
#> Track_1 Track_2
#> Track_1 NA 18.50315
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[95]]
#> Track_1 Track_2
#> Track_1 NA 12.82387
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[96]]
#> Track_1 Track_2
#> Track_1 NA 21.84144
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[97]]
#> Track_1 Track_2
#> Track_1 NA 14.41937
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[98]]
#> Track_1 Track_2
#> Track_1 NA 21.57057
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[99]]
#> Track_1 Track_2
#> Track_1 NA 11.12399
#> Track_2 NA NA
#>
#> $DTW_distance_metric_simulations[[100]]
#> Track_1 Track_2
#> Track_1 NA 15.41713
#> Track_2 NA NA
simil_frechet_directed_paluxy <- simil_Frechet_metric(PaluxyRiver, test = TRUE,
sim = sim_directed_paluxy,
superposition = "Centroid")
#> $Frechet_distance_metric
#> Track_1 Track_2
#> Track_1 NA 0.6589325
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_p_values
#> Track_1 Track_2
#> Track_1 NA 0.27
#> Track_2 NA NA
#>
#> $Frechet_metric_p_values_combined
#> [1] 0.27
#>
#> $Frechet_distance_metric_simulations
#> $Frechet_distance_metric_simulations[[1]]
#> Track_1 Track_2
#> Track_1 NA 0.6644196
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[2]]
#> Track_1 Track_2
#> Track_1 NA 0.8937762
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[3]]
#> Track_1 Track_2
#> Track_1 NA 1.058956
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[4]]
#> Track_1 Track_2
#> Track_1 NA 1.16342
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[5]]
#> Track_1 Track_2
#> Track_1 NA 1.165867
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[6]]
#> Track_1 Track_2
#> Track_1 NA 0.5261424
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[7]]
#> Track_1 Track_2
#> Track_1 NA 0.7856997
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[8]]
#> Track_1 Track_2
#> Track_1 NA 0.6111565
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[9]]
#> Track_1 Track_2
#> Track_1 NA 0.8459179
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[10]]
#> Track_1 Track_2
#> Track_1 NA 1.012448
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[11]]
#> Track_1 Track_2
#> Track_1 NA 0.8259793
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[12]]
#> Track_1 Track_2
#> Track_1 NA 1.117472
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[13]]
#> Track_1 Track_2
#> Track_1 NA 1.182398
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[14]]
#> Track_1 Track_2
#> Track_1 NA 0.9636318
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[15]]
#> Track_1 Track_2
#> Track_1 NA 1.189243
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[16]]
#> Track_1 Track_2
#> Track_1 NA 1.379343
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[17]]
#> Track_1 Track_2
#> Track_1 NA 0.7256317
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[18]]
#> Track_1 Track_2
#> Track_1 NA 0.6823563
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[19]]
#> Track_1 Track_2
#> Track_1 NA 0.950884
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[20]]
#> Track_1 Track_2
#> Track_1 NA 0.7723526
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[21]]
#> Track_1 Track_2
#> Track_1 NA 1.052836
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[22]]
#> Track_1 Track_2
#> Track_1 NA 0.9466464
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[23]]
#> Track_1 Track_2
#> Track_1 NA 0.8225801
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[24]]
#> Track_1 Track_2
#> Track_1 NA 0.7744092
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[25]]
#> Track_1 Track_2
#> Track_1 NA 1.136146
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[26]]
#> Track_1 Track_2
#> Track_1 NA 1.025139
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[27]]
#> Track_1 Track_2
#> Track_1 NA 1.254413
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[28]]
#> Track_1 Track_2
#> Track_1 NA 0.6106121
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[29]]
#> Track_1 Track_2
#> Track_1 NA 0.8413951
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[30]]
#> Track_1 Track_2
#> Track_1 NA 0.7990484
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[31]]
#> Track_1 Track_2
#> Track_1 NA 0.8728349
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[32]]
#> Track_1 Track_2
#> Track_1 NA 0.8537523
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[33]]
#> Track_1 Track_2
#> Track_1 NA 1.19522
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[34]]
#> Track_1 Track_2
#> Track_1 NA 0.8690335
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[35]]
#> Track_1 Track_2
#> Track_1 NA 0.4992763
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[36]]
#> Track_1 Track_2
#> Track_1 NA 0.9990285
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[37]]
#> Track_1 Track_2
#> Track_1 NA 0.5901595
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[38]]
#> Track_1 Track_2
#> Track_1 NA 0.5294141
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[39]]
#> Track_1 Track_2
#> Track_1 NA 0.5421468
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[40]]
#> Track_1 Track_2
#> Track_1 NA 0.8748483
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[41]]
#> Track_1 Track_2
#> Track_1 NA 0.4252444
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[42]]
#> Track_1 Track_2
#> Track_1 NA 0.4490231
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[43]]
#> Track_1 Track_2
#> Track_1 NA 1.051471
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[44]]
#> Track_1 Track_2
#> Track_1 NA 0.970436
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[45]]
#> Track_1 Track_2
#> Track_1 NA 0.6937265
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[46]]
#> Track_1 Track_2
#> Track_1 NA 1.080542
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[47]]
#> Track_1 Track_2
#> Track_1 NA 0.8822359
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[48]]
#> Track_1 Track_2
#> Track_1 NA 0.6796092
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[49]]
#> Track_1 Track_2
#> Track_1 NA 0.8158227
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[50]]
#> Track_1 Track_2
#> Track_1 NA 0.5225407
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[51]]
#> Track_1 Track_2
#> Track_1 NA 0.6650963
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[52]]
#> Track_1 Track_2
#> Track_1 NA 0.3904542
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[53]]
#> Track_1 Track_2
#> Track_1 NA 0.5964352
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[54]]
#> Track_1 Track_2
#> Track_1 NA 0.6180323
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[55]]
#> Track_1 Track_2
#> Track_1 NA 1.156794
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[56]]
#> Track_1 Track_2
#> Track_1 NA 0.5160661
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[57]]
#> Track_1 Track_2
#> Track_1 NA 0.5730477
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[58]]
#> Track_1 Track_2
#> Track_1 NA 0.6811641
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[59]]
#> Track_1 Track_2
#> Track_1 NA 1.052389
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[60]]
#> Track_1 Track_2
#> Track_1 NA 1.11501
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[61]]
#> Track_1 Track_2
#> Track_1 NA 0.9278154
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[62]]
#> Track_1 Track_2
#> Track_1 NA 0.7217622
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[63]]
#> Track_1 Track_2
#> Track_1 NA 0.5996275
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[64]]
#> Track_1 Track_2
#> Track_1 NA 0.4093243
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[65]]
#> Track_1 Track_2
#> Track_1 NA 1.094447
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[66]]
#> Track_1 Track_2
#> Track_1 NA 0.8075087
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[67]]
#> Track_1 Track_2
#> Track_1 NA 0.9400246
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[68]]
#> Track_1 Track_2
#> Track_1 NA 0.7681723
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[69]]
#> Track_1 Track_2
#> Track_1 NA 0.7856023
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[70]]
#> Track_1 Track_2
#> Track_1 NA 0.9167766
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[71]]
#> Track_1 Track_2
#> Track_1 NA 0.9145878
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[72]]
#> Track_1 Track_2
#> Track_1 NA 1.097352
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[73]]
#> Track_1 Track_2
#> Track_1 NA 1.068152
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[74]]
#> Track_1 Track_2
#> Track_1 NA 1.048303
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[75]]
#> Track_1 Track_2
#> Track_1 NA 0.5580788
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[76]]
#> Track_1 Track_2
#> Track_1 NA 0.4868139
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[77]]
#> Track_1 Track_2
#> Track_1 NA 0.4333604
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[78]]
#> Track_1 Track_2
#> Track_1 NA 0.4263411
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[79]]
#> Track_1 Track_2
#> Track_1 NA 0.7880333
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[80]]
#> Track_1 Track_2
#> Track_1 NA 0.7762308
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[81]]
#> Track_1 Track_2
#> Track_1 NA 0.6503636
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[82]]
#> Track_1 Track_2
#> Track_1 NA 1.094413
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[83]]
#> Track_1 Track_2
#> Track_1 NA 0.8912565
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[84]]
#> Track_1 Track_2
#> Track_1 NA 0.7992782
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[85]]
#> Track_1 Track_2
#> Track_1 NA 0.7809954
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[86]]
#> Track_1 Track_2
#> Track_1 NA 0.7721861
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[87]]
#> Track_1 Track_2
#> Track_1 NA 0.9305009
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[88]]
#> Track_1 Track_2
#> Track_1 NA 0.5656073
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[89]]
#> Track_1 Track_2
#> Track_1 NA 1.104893
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[90]]
#> Track_1 Track_2
#> Track_1 NA 0.5333194
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[91]]
#> Track_1 Track_2
#> Track_1 NA 1.132852
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[92]]
#> Track_1 Track_2
#> Track_1 NA 0.7417178
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[93]]
#> Track_1 Track_2
#> Track_1 NA 0.6392856
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[94]]
#> Track_1 Track_2
#> Track_1 NA 0.7778465
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[95]]
#> Track_1 Track_2
#> Track_1 NA 0.9726612
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[96]]
#> Track_1 Track_2
#> Track_1 NA 1.130855
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[97]]
#> Track_1 Track_2
#> Track_1 NA 0.5202858
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[98]]
#> Track_1 Track_2
#> Track_1 NA 1.253308
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[99]]
#> Track_1 Track_2
#> Track_1 NA 0.7241493
#> Track_2 NA NA
#>
#> $Frechet_distance_metric_simulations[[100]]
#> Track_1 Track_2
#> Track_1 NA 0.5904
#> Track_2 NA NA
Comparing MountTom tracks (after subsetting) against Constrained model simulations using Origin superposition.
simil_dtw_constrained_mount <- simil_DTW_metric(sbMountTom, test = TRUE,
sim = sim_constrained_mount,
superposition = "Origin")
#> $DTW_distance_metric
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 8.365556 8.140001 13.288601 17.963246 14.043056 80.66455
#> Track_02 NA NA 9.928547 13.870318 15.997694 11.986057 83.72110
#> Track_03 NA NA NA 4.242441 9.250629 6.131319 46.49768
#> Track_04 NA NA NA NA 5.401950 3.172849 42.61717
#> Track_07 NA NA NA NA NA 5.261381 51.73148
#> Track_08 NA NA NA NA NA NA 54.42241
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 45.00788 18.730370 14.932046 22.179224
#> Track_02 47.19796 17.799527 9.836672 20.569492
#> Track_03 20.29566 7.910351 10.158387 9.928217
#> Track_04 19.90114 4.165947 8.969975 6.396727
#> Track_07 29.44950 2.944420 6.952380 5.167036
#> Track_08 27.32867 4.915326 5.349900 6.863688
#> Track_09 22.41087 41.825031 68.973412 42.969072
#> Track_13 NA 20.579060 39.239001 21.761749
#> Track_15 NA NA 8.572483 2.784293
#> Track_16 NA NA NA 10.795457
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_p_values
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.22 0.00 0.40 0.94 0.52 1
#> Track_02 NA NA 0.33 0.76 0.99 0.83 1
#> Track_03 NA NA NA 0.00 0.52 0.46 1
#> Track_04 NA NA NA NA 0.00 0.00 1
#> Track_07 NA NA NA NA NA 0.64 1
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.00 0 0 0.73
#> Track_02 1.00 0 0 0.96
#> Track_03 1.00 0 0 0.99
#> Track_04 0.91 0 0 0.00
#> Track_07 1.00 0 0 0.27
#> Track_08 1.00 0 0 0.79
#> Track_09 0.99 0 1 1.00
#> Track_13 NA 0 1 1.00
#> Track_15 NA NA 0 0.00
#> Track_16 NA NA NA 0.00
#> Track_18 NA NA NA NA
#>
#> $DTW_metric_p_values_combined
#> [1] 0
#>
#> $DTW_distance_metric_simulations
#> $DTW_distance_metric_simulations[[1]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 15.37045 16.275073 6.350795 12.016106 16.002189 24.647708
#> Track_02 NA NA 7.618455 13.055378 7.115118 7.348668 12.003786
#> Track_03 NA NA NA 16.063863 3.405489 2.633959 6.481552
#> Track_04 NA NA NA NA 11.937105 15.764867 23.826205
#> Track_07 NA NA NA NA NA 3.248982 9.709597
#> Track_08 NA NA NA NA NA NA 6.617866
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 16.950133 80.11000 44.33070 18.982098
#> Track_02 5.881906 68.87998 39.02356 9.077737
#> Track_03 1.968587 43.16981 20.46436 2.743236
#> Track_04 15.636972 84.93097 47.43903 18.705702
#> Track_07 4.464002 42.38893 19.29194 4.502308
#> Track_08 3.896539 40.38872 19.25721 1.827962
#> Track_09 7.486504 50.56994 29.90078 4.751671
#> Track_13 NA 53.04222 27.00921 3.809892
#> Track_15 NA NA 21.25698 40.309074
#> Track_16 NA NA NA 19.771419
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[2]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 16.4782 15.03107 10.43491 8.065695 10.359678 7.570759
#> Track_02 NA NA 7.06813 10.01898 11.645009 10.868491 12.905174
#> Track_03 NA NA NA 12.83117 6.154111 4.393689 8.507831
#> Track_04 NA NA NA NA 11.097856 11.873566 11.877363
#> Track_07 NA NA NA NA NA 2.423007 3.008960
#> Track_08 NA NA NA NA NA NA 4.194941
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 19.227616 78.81623 43.29661 10.774190
#> Track_02 7.077592 67.58219 38.73529 10.307708
#> Track_03 3.665158 41.92564 20.00951 4.052366
#> Track_04 14.577428 82.23744 47.24455 11.059518
#> Track_07 10.159206 44.46572 19.18306 2.589243
#> Track_08 8.450010 43.01976 19.23410 1.002520
#> Track_09 13.034484 51.21095 26.30532 4.206990
#> Track_13 NA 51.91081 27.44671 8.028187
#> Track_15 NA NA 21.99173 42.454590
#> Track_16 NA NA NA 19.018916
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[3]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 13.61056 12.73608 7.966613 10.024596 10.258152 18.499591
#> Track_02 NA NA 15.96580 8.979825 7.256374 10.661331 23.398358
#> Track_03 NA NA NA 16.671250 7.237129 4.991901 5.107091
#> Track_04 NA NA NA NA 9.286611 12.347440 23.829409
#> Track_07 NA NA NA NA NA 4.125450 13.060912
#> Track_08 NA NA NA NA NA NA 9.831962
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 11.924542 78.96147 46.89856 11.721994
#> Track_02 5.805736 71.06907 37.78101 13.939884
#> Track_03 9.685613 42.55941 21.46320 2.553401
#> Track_04 9.361188 83.56580 48.28498 14.953492
#> Track_07 3.206824 45.91580 20.72563 6.348986
#> Track_08 5.744905 40.75384 19.49731 3.003245
#> Track_09 16.560886 49.87232 30.89701 7.075806
#> Track_13 NA 54.25704 26.09522 8.245894
#> Track_15 NA NA 22.29089 40.662559
#> Track_16 NA NA NA 20.224809
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[4]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 13.91388 22.24302 22.032660 13.227781 12.449260 23.137729
#> Track_02 NA NA 11.63870 7.522144 4.858732 8.474963 11.559937
#> Track_03 NA NA NA 14.221229 6.987571 6.969244 3.309921
#> Track_04 NA NA NA NA 10.068814 14.575087 13.820426
#> Track_07 NA NA NA NA NA 4.069722 7.817165
#> Track_08 NA NA NA NA NA NA 8.913598
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 19.245155 79.31413 42.14367 24.706591
#> Track_02 7.969235 70.13420 37.97245 13.975743
#> Track_03 5.016164 42.37436 20.59276 2.049684
#> Track_04 8.214168 84.77053 48.81270 16.799936
#> Track_07 5.312526 47.07056 20.91620 8.321813
#> Track_08 7.208136 43.35694 19.16113 8.369850
#> Track_09 5.216859 50.23099 28.99618 4.474023
#> Track_13 NA 56.00918 27.89002 6.986578
#> Track_15 NA NA 22.36362 41.099712
#> Track_16 NA NA NA 20.705653
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[5]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 19.655 24.53359 14.22555 8.168317 12.819513 8.497972
#> Track_02 NA NA 10.04660 11.26156 12.586154 9.596560 11.144516
#> Track_03 NA NA NA 20.17291 12.097057 9.371738 13.894144
#> Track_04 NA NA NA NA 12.388418 11.496251 10.812652
#> Track_07 NA NA NA NA NA 4.275489 3.859279
#> Track_08 NA NA NA NA NA NA 4.064574
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 14.963384 78.29111 36.44327 25.175115
#> Track_02 5.055660 68.84569 34.94765 12.038085
#> Track_03 9.574557 45.23067 20.95220 3.893027
#> Track_04 10.165458 87.09747 44.24795 21.646183
#> Track_07 6.486404 47.57960 17.50666 11.663482
#> Track_08 5.604962 42.09201 16.45095 8.789042
#> Track_09 7.726405 56.07344 25.21776 13.403473
#> Track_13 NA 56.23051 24.29117 10.175920
#> Track_15 NA NA 24.73973 41.129170
#> Track_16 NA NA NA 19.483863
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[6]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 11.26987 10.05421 14.638013 15.73673 10.800573 10.498418
#> Track_02 NA NA 11.38934 6.475981 10.72073 6.719659 6.290988
#> Track_03 NA NA NA 17.623851 10.15063 4.825886 8.789971
#> Track_04 NA NA NA NA 10.78730 12.988805 9.199178
#> Track_07 NA NA NA NA NA 6.373854 6.202807
#> Track_08 NA NA NA NA NA NA 3.980134
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.007885 75.88137 45.27824 10.805489
#> Track_02 8.007006 70.96093 39.37317 11.379385
#> Track_03 3.580819 42.66910 21.23943 1.345838
#> Track_04 13.239007 81.59748 45.64986 18.010252
#> Track_07 9.874303 45.87882 19.60484 10.292799
#> Track_08 4.568070 41.17738 19.37469 4.430374
#> Track_09 7.374181 51.91617 28.03824 8.683729
#> Track_13 NA 53.58404 27.56232 4.140550
#> Track_15 NA NA 21.57666 41.358850
#> Track_16 NA NA NA 20.701645
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[7]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 20.97325 25.336389 21.46345 9.272421 16.810494 23.054071
#> Track_02 NA NA 9.937976 7.47709 10.628894 6.725713 5.471397
#> Track_03 NA NA NA 17.05205 10.947391 5.757102 5.043258
#> Track_04 NA NA NA NA 13.572806 11.207973 12.371692
#> Track_07 NA NA NA NA NA 5.842138 10.807321
#> Track_08 NA NA NA NA NA NA 5.258244
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 18.637838 81.90242 47.86212 15.086906
#> Track_02 3.762546 65.55156 40.83227 7.641958
#> Track_03 6.960074 40.11048 22.84955 6.593456
#> Track_04 9.442139 83.62051 52.47296 11.579092
#> Track_07 7.322579 46.31633 22.32102 5.106577
#> Track_08 3.139402 41.26165 21.36866 1.291713
#> Track_09 4.466531 52.40996 32.57104 6.411254
#> Track_13 NA 52.63722 29.21116 4.454720
#> Track_15 NA NA 22.22148 41.042177
#> Track_16 NA NA NA 20.995776
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[8]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 9.882278 16.056089 17.75994 7.711730 9.068768 10.339370
#> Track_02 NA NA 9.472144 24.83348 9.893081 9.296692 4.622812
#> Track_03 NA NA NA 27.68373 9.518314 7.413517 5.847020
#> Track_04 NA NA NA NA 14.783648 16.297687 23.973170
#> Track_07 NA NA NA NA NA 3.893361 7.687547
#> Track_08 NA NA NA NA NA NA 6.107416
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.667077 76.54138 42.74418 11.424700
#> Track_02 6.543845 69.62094 38.96367 6.619154
#> Track_03 8.684532 42.80350 20.94284 4.021286
#> Track_04 17.185154 88.15208 45.50635 21.551727
#> Track_07 4.030473 48.16191 20.39448 6.082594
#> Track_08 4.302315 43.19765 18.85422 3.621478
#> Track_09 6.002978 54.32366 29.95191 2.775424
#> Track_13 NA 56.64664 26.82557 5.395695
#> Track_15 NA NA 24.80503 42.268933
#> Track_16 NA NA NA 19.546074
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[9]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.951561 16.71338 8.841827 10.313062 9.859728 5.675826
#> Track_02 NA NA 14.28111 11.599225 8.298132 8.459416 4.338729
#> Track_03 NA NA NA 16.942968 10.091186 5.751533 11.121150
#> Track_04 NA NA NA NA 14.834585 11.138046 12.063197
#> Track_07 NA NA NA NA NA 4.426073 4.616564
#> Track_08 NA NA NA NA NA NA 4.906435
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.517809 76.18032 46.54040 10.5948519
#> Track_02 4.902445 67.53781 38.88882 8.5341511
#> Track_03 9.228088 39.23807 21.36978 9.9050716
#> Track_04 8.991326 83.21141 51.75978 15.1593634
#> Track_07 4.405829 43.42363 19.83320 0.9618195
#> Track_08 3.213493 41.14710 20.39422 4.3996752
#> Track_09 3.239857 55.52346 30.05253 4.7602298
#> Track_13 NA 52.11450 26.74594 4.3810847
#> Track_15 NA NA 22.09245 42.4204801
#> Track_16 NA NA NA 19.5598732
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[10]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 24.20085 27.62673 30.453820 14.719405 24.122091 31.856039
#> Track_02 NA NA 11.50678 4.330829 9.097113 8.935592 12.969897
#> Track_03 NA NA NA 14.640359 9.055856 2.642571 4.067699
#> Track_04 NA NA NA NA 13.656175 12.446243 15.050975
#> Track_07 NA NA NA NA NA 6.855708 11.826638
#> Track_08 NA NA NA NA NA NA 5.004938
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 18.435983 81.95246 43.24026 24.4289670
#> Track_02 5.241162 70.36744 39.85983 8.9468184
#> Track_03 7.520919 41.94919 21.47793 2.4128280
#> Track_04 8.793121 81.61485 49.30231 12.3079230
#> Track_07 4.874608 45.65497 20.38405 7.2163872
#> Track_08 4.813535 40.95496 20.42617 0.5410111
#> Track_09 10.198458 49.76932 29.96143 4.7962343
#> Track_13 NA 51.46496 25.81941 5.0473853
#> Track_15 NA NA 22.46016 41.1921737
#> Track_16 NA NA NA 20.4747229
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[11]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 12.58638 20.22892 7.482287 9.760421 14.524877 9.705180
#> Track_02 NA NA 10.81959 11.890961 12.297409 6.725593 12.101072
#> Track_03 NA NA NA 19.212478 11.320635 4.407479 13.011445
#> Track_04 NA NA NA NA 12.536053 13.483581 11.229084
#> Track_07 NA NA NA NA NA 7.117476 3.610765
#> Track_08 NA NA NA NA NA NA 7.954787
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 9.197272 80.46392 50.40759 18.851569
#> Track_02 5.838466 67.44633 42.93211 9.703275
#> Track_03 8.160906 39.97203 22.74553 1.267088
#> Track_04 9.446380 82.78141 51.43320 17.868713
#> Track_07 6.474240 45.20938 21.67391 10.106288
#> Track_08 3.713964 40.81406 21.77502 3.303258
#> Track_09 6.907739 52.84391 30.73770 11.714309
#> Track_13 NA 52.99557 29.02149 7.049574
#> Track_15 NA NA 21.74976 40.040893
#> Track_16 NA NA NA 22.411592
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[12]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 23.48085 28.9432 26.151904 16.949077 24.229105 33.317067
#> Track_02 NA NA 12.8933 6.556342 6.614177 9.990939 15.241974
#> Track_03 NA NA NA 19.584359 8.126700 4.158270 3.045640
#> Track_04 NA NA NA NA 12.096820 16.387065 22.453822
#> Track_07 NA NA NA NA NA 5.511214 10.740257
#> Track_08 NA NA NA NA NA NA 5.077968
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 27.255297 78.84435 43.68510 30.927008
#> Track_02 9.087317 68.76689 40.26946 15.367917
#> Track_03 4.656251 41.89043 22.90045 3.133862
#> Track_04 14.418003 86.27516 51.48500 22.961850
#> Track_07 6.662669 43.95636 21.41069 8.927352
#> Track_08 2.930734 39.93381 21.03399 4.130752
#> Track_09 6.368339 49.42910 31.56757 3.460360
#> Track_13 NA 51.61758 28.72404 6.383828
#> Track_15 NA NA 20.97854 39.066736
#> Track_16 NA NA NA 22.012062
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[13]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.901451 25.24658 14.435107 11.212312 20.308154 15.064587
#> Track_02 NA NA 18.55139 9.763664 7.341783 14.071529 8.837610
#> Track_03 NA NA NA 17.679835 10.081922 3.489944 10.671382
#> Track_04 NA NA NA NA 11.647920 13.596798 8.850978
#> Track_07 NA NA NA NA NA 6.902411 4.743354
#> Track_08 NA NA NA NA NA NA 6.929584
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 24.812034 79.79786 43.73124 14.396684
#> Track_02 18.324636 68.23461 36.59211 8.879779
#> Track_03 3.305956 43.48819 22.40137 7.563284
#> Track_04 15.910160 80.73559 46.41042 11.225092
#> Track_07 10.419002 43.56621 19.45531 2.904479
#> Track_08 3.125987 42.35755 21.11385 4.326266
#> Track_09 9.559844 53.77143 29.40227 3.814975
#> Track_13 NA 53.32642 28.64751 7.744098
#> Track_15 NA NA 22.71620 41.718804
#> Track_16 NA NA NA 19.640560
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[14]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 18.06647 15.06074 8.011189 15.285817 10.943404 14.904148
#> Track_02 NA NA 19.96300 22.672966 5.638386 12.026674 20.524394
#> Track_03 NA NA NA 12.838812 11.829038 6.374111 3.294886
#> Track_04 NA NA NA NA 17.843205 10.405634 12.498933
#> Track_07 NA NA NA NA NA 6.267275 13.166196
#> Track_08 NA NA NA NA NA NA 6.508969
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 8.605731 79.23387 41.46633 17.773417
#> Track_02 16.739286 68.29700 30.66355 21.344348
#> Track_03 5.216288 41.74057 19.64652 2.403227
#> Track_04 6.882690 76.79241 42.59631 15.000471
#> Track_07 10.326645 46.18520 17.29214 12.397178
#> Track_08 4.005068 41.44666 17.14520 6.905460
#> Track_09 5.625719 47.92042 25.41494 4.377688
#> Track_13 NA 52.26154 24.38208 6.709903
#> Track_15 NA NA 23.37297 39.480370
#> Track_16 NA NA NA 19.055729
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[15]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 9.024288 19.93601 7.269231 9.373822 10.288552 12.604953
#> Track_02 NA NA 11.26010 6.753318 6.189628 7.414169 5.076806
#> Track_03 NA NA NA 18.509227 8.384074 7.724532 7.460345
#> Track_04 NA NA NA NA 9.918363 11.791547 11.246881
#> Track_07 NA NA NA NA NA 2.209184 4.455328
#> Track_08 NA NA NA NA NA NA 4.761296
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 14.019123 78.02145 41.15754 14.157664
#> Track_02 6.415550 65.93672 35.45269 7.257784
#> Track_03 4.693655 39.51130 19.32432 4.595886
#> Track_04 12.105864 83.08255 44.99868 13.635272
#> Track_07 6.454332 44.82330 19.05297 4.190383
#> Track_08 5.955071 42.63226 18.05040 3.886931
#> Track_09 4.755055 49.83764 26.16561 3.580359
#> Track_13 NA 51.11624 25.08782 2.849550
#> Track_15 NA NA 22.44338 42.355773
#> Track_16 NA NA NA 19.234944
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[16]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 12.55938 21.58439 24.79944 8.891501 20.973550 25.224293
#> Track_02 NA NA 12.79466 10.29495 7.852288 12.605034 15.554145
#> Track_03 NA NA NA 12.72310 9.763802 2.971815 3.444541
#> Track_04 NA NA NA NA 16.467928 13.079876 14.669494
#> Track_07 NA NA NA NA NA 8.615562 12.630113
#> Track_08 NA NA NA NA NA NA 3.227115
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 21.125608 81.78215 48.13378 22.399252
#> Track_02 11.231892 71.90511 42.22040 13.662802
#> Track_03 3.198838 45.26897 23.01955 2.183963
#> Track_04 8.810824 85.91371 54.17325 13.800827
#> Track_07 9.947135 47.84486 22.34188 9.634936
#> Track_08 3.763698 41.99829 21.82748 1.380638
#> Track_09 5.535374 50.60428 31.65363 3.119160
#> Track_13 NA 55.30984 29.99707 3.688641
#> Track_15 NA NA 20.44257 42.994192
#> Track_16 NA NA NA 22.364660
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[17]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 28.05892 33.60439 34.954533 24.498224 21.328340 34.184667
#> Track_02 NA NA 14.27413 4.309201 6.826248 7.011645 12.475990
#> Track_03 NA NA NA 16.567807 6.446065 7.708522 4.953106
#> Track_04 NA NA NA NA 8.811844 10.558116 14.170989
#> Track_07 NA NA NA NA NA 2.736729 6.596399
#> Track_08 NA NA NA NA NA NA 7.934460
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 40.908564 80.71469 38.55004 33.909267
#> Track_02 18.117678 70.44059 37.51563 14.904511
#> Track_03 3.172097 43.54353 21.42041 1.557781
#> Track_04 19.738930 82.05074 46.18421 17.641450
#> Track_07 9.789229 45.75970 20.47637 7.157699
#> Track_08 11.186603 43.26228 19.18434 7.963829
#> Track_09 7.502943 52.34734 29.47299 5.355831
#> Track_13 NA 51.50552 27.85722 2.645741
#> Track_15 NA NA 23.62666 41.703023
#> Track_16 NA NA NA 20.904376
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[18]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.501242 20.20099 12.76106 10.172539 11.217374 11.109596
#> Track_02 NA NA 17.93484 11.82556 7.976979 8.965423 10.021158
#> Track_03 NA NA NA 27.33690 12.854578 6.976051 8.804191
#> Track_04 NA NA NA NA 8.768980 17.173147 20.348893
#> Track_07 NA NA NA NA NA 6.971660 10.969160
#> Track_08 NA NA NA NA NA NA 3.538394
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.151884 79.77571 45.25686 10.355754
#> Track_02 4.660466 71.06641 38.07991 7.163205
#> Track_03 11.159802 42.77997 21.94423 10.728526
#> Track_04 12.533409 81.22200 43.29310 12.224582
#> Track_07 6.288749 47.87949 20.11581 3.980053
#> Track_08 4.673700 41.84147 19.45635 4.188891
#> Track_09 6.375874 57.00217 31.53575 8.303607
#> Track_13 NA 56.42544 26.84952 4.777199
#> Track_15 NA NA 23.13751 43.540209
#> Track_16 NA NA NA 18.939217
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[19]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 11.9787 14.17581 17.44354 10.664874 19.001598 10.874572
#> Track_02 NA NA 15.39718 4.24812 6.056313 11.884345 5.479294
#> Track_03 NA NA NA 21.40408 8.374154 13.973150 10.689631
#> Track_04 NA NA NA NA 10.650981 14.505726 9.583184
#> Track_07 NA NA NA NA NA 6.428032 3.111483
#> Track_08 NA NA NA NA NA NA 8.822304
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.406578 76.42345 40.08407 11.591285
#> Track_02 10.050493 69.10390 31.69340 6.865972
#> Track_03 6.383856 41.66206 18.68530 7.644012
#> Track_04 14.499947 82.97285 39.81999 11.261103
#> Track_07 5.503313 44.14247 16.38227 2.436770
#> Track_08 12.718762 43.08414 13.47948 6.625739
#> Track_09 7.430511 51.97491 23.23997 2.623819
#> Track_13 NA 54.62555 24.10611 6.143201
#> Track_15 NA NA 24.09323 41.567156
#> Track_16 NA NA NA 15.985996
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[20]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 19.84859 28.84367 25.046449 10.723640 14.484194 16.179188
#> Track_02 NA NA 16.43350 4.771586 9.235044 7.236023 6.079764
#> Track_03 NA NA NA 18.733866 11.727030 8.905352 11.437040
#> Track_04 NA NA NA NA 13.701357 12.467042 8.851966
#> Track_07 NA NA NA NA NA 3.711321 5.769072
#> Track_08 NA NA NA NA NA NA 3.163405
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 24.241059 82.41313 44.97866 23.826829
#> Track_02 9.331971 70.69733 40.46426 12.077769
#> Track_03 6.899225 40.37611 21.47105 3.347009
#> Track_04 10.679915 81.61727 48.76232 14.319429
#> Track_07 9.459585 46.20116 20.17716 8.875496
#> Track_08 6.792579 42.36638 19.53338 5.878886
#> Track_09 7.392090 53.36581 29.62375 7.459133
#> Track_13 NA 53.62327 28.25201 3.810508
#> Track_15 NA NA 22.20566 41.283109
#> Track_16 NA NA NA 20.736045
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[21]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 13.44762 26.68610 16.993205 8.490430 10.677973 12.737028
#> Track_02 NA NA 15.42675 5.005587 8.828903 8.814375 6.579602
#> Track_03 NA NA NA 18.903052 12.468309 11.160675 11.499525
#> Track_04 NA NA NA NA 12.118243 12.255843 9.186524
#> Track_07 NA NA NA NA NA 1.791695 6.448155
#> Track_08 NA NA NA NA NA NA 5.423765
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 12.870293 79.09969 41.25139 19.864070
#> Track_02 4.173311 68.10940 36.37695 9.389990
#> Track_03 10.748802 40.24632 20.62065 4.924068
#> Track_04 5.892015 78.80302 43.86100 13.628890
#> Track_07 5.927948 43.70866 17.86649 7.857301
#> Track_08 5.286613 41.92455 17.75082 6.665112
#> Track_09 4.619630 52.50070 27.28977 6.730173
#> Track_13 NA 54.01394 25.57020 6.530835
#> Track_15 NA NA 21.52863 39.302872
#> Track_16 NA NA NA 18.692245
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[22]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 32.93047 24.763953 16.84128 21.742372 23.246795 38.806058
#> Track_02 NA NA 7.473677 22.23474 6.450025 7.910379 13.106071
#> Track_03 NA NA NA 20.76883 5.370493 1.906563 6.643171
#> Track_04 NA NA NA NA 15.872841 19.340712 32.307222
#> Track_07 NA NA NA NA NA 3.849210 11.741501
#> Track_08 NA NA NA NA NA NA 8.638271
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 30.537143 77.01960 37.54107 27.625164
#> Track_02 5.395293 67.77242 37.64374 8.739750
#> Track_03 4.492470 39.59366 18.76023 1.991624
#> Track_04 22.927396 82.98162 43.41513 23.241288
#> Track_07 5.628784 44.83575 20.30659 6.492413
#> Track_08 4.275891 40.20602 18.82851 3.398422
#> Track_09 8.075853 50.73210 30.33182 5.000955
#> Track_13 NA 52.32057 26.72274 4.092495
#> Track_15 NA NA 21.80043 39.859804
#> Track_16 NA NA NA 19.535778
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[23]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 22.6215 31.41965 24.599386 13.74988 23.452952 32.046177
#> Track_02 NA NA 13.72673 4.625758 9.54260 8.224261 12.680606
#> Track_03 NA NA NA 19.209228 11.76591 5.069242 3.519740
#> Track_04 NA NA NA NA 13.95090 12.950820 18.006077
#> Track_07 NA NA NA NA NA 7.020560 13.007436
#> Track_08 NA NA NA NA NA NA 5.693858
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 34.349518 82.66903 38.65943 29.828199
#> Track_02 14.987759 68.27496 34.41338 12.452270
#> Track_03 2.762362 40.14421 19.07716 1.567016
#> Track_04 19.489695 84.68430 43.87624 17.949359
#> Track_07 13.328229 45.36863 17.45789 10.482586
#> Track_08 5.688692 40.98618 17.75366 3.891065
#> Track_09 4.752267 47.67539 25.98608 3.349432
#> Track_13 NA 50.17107 25.18907 2.569937
#> Track_15 NA NA 21.91333 39.603225
#> Track_16 NA NA NA 18.394066
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[24]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 15.5272 14.21008 21.771102 12.470958 12.861854 9.628770
#> Track_02 NA NA 18.43196 4.587123 5.296009 8.504463 13.109876
#> Track_03 NA NA NA 24.265103 11.255473 9.838209 6.422358
#> Track_04 NA NA NA NA 9.007963 12.579740 17.951008
#> Track_07 NA NA NA NA NA 3.528302 8.673267
#> Track_08 NA NA NA NA NA NA 7.621137
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 8.039576 75.22890 44.55135 12.355964
#> Track_02 15.992694 69.99916 35.56143 7.769088
#> Track_03 4.574461 39.99612 20.45755 8.911287
#> Track_04 21.117828 82.48468 43.52879 11.775148
#> Track_07 10.641160 48.64374 20.38671 3.796369
#> Track_08 9.543339 42.68282 18.33036 1.498577
#> Track_09 5.164692 50.66683 28.14002 6.982765
#> Track_13 NA 52.77207 27.11024 8.924754
#> Track_15 NA NA 23.77326 41.692301
#> Track_16 NA NA NA 18.141035
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[25]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 22.6811 23.576229 27.250139 12.279807 11.161746 19.230143
#> Track_02 NA NA 9.069314 4.664916 9.940219 12.272560 6.103665
#> Track_03 NA NA NA 13.255105 8.120542 9.000158 6.354734
#> Track_04 NA NA NA NA 13.564164 16.012169 9.226753
#> Track_07 NA NA NA NA NA 3.363908 6.043038
#> Track_08 NA NA NA NA NA NA 7.261721
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 27.487163 81.14483 43.92594 26.264012
#> Track_02 9.517213 71.19916 40.56737 11.375532
#> Track_03 2.702379 43.93441 21.48475 1.884457
#> Track_04 11.545983 83.94621 50.28049 15.933067
#> Track_07 10.479961 46.83177 20.48856 9.646709
#> Track_08 11.932169 43.38430 18.92108 10.302490
#> Track_09 7.905422 52.41953 29.12078 8.006304
#> Track_13 NA 55.73871 29.18008 3.889345
#> Track_15 NA NA 22.87210 42.357916
#> Track_16 NA NA NA 21.482743
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[26]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 5.390106 20.66488 11.84461 8.509557 10.700219 15.935965
#> Track_02 NA NA 14.48758 12.41857 5.155283 8.290256 10.302771
#> Track_03 NA NA NA 27.30790 9.414178 9.682088 5.986043
#> Track_04 NA NA NA NA 12.860777 12.991895 23.241965
#> Track_07 NA NA NA NA NA 4.008992 8.716848
#> Track_08 NA NA NA NA NA NA 9.851091
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 13.276917 78.89612 39.16922 20.4837440
#> Track_02 9.357967 65.29032 31.04953 14.4252506
#> Track_03 6.182599 38.69598 18.10316 0.7391806
#> Track_04 20.323116 84.49744 40.10207 27.0270344
#> Track_07 6.819079 44.23324 17.31745 9.0444189
#> Track_08 8.459949 40.02856 14.88808 9.3104571
#> Track_09 4.308599 51.02862 25.68985 6.2760570
#> Track_13 NA 51.43966 23.67115 5.7387539
#> Track_15 NA NA 22.03861 39.1018441
#> Track_16 NA NA NA 18.1653397
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[27]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 15.82542 23.27999 8.133461 9.887892 10.33173 15.918817
#> Track_02 NA NA 13.19684 14.425032 7.386493 12.79297 4.306988
#> Track_03 NA NA NA 24.354347 9.725757 12.06081 8.576344
#> Track_04 NA NA NA NA 10.798944 11.83266 16.601981
#> Track_07 NA NA NA NA NA 5.32514 7.298923
#> Track_08 NA NA NA NA NA NA 10.942269
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 8.947369 77.21999 41.92802 21.517875
#> Track_02 7.999539 66.22587 36.97571 11.871481
#> Track_03 11.655790 37.80535 19.99358 1.307190
#> Track_04 9.353764 82.02094 44.70606 22.510533
#> Track_07 2.948398 43.12243 19.72767 8.826080
#> Track_08 5.912863 40.89247 17.26493 11.441634
#> Track_09 8.157432 53.40303 29.25255 7.466703
#> Track_13 NA 52.15368 25.25510 10.433915
#> Track_15 NA NA 20.40788 38.841905
#> Track_16 NA NA NA 20.119437
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[28]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 19.05489 20.546046 15.063533 10.368373 16.048526 30.672689
#> Track_02 NA NA 8.763514 8.199961 9.699193 7.255573 15.070033
#> Track_03 NA NA NA 14.784546 7.309672 3.305493 6.787476
#> Track_04 NA NA NA NA 11.142701 11.334675 22.918959
#> Track_07 NA NA NA NA NA 4.205734 14.347896
#> Track_08 NA NA NA NA NA NA 9.374957
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 22.590110 78.51162 38.98432 20.288530
#> Track_02 8.797090 69.38530 36.40512 9.212700
#> Track_03 2.318604 43.89224 19.98083 1.353154
#> Track_04 15.003435 83.40962 44.49458 14.935790
#> Track_07 8.712779 43.37918 17.19303 6.755110
#> Track_08 4.180198 42.89469 18.68665 2.596445
#> Track_09 6.625660 51.56237 29.83566 6.438779
#> Track_13 NA 50.99546 25.46343 1.423438
#> Track_15 NA NA 24.69187 42.239412
#> Track_16 NA NA NA 19.370249
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[29]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 6.621278 13.73623 10.73654 9.275498 12.656966 13.100905
#> Track_02 NA NA 10.55147 12.77716 9.014279 11.606370 12.566548
#> Track_03 NA NA NA 20.02995 8.693593 10.382502 12.138799
#> Track_04 NA NA NA NA 9.903937 11.912075 11.923771
#> Track_07 NA NA NA NA NA 4.403373 4.822103
#> Track_08 NA NA NA NA NA NA 3.783430
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 9.932620 76.25138 47.34946 11.918953
#> Track_02 9.702767 69.87872 42.05005 8.960321
#> Track_03 10.485080 42.62247 22.38688 2.915101
#> Track_04 8.469109 84.96898 50.87418 17.257063
#> Track_07 3.232288 46.14061 21.78234 6.540295
#> Track_08 4.130456 41.80462 19.48300 7.699496
#> Track_09 4.689573 51.19233 28.44038 9.306446
#> Track_13 NA 53.75433 27.32791 7.762857
#> Track_15 NA NA 19.62445 41.299554
#> Track_16 NA NA NA 21.229109
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[30]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 10.96706 14.35331 22.14984 10.544939 10.532606 8.389243
#> Track_02 NA NA 15.60049 28.72796 7.164855 7.766386 7.009050
#> Track_03 NA NA NA 11.36632 8.084992 7.668589 8.689583
#> Track_04 NA NA NA NA 22.034293 20.516536 21.078117
#> Track_07 NA NA NA NA NA 1.610625 3.729979
#> Track_08 NA NA NA NA NA NA 3.203330
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.158079 76.58830 43.15703 11.123687
#> Track_02 7.963572 69.84840 36.37881 11.301638
#> Track_03 6.995020 41.19492 20.88571 3.286325
#> Track_04 16.597992 80.55795 51.02428 13.512974
#> Track_07 4.509763 42.45125 18.60981 5.162810
#> Track_08 4.072850 41.12142 18.25076 4.671982
#> Track_09 3.972863 49.98819 26.03871 5.288051
#> Track_13 NA 52.19562 25.53330 3.720505
#> Track_15 NA NA 23.29295 40.876358
#> Track_16 NA NA NA 19.670121
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[31]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 23.29565 26.61820 7.902422 17.310269 14.199401 25.511080
#> Track_02 NA NA 11.04623 20.223118 6.180919 9.394358 9.488554
#> Track_03 NA NA NA 25.837494 6.459557 7.923067 4.421201
#> Track_04 NA NA NA NA 15.774310 12.536753 24.126165
#> Track_07 NA NA NA NA NA 2.935485 6.525099
#> Track_08 NA NA NA NA NA NA 7.954141
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 16.558435 75.89354 32.41009 20.017495
#> Track_02 5.723753 69.86449 33.11529 7.550375
#> Track_03 9.199493 43.39236 18.62605 4.778097
#> Track_04 13.572673 84.10240 38.25994 19.023446
#> Track_07 2.633840 44.53196 16.77554 2.925111
#> Track_08 3.144429 43.35223 16.13913 3.774009
#> Track_09 8.738787 48.25646 23.46632 4.419747
#> Track_13 NA 55.17583 22.25467 4.821150
#> Track_15 NA NA 22.83411 41.847162
#> Track_16 NA NA NA 16.517386
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[32]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 11.80658 24.9038 26.86662 14.228207 11.496712 30.620282
#> Track_02 NA NA 15.9398 13.93534 6.523948 7.993572 20.459451
#> Track_03 NA NA NA 13.74054 8.858847 8.816779 4.339725
#> Track_04 NA NA NA NA 13.482819 17.076346 17.162686
#> Track_07 NA NA NA NA NA 4.713014 12.725274
#> Track_08 NA NA NA NA NA NA 13.203219
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 16.012930 78.04406 43.15816 11.684907
#> Track_02 6.702074 71.85642 39.60488 7.775135
#> Track_03 7.688870 40.91468 21.66156 8.590226
#> Track_04 10.459320 85.33585 51.93481 17.542523
#> Track_07 3.837614 46.59874 22.02799 4.727508
#> Track_08 4.276362 42.60566 19.66247 1.305696
#> Track_09 11.736935 48.25428 30.13588 12.904567
#> Track_13 NA 50.32914 26.01094 4.030890
#> Track_15 NA NA 21.67941 41.267048
#> Track_16 NA NA NA 19.202460
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[33]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 18.1354 22.78366 27.35232 9.613172 9.893795 12.106991
#> Track_02 NA NA 10.62509 7.62058 10.441540 12.677739 16.849495
#> Track_03 NA NA NA 12.71571 8.904373 9.907163 13.335241
#> Track_04 NA NA NA NA 17.402689 20.209529 25.408450
#> Track_07 NA NA NA NA NA 2.651823 6.010503
#> Track_08 NA NA NA NA NA NA 4.431903
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 13.684234 79.07673 39.59945 18.429230
#> Track_02 5.581050 69.45507 37.43721 7.911717
#> Track_03 7.719305 39.63899 19.80084 2.902803
#> Track_04 11.561797 81.16099 47.72985 11.569757
#> Track_07 4.671466 45.21483 18.61560 6.329218
#> Track_08 6.512339 42.69399 17.11227 7.384765
#> Track_09 10.633232 48.53843 22.74170 10.774027
#> Track_13 NA 53.61841 25.11553 4.346751
#> Track_15 NA NA 24.07041 41.805436
#> Track_16 NA NA NA 19.608157
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[34]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 10.73368 16.853101 14.920773 8.060445 11.350691 23.997032
#> Track_02 NA NA 8.391325 5.257181 8.937228 7.761148 13.525794
#> Track_03 NA NA NA 12.187237 7.608905 4.603459 5.793794
#> Track_04 NA NA NA NA 13.229349 12.440812 16.779716
#> Track_07 NA NA NA NA NA 3.693743 13.741888
#> Track_08 NA NA NA NA NA NA 10.612220
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 7.163921 78.73830 41.21453 18.769548
#> Track_02 6.584490 67.53923 36.51071 10.228753
#> Track_03 7.199024 41.92946 19.76352 1.904250
#> Track_04 10.791225 80.83112 46.18558 13.076952
#> Track_07 4.104358 46.77457 18.98347 8.531636
#> Track_08 2.417414 43.18299 18.67079 5.805995
#> Track_09 13.801644 48.35836 28.62975 4.480539
#> Track_13 NA 54.76844 24.77015 8.766511
#> Track_15 NA NA 24.86204 42.275431
#> Track_16 NA NA NA 20.318612
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[35]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 9.011971 12.96862 26.63773 13.841277 14.167354 11.947192
#> Track_02 NA NA 12.21629 19.12586 9.469491 9.593724 7.470603
#> Track_03 NA NA NA 27.32077 10.262852 9.185763 10.596308
#> Track_04 NA NA NA NA 12.893400 13.690758 15.976207
#> Track_07 NA NA NA NA NA 2.255644 4.483887
#> Track_08 NA NA NA NA NA NA 3.460576
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 7.761447 74.89856 50.49219 10.975598
#> Track_02 7.528016 66.99763 42.83630 9.115477
#> Track_03 5.022045 39.40710 23.57305 2.919250
#> Track_04 23.124610 84.14392 51.96614 23.199540
#> Track_07 8.570834 41.57639 22.12376 7.636805
#> Track_08 7.566604 40.09014 21.38105 6.534333
#> Track_09 7.985417 49.21852 30.69873 7.534420
#> Track_13 NA 48.15613 29.06770 2.431583
#> Track_15 NA NA 17.78297 39.082125
#> Track_16 NA NA NA 22.588748
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[36]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 13.85898 17.908610 7.07115 10.67065 21.022748 13.046097
#> Track_02 NA NA 8.295678 13.98330 14.90284 10.548471 3.362489
#> Track_03 NA NA NA 16.99047 10.50394 2.687972 5.376796
#> Track_04 NA NA NA NA 11.41952 20.581187 13.141352
#> Track_07 NA NA NA NA NA 11.921035 11.681168
#> Track_08 NA NA NA NA NA NA 7.153355
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 8.817553 80.74157 42.12849 21.453897
#> Track_02 6.042996 69.72145 37.63803 11.118207
#> Track_03 6.678795 42.59384 19.67695 2.610289
#> Track_04 8.637707 83.55955 44.53410 20.938136
#> Track_07 8.015645 48.78053 18.72685 12.749124
#> Track_08 8.935368 40.08189 19.25709 1.719629
#> Track_09 4.717945 56.93938 29.24976 7.894042
#> Track_13 NA 54.79209 25.01318 9.460891
#> Track_15 NA NA 23.16526 41.203142
#> Track_16 NA NA NA 19.912408
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[37]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 7.268361 16.01622 9.784963 7.839845 10.883214 12.768869
#> Track_02 NA NA 14.54246 13.704846 7.046294 7.232298 12.857102
#> Track_03 NA NA NA 12.791754 7.078122 8.641305 4.262592
#> Track_04 NA NA NA NA 10.920316 14.597072 9.493480
#> Track_07 NA NA NA NA NA 3.999243 7.454374
#> Track_08 NA NA NA NA NA NA 9.620308
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 11.175805 77.55215 45.52765 11.862465
#> Track_02 12.065489 68.32894 37.76363 10.241649
#> Track_03 4.305138 41.13887 21.82512 3.751184
#> Track_04 6.400602 79.81474 48.78900 10.528110
#> Track_07 5.653204 44.53100 20.90933 4.265700
#> Track_08 8.357240 41.84860 19.26583 4.926253
#> Track_09 4.356634 51.88843 30.68975 4.256996
#> Track_13 NA 52.83497 28.37130 3.388832
#> Track_15 NA NA 22.72476 40.684138
#> Track_16 NA NA NA 20.427557
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[38]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 7.902148 21.28042 8.103282 7.714709 17.704855 8.444507
#> Track_02 NA NA 14.79078 5.295402 6.834173 11.458283 7.248928
#> Track_03 NA NA NA 21.249885 10.954545 3.534377 11.620586
#> Track_04 NA NA NA NA 9.923118 17.887506 10.346943
#> Track_07 NA NA NA NA NA 7.868300 3.176016
#> Track_08 NA NA NA NA NA NA 8.309626
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 9.323484 78.08143 46.00163 23.886433
#> Track_02 5.418313 69.80949 40.41900 17.066420
#> Track_03 10.200084 42.43258 22.92012 3.556095
#> Track_04 8.914122 85.06282 50.62683 24.703457
#> Track_07 4.552127 47.09269 22.01081 11.841666
#> Track_08 6.782317 41.68883 21.69042 4.647195
#> Track_09 3.499268 52.54516 29.63475 13.081577
#> Track_13 NA 53.89496 27.79767 12.002875
#> Track_15 NA NA 21.22071 38.609876
#> Track_16 NA NA NA 21.734597
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[39]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 14.98116 12.085660 10.40492 14.69598 12.831780 11.028928
#> Track_02 NA NA 5.962168 24.13477 18.75591 15.389915 16.476264
#> Track_03 NA NA NA 19.48834 10.99801 8.676275 10.546973
#> Track_04 NA NA NA NA 11.00745 12.324835 9.505905
#> Track_07 NA NA NA NA NA 3.129439 5.083383
#> Track_08 NA NA NA NA NA NA 3.257179
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 7.316406 76.41024 42.62638 10.053095
#> Track_02 9.499080 63.95369 38.66380 10.409676
#> Track_03 6.488483 40.56181 20.79965 5.493723
#> Track_04 13.968589 80.84146 42.61769 14.637090
#> Track_07 10.107534 43.25766 17.31923 6.561377
#> Track_08 8.009926 40.15824 17.07407 3.840215
#> Track_09 8.540738 51.48055 25.67168 4.912664
#> Track_13 NA 54.26374 27.46890 6.403349
#> Track_15 NA NA 23.76398 39.068547
#> Track_16 NA NA NA 18.139865
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[40]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 12.11073 19.37412 19.039313 8.422812 16.721220 8.888147
#> Track_02 NA NA 10.89319 6.386916 11.925887 8.899787 9.790428
#> Track_03 NA NA NA 13.136497 10.968172 2.598628 10.879972
#> Track_04 NA NA NA NA 19.067337 11.437234 16.725459
#> Track_07 NA NA NA NA NA 8.625527 4.306322
#> Track_08 NA NA NA NA NA NA 8.605750
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 7.554862 77.44647 42.51484 15.578630
#> Track_02 6.069502 68.09662 38.08664 8.649771
#> Track_03 8.913135 41.37082 20.82624 3.330176
#> Track_04 11.551735 81.66371 48.61236 11.920147
#> Track_07 6.125727 45.70026 19.26939 7.770483
#> Track_08 6.732301 40.71027 19.80344 1.644792
#> Track_09 5.356680 50.68085 26.34129 7.578914
#> Track_13 NA 53.94514 25.70562 5.879467
#> Track_15 NA NA 22.20449 41.884161
#> Track_16 NA NA NA 20.137581
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[41]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 12.68187 16.314584 7.956141 8.384179 11.769699 19.196135
#> Track_02 NA NA 8.780846 11.626155 10.985145 8.293688 10.266246
#> Track_03 NA NA NA 15.817980 8.722925 6.022447 3.642227
#> Track_04 NA NA NA NA 12.471485 11.802285 18.933658
#> Track_07 NA NA NA NA NA 4.628776 12.465581
#> Track_08 NA NA NA NA NA NA 9.287478
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.737170 79.05398 46.66926 13.554825
#> Track_02 8.725260 67.79930 40.49981 7.768703
#> Track_03 7.013565 42.07654 21.74214 2.532135
#> Track_04 6.820451 85.47988 51.52687 13.153665
#> Track_07 4.891025 44.70286 21.08074 6.821894
#> Track_08 3.999121 41.09699 19.77367 3.598099
#> Track_09 10.606929 48.55693 29.86164 5.547353
#> Track_13 NA 52.77980 27.11632 4.496470
#> Track_15 NA NA 18.77435 41.432205
#> Track_16 NA NA NA 20.812589
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[42]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 10.22783 22.35506 18.766427 8.498444 13.392392 5.858584
#> Track_02 NA NA 12.70877 8.780471 7.721029 15.797981 8.655901
#> Track_03 NA NA NA 16.026233 10.483552 15.184421 14.105665
#> Track_04 NA NA NA NA 15.151391 24.255046 16.950923
#> Track_07 NA NA NA NA NA 6.115488 3.216107
#> Track_08 NA NA NA NA NA NA 7.967410
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 12.471107 78.78120 47.29568 12.644720
#> Track_02 4.787291 66.89192 40.42509 8.093563
#> Track_03 7.431630 40.25683 22.42350 7.488244
#> Track_04 10.394253 82.40572 52.51571 14.957681
#> Track_07 5.894878 44.71306 21.52966 4.228170
#> Track_08 12.244440 44.03028 19.74060 8.069764
#> Track_09 7.967209 55.41917 31.25126 5.296231
#> Track_13 NA 52.18418 28.33518 3.752454
#> Track_15 NA NA 20.16424 41.256554
#> Track_16 NA NA NA 20.730588
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[43]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 20.04671 25.27398 20.516584 12.924467 11.350150 15.242053
#> Track_02 NA NA 12.49074 4.721562 7.465354 10.206650 5.774941
#> Track_03 NA NA NA 18.480160 9.259089 10.539092 10.678575
#> Track_04 NA NA NA NA 9.778736 13.467488 8.608357
#> Track_07 NA NA NA NA NA 4.308928 4.426509
#> Track_08 NA NA NA NA NA NA 5.961436
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 22.491005 78.41675 36.92607 25.401866
#> Track_02 7.043274 67.34236 33.85215 12.921445
#> Track_03 4.808861 40.16820 18.87299 1.057111
#> Track_04 11.831248 80.88880 42.07926 19.132306
#> Track_07 7.514959 44.72953 17.92627 9.509182
#> Track_08 10.103804 41.79177 15.73167 10.415301
#> Track_09 7.753137 52.95432 24.50222 10.838744
#> Track_13 NA 52.32940 24.84971 5.617305
#> Track_15 NA NA 22.03267 39.069246
#> Track_16 NA NA NA 18.502423
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[44]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 34.39748 35.26629 44.150099 18.17703 16.59583 18.088507
#> Track_02 NA NA 13.39833 7.843492 10.56894 11.25192 12.374103
#> Track_03 NA NA NA 16.957891 11.69659 11.52436 14.148960
#> Track_04 NA NA NA NA 16.30676 17.93238 19.560476
#> Track_07 NA NA NA NA NA 3.06492 4.190155
#> Track_08 NA NA NA NA NA NA 3.369849
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 35.146790 76.77050 39.05017 28.710697
#> Track_02 8.612382 68.71719 40.00357 8.322798
#> Track_03 5.593111 40.84585 21.81336 5.073131
#> Track_04 9.269114 83.86280 51.91754 11.172730
#> Track_07 10.877037 45.81700 20.44347 7.382824
#> Track_08 10.854626 42.46183 19.07947 7.730949
#> Track_09 13.282989 51.44881 27.46466 9.440295
#> Track_13 NA 53.44157 28.66104 3.540894
#> Track_15 NA NA 22.25016 43.372257
#> Track_16 NA NA NA 21.575767
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[45]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 5.572145 19.10460 16.34507 8.280142 13.32038 37.325518
#> Track_02 NA NA 13.47625 10.33724 5.710179 12.51325 29.472996
#> Track_03 NA NA NA 16.15647 8.817676 12.04068 9.777686
#> Track_04 NA NA NA NA 11.639640 20.57437 30.519412
#> Track_07 NA NA NA NA NA 7.31891 21.452077
#> Track_08 NA NA NA NA NA NA 25.979981
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.767905 78.86655 41.91836 22.910847
#> Track_02 5.295262 69.76623 35.99959 16.759881
#> Track_03 9.499122 41.11713 19.44705 2.952656
#> Track_04 11.034234 84.50177 47.43380 19.038149
#> Track_07 4.208661 49.17233 20.44465 11.033103
#> Track_08 7.330426 43.78324 16.88230 14.375975
#> Track_09 23.413207 55.32492 33.72557 7.617990
#> Track_13 NA 53.51151 24.32295 12.153544
#> Track_15 NA NA 22.17141 42.528235
#> Track_16 NA NA NA 20.673599
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[46]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 28.26931 8.574449 29.282629 20.870892 20.928731 16.152937
#> Track_02 NA NA 16.582180 5.326251 7.439621 7.144728 10.572744
#> Track_03 NA NA NA 19.364942 9.158243 9.059296 7.998420
#> Track_04 NA NA NA NA 11.379796 12.371078 12.335370
#> Track_07 NA NA NA NA NA 2.460168 6.312530
#> Track_08 NA NA NA NA NA NA 6.493301
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 12.360905 77.87052 45.93469 11.357186
#> Track_02 13.004755 70.57126 33.03016 14.236134
#> Track_03 7.181949 42.37650 19.26929 2.353449
#> Track_04 13.854002 84.49148 42.69538 16.937757
#> Track_07 7.271057 43.76672 16.72656 7.242498
#> Track_08 7.905840 40.90131 15.25009 7.551788
#> Track_09 5.158584 52.13704 24.06371 5.665498
#> Track_13 NA 56.01628 25.51600 5.886767
#> Track_15 NA NA 24.10494 42.119376
#> Track_16 NA NA NA 18.697528
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[47]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 22.77009 23.470776 5.970369 10.772147 26.220890 22.944087
#> Track_02 NA NA 8.145201 25.216451 11.891025 10.572753 6.403117
#> Track_03 NA NA NA 26.114198 9.430653 2.160182 4.129722
#> Track_04 NA NA NA NA 12.531862 29.137336 25.944464
#> Track_07 NA NA NA NA NA 11.059353 10.526940
#> Track_08 NA NA NA NA NA NA 5.896604
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 17.315349 78.63919 48.40943 17.230975
#> Track_02 4.849200 65.01435 41.52252 6.017393
#> Track_03 5.864795 40.28428 22.16508 4.483060
#> Track_04 19.349343 84.10832 51.21481 19.631674
#> Track_07 6.984196 42.46092 21.00119 5.263722
#> Track_08 7.818191 38.52519 21.81581 6.409203
#> Track_09 5.983787 50.52881 31.56281 4.916048
#> Track_13 NA 50.61720 28.38630 2.959347
#> Track_15 NA NA 17.56636 42.064063
#> Track_16 NA NA NA 22.017331
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[48]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 5.496937 12.59549 13.00446 11.809190 10.496573 17.558206
#> Track_02 NA NA 10.05282 10.99473 9.723858 8.110911 15.230596
#> Track_03 NA NA NA 21.07421 8.986827 7.438670 5.619573
#> Track_04 NA NA NA NA 12.336159 12.581428 27.588486
#> Track_07 NA NA NA NA NA 3.313383 14.893377
#> Track_08 NA NA NA NA NA NA 12.249041
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 10.801562 78.65554 44.66276 12.396875
#> Track_02 9.054123 70.38652 37.74549 8.663961
#> Track_03 3.041797 44.74078 20.76415 2.599640
#> Track_04 20.153447 85.80453 45.70586 20.181435
#> Track_07 10.022999 46.55011 18.93896 7.792625
#> Track_08 7.929704 43.38081 18.11864 5.611454
#> Track_09 6.366212 52.80794 29.99436 6.511745
#> Track_13 NA 53.07414 26.34950 2.336041
#> Track_15 NA NA 23.66252 42.224279
#> Track_16 NA NA NA 19.493665
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[49]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 8.197025 16.654074 6.485066 11.62510 9.082254 8.420622
#> Track_02 NA NA 9.814461 6.394635 12.16964 7.647536 6.119857
#> Track_03 NA NA NA 16.904494 10.24754 6.819930 7.868372
#> Track_04 NA NA NA NA 13.67978 10.758847 8.776600
#> Track_07 NA NA NA NA NA 3.717514 7.364822
#> Track_08 NA NA NA NA NA NA 3.672294
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 8.285190 80.41630 47.02208 13.257600
#> Track_02 4.169874 69.17129 40.16731 7.007017
#> Track_03 6.087708 42.04416 21.19717 3.041615
#> Track_04 8.117415 83.95587 49.30743 13.812311
#> Track_07 8.076799 45.41119 19.64293 7.510675
#> Track_08 3.995756 44.27752 20.33570 4.471894
#> Track_09 4.171814 54.16371 29.77514 5.445847
#> Track_13 NA 54.65625 27.53714 4.087048
#> Track_15 NA NA 21.88061 40.907152
#> Track_16 NA NA NA 20.122491
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[50]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 30.80462 30.79167 42.044400 19.273144 20.561072 25.682806
#> Track_02 NA NA 10.85132 8.447398 7.266627 7.009969 7.090475
#> Track_03 NA NA NA 14.332640 8.582859 6.459290 6.214605
#> Track_04 NA NA NA NA 14.040660 12.412480 12.585747
#> Track_07 NA NA NA NA NA 2.658971 5.987757
#> Track_08 NA NA NA NA NA NA 4.248761
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 29.978018 81.12509 35.28688 22.501000
#> Track_02 6.243600 68.62017 35.03854 6.935481
#> Track_03 4.509821 44.69981 20.27041 5.554300
#> Track_04 8.413865 85.28965 47.12617 10.461401
#> Track_07 6.922365 47.73120 18.77680 4.051765
#> Track_08 4.789967 46.04825 18.58411 2.031145
#> Track_09 5.485072 51.90143 25.92631 3.978318
#> Track_13 NA 54.54545 25.51136 3.712269
#> Track_15 NA NA 26.34196 44.113856
#> Track_16 NA NA NA 18.181136
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[51]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 19.36891 27.68753 13.75795 16.671640 27.958086 19.464140
#> Track_02 NA NA 13.19028 10.25184 5.259110 13.547478 6.513262
#> Track_03 NA NA NA 22.20668 7.761016 3.087649 9.504213
#> Track_04 NA NA NA NA 11.741763 23.303936 13.091333
#> Track_07 NA NA NA NA NA 8.010853 4.149985
#> Track_08 NA NA NA NA NA NA 9.323987
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 25.834584 78.95320 43.75972 21.456712
#> Track_02 9.883244 68.64828 39.99876 8.302500
#> Track_03 3.936509 41.62686 22.54849 4.547813
#> Track_04 18.424893 87.25061 50.58262 16.238560
#> Track_07 6.486426 45.05948 22.06351 4.997713
#> Track_08 5.469891 38.49805 21.15743 3.866231
#> Track_09 8.171616 51.29855 29.72864 5.018180
#> Track_13 NA 52.14157 28.94376 3.812456
#> Track_15 NA NA 21.21237 40.804285
#> Track_16 NA NA NA 20.835762
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[52]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 18.41559 21.143426 19.157452 9.677263 10.375001 16.265648
#> Track_02 NA NA 9.508578 3.445849 11.619128 12.317391 6.541260
#> Track_03 NA NA NA 12.783101 8.839445 9.025490 5.903882
#> Track_04 NA NA NA NA 14.643684 15.852921 8.789511
#> Track_07 NA NA NA NA NA 1.329459 7.545021
#> Track_08 NA NA NA NA NA NA 7.914214
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 14.060953 79.77774 44.33161 17.809956
#> Track_02 6.181046 69.56729 40.44407 7.463747
#> Track_03 5.563482 41.08237 21.21901 3.255918
#> Track_04 7.399310 80.36099 48.96925 11.215680
#> Track_07 6.344952 43.53594 19.22448 6.124405
#> Track_08 7.044334 41.72239 18.58539 6.119634
#> Track_09 3.672916 51.48320 29.04808 4.326683
#> Track_13 NA 52.70986 26.94083 4.044932
#> Track_15 NA NA 23.19386 39.797449
#> Track_16 NA NA NA 19.822161
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[53]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 18.55686 27.35363 28.29469 13.266159 16.200464 21.604430
#> Track_02 NA NA 14.57987 7.81438 5.909774 6.556496 7.994896
#> Track_03 NA NA NA 17.62836 9.889912 6.920617 7.227702
#> Track_04 NA NA NA NA 11.223596 12.065750 10.996314
#> Track_07 NA NA NA NA NA 4.425497 7.103849
#> Track_08 NA NA NA NA NA NA 4.040184
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 19.057568 78.81171 41.04998 18.447036
#> Track_02 5.706962 66.38498 37.11314 7.789644
#> Track_03 8.300266 37.09541 21.05575 5.980388
#> Track_04 8.167930 80.39786 48.39778 10.526536
#> Track_07 4.936687 43.76437 20.34770 4.694899
#> Track_08 5.175080 37.83105 18.63306 2.566577
#> Track_09 4.715399 46.81001 27.29726 3.625051
#> Track_13 NA 50.87547 26.53820 2.587535
#> Track_15 NA NA 23.57495 39.499939
#> Track_16 NA NA NA 19.727039
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[54]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 20.93925 24.633615 6.447874 8.132457 11.598051 24.793711
#> Track_02 NA NA 9.340306 22.335844 13.879479 12.777885 8.947185
#> Track_03 NA NA NA 26.169207 11.827174 9.739093 3.911336
#> Track_04 NA NA NA NA 8.834209 12.081926 26.789463
#> Track_07 NA NA NA NA NA 4.107099 12.579041
#> Track_08 NA NA NA NA NA NA 10.346435
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 16.847038 79.99455 43.88152 15.153876
#> Track_02 6.337842 66.74503 39.38119 8.814930
#> Track_03 7.070009 40.75317 21.75531 6.864130
#> Track_04 17.630110 85.65715 46.84265 16.389367
#> Track_07 8.187257 45.99463 20.65110 6.082861
#> Track_08 6.318884 41.19452 18.55300 3.286501
#> Track_09 7.413902 44.02700 27.33506 6.949304
#> Track_13 NA 50.54968 26.25538 3.545404
#> Track_15 NA NA 21.94801 40.057914
#> Track_16 NA NA NA 19.157022
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[55]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 18.05682 24.00937 18.394560 8.826819 16.595670 18.586366
#> Track_02 NA NA 11.18089 4.233952 9.887888 7.181997 4.202136
#> Track_03 NA NA NA 16.722830 11.332992 5.193621 7.096974
#> Track_04 NA NA NA NA 11.961647 11.837057 8.742702
#> Track_07 NA NA NA NA NA 6.864119 9.386674
#> Track_08 NA NA NA NA NA NA 3.660113
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 13.380961 79.03986 41.11752 21.895433
#> Track_02 5.484345 67.25436 37.18270 10.115043
#> Track_03 9.960328 42.82613 21.43629 1.975694
#> Track_04 6.962574 80.95454 45.33947 15.570005
#> Track_07 5.185292 48.18954 20.03386 9.931827
#> Track_08 5.853263 41.68319 19.59232 3.643359
#> Track_09 6.499934 55.28062 29.97237 5.767626
#> Track_13 NA 56.81310 27.02503 8.479968
#> Track_15 NA NA 23.42046 42.317437
#> Track_16 NA NA NA 20.866391
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[56]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 21.79362 27.12465 19.007561 15.128228 17.087573 27.180456
#> Track_02 NA NA 10.83229 9.790909 7.526450 7.477872 8.314092
#> Track_03 NA NA NA 20.694680 9.083422 6.826366 3.635773
#> Track_04 NA NA NA NA 11.152059 12.724797 18.957752
#> Track_07 NA NA NA NA NA 4.104344 9.642209
#> Track_08 NA NA NA NA NA NA 6.940182
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 27.822714 82.19446 41.65576 22.924610
#> Track_02 9.918798 68.41211 37.40406 8.327894
#> Track_03 3.414177 43.49689 21.03082 3.094404
#> Track_04 18.803725 86.42675 47.16883 17.533801
#> Track_07 9.105833 47.45363 20.06375 6.610700
#> Track_08 6.391120 42.45982 18.75492 3.864659
#> Track_09 3.338163 53.61415 29.97201 3.392318
#> Track_13 NA 52.96837 26.87732 2.435176
#> Track_15 NA NA 23.04441 42.145412
#> Track_16 NA NA NA 19.821950
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[57]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 15.83454 18.432090 15.863793 6.982666 11.942531 23.586349
#> Track_02 NA NA 8.797619 7.953535 11.351792 7.768917 9.550612
#> Track_03 NA NA NA 15.470995 9.017323 4.553347 5.386463
#> Track_04 NA NA NA NA 15.433205 12.234889 16.989897
#> Track_07 NA NA NA NA NA 4.758047 14.683021
#> Track_08 NA NA NA NA NA NA 9.682862
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 11.985248 78.32815 46.04370 25.012481
#> Track_02 5.263474 68.87470 40.88728 14.134880
#> Track_03 6.181049 42.97677 21.86129 4.360197
#> Track_04 9.090123 87.74588 53.20385 22.116416
#> Track_07 6.170873 47.01082 20.99966 12.783435
#> Track_08 2.325591 44.17198 21.19690 8.821532
#> Track_09 10.176515 56.75978 33.88052 6.346025
#> Track_13 NA 54.99633 28.43167 11.180777
#> Track_15 NA NA 21.69736 41.128803
#> Track_16 NA NA NA 22.291243
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[58]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 12.83655 19.948144 9.845221 9.928105 15.518125 30.576114
#> Track_02 NA NA 9.897242 6.645197 8.898056 7.561501 18.072805
#> Track_03 NA NA NA 17.558075 7.963845 3.602874 7.023037
#> Track_04 NA NA NA NA 12.331230 13.290999 26.488836
#> Track_07 NA NA NA NA NA 4.763172 16.049201
#> Track_08 NA NA NA NA NA NA 11.269104
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 15.527609 81.68731 46.21836 20.1424154
#> Track_02 5.791709 72.93393 40.74851 10.3097134
#> Track_03 3.746822 42.67930 20.07219 0.9923904
#> Track_04 11.130143 89.25935 51.51889 17.8110180
#> Track_07 7.070774 48.56068 20.82127 7.8397788
#> Track_08 2.682774 43.98753 19.93314 3.5383502
#> Track_09 11.367041 53.09206 31.53137 6.9722754
#> Track_13 NA 54.12808 26.74912 3.7370963
#> Track_15 NA NA 21.68774 42.8648125
#> Track_16 NA NA NA 20.2739975
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[59]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 14.78134 15.641660 17.98317 10.624945 10.361654 8.170536
#> Track_02 NA NA 7.585282 28.86541 13.057919 11.621895 6.895683
#> Track_03 NA NA NA 24.72302 9.095921 6.822380 6.409674
#> Track_04 NA NA NA NA 12.241577 14.157136 20.127598
#> Track_07 NA NA NA NA NA 3.684886 7.319927
#> Track_08 NA NA NA NA NA NA 5.718479
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.732752 80.57973 46.51682 10.549477
#> Track_02 11.113435 63.84333 37.64392 9.182707
#> Track_03 7.885738 40.76349 20.21947 4.292038
#> Track_04 15.131034 84.15855 44.37617 18.130861
#> Track_07 4.815785 46.22180 19.67926 5.064293
#> Track_08 4.775440 42.69055 18.73342 2.794671
#> Track_09 4.943834 55.30642 29.97484 3.685245
#> Track_13 NA 55.69000 26.90217 4.075400
#> Track_15 NA NA 23.04986 42.238988
#> Track_16 NA NA NA 19.396404
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[60]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 18.15077 22.30154 8.616638 7.753198 11.505600 14.046110
#> Track_02 NA NA 11.15456 22.800521 12.668773 9.634408 6.169600
#> Track_03 NA NA NA 24.989393 10.632036 7.986640 7.767701
#> Track_04 NA NA NA NA 9.642757 12.496634 16.593877
#> Track_07 NA NA NA NA NA 4.311768 7.651766
#> Track_08 NA NA NA NA NA NA 4.971870
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 18.978568 80.52905 42.41679 13.950857
#> Track_02 6.084915 70.83187 39.62421 7.205181
#> Track_03 4.377825 43.17180 21.35981 5.949701
#> Track_04 22.168340 86.01845 44.50702 15.741489
#> Track_07 10.503281 48.69716 20.04063 5.979266
#> Track_08 7.620098 43.62893 18.80688 2.552255
#> Track_09 6.409659 54.14606 28.69685 3.195717
#> Track_13 NA 55.01069 27.57380 5.248161
#> Track_15 NA NA 24.42219 42.842069
#> Track_16 NA NA NA 19.283901
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[61]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 22.63392 30.85477 27.518128 16.924688 23.961570 17.059035
#> Track_02 NA NA 15.24830 3.038933 5.339406 10.049872 6.335584
#> Track_03 NA NA NA 18.998539 9.647533 4.979124 11.963027
#> Track_04 NA NA NA NA 8.866871 13.826393 9.837585
#> Track_07 NA NA NA NA NA 4.938597 4.164027
#> Track_08 NA NA NA NA NA NA 7.316298
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 26.584311 78.98224 35.60693 18.966689
#> Track_02 9.060313 69.44742 34.10909 8.144376
#> Track_03 6.446850 43.51777 20.12352 7.415700
#> Track_04 11.285680 83.42399 43.41855 11.638599
#> Track_07 6.333145 47.14151 18.49040 3.461673
#> Track_08 2.351405 44.06611 19.00333 3.303710
#> Track_09 8.656476 53.28973 24.99923 4.145432
#> Track_13 NA 54.18954 24.84378 4.445575
#> Track_15 NA NA 24.66260 43.419051
#> Track_16 NA NA NA 17.899437
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[62]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.148008 14.20262 16.30934 9.473825 13.597586 16.959302
#> Track_02 NA NA 12.00669 14.00042 7.136578 10.968623 14.849695
#> Track_03 NA NA NA 21.44810 9.026962 2.845299 4.658131
#> Track_04 NA NA NA NA 9.780211 19.780894 26.914319
#> Track_07 NA NA NA NA NA 7.804559 13.152453
#> Track_08 NA NA NA NA NA NA 4.636705
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 16.448378 76.92382 46.59813 16.600354
#> Track_02 14.262186 68.48160 39.80191 13.870793
#> Track_03 3.164589 41.96370 22.09594 2.496792
#> Track_04 25.609946 83.61553 47.51138 23.284408
#> Track_07 12.238335 46.72150 21.41801 9.895300
#> Track_08 4.021981 39.63794 20.70825 2.450913
#> Track_09 3.193205 56.56492 34.57703 4.490679
#> Track_13 NA 50.28679 28.71451 2.219044
#> Track_15 NA NA 22.01699 39.309667
#> Track_16 NA NA NA 21.314555
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[63]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 20.69633 19.54401 6.737988 8.518553 9.646545 11.912970
#> Track_02 NA NA 7.34808 18.925242 12.244711 11.923336 8.231709
#> Track_03 NA NA NA 20.166052 8.304038 8.074567 7.514474
#> Track_04 NA NA NA NA 9.711268 10.743498 12.577551
#> Track_07 NA NA NA NA NA 1.718644 5.222137
#> Track_08 NA NA NA NA NA NA 5.027064
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 12.314179 77.68119 49.25632 14.820777
#> Track_02 7.359665 66.54311 43.18569 7.273380
#> Track_03 6.202940 40.87262 22.87138 3.527064
#> Track_04 11.698464 81.52814 51.26534 15.775342
#> Track_07 5.435395 43.02911 21.97416 5.007376
#> Track_08 5.541525 41.62558 21.24564 4.625810
#> Track_09 3.320460 52.81576 32.57495 4.145257
#> Track_13 NA 52.07983 29.70102 3.435945
#> Track_15 NA NA 17.61391 40.669880
#> Track_16 NA NA NA 21.960731
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[64]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 6.707762 17.43511 6.349841 8.565596 10.339788 9.383698
#> Track_02 NA NA 12.31040 6.267262 8.136368 6.928072 7.093431
#> Track_03 NA NA NA 19.096441 8.598347 6.613964 8.533060
#> Track_04 NA NA NA NA 11.605946 11.529781 11.661899
#> Track_07 NA NA NA NA NA 2.503624 4.022876
#> Track_08 NA NA NA NA NA NA 3.652718
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 17.067696 76.75125 42.09308 19.873811
#> Track_02 11.586155 68.06685 36.97058 14.368982
#> Track_03 2.575828 40.02832 20.39739 2.760752
#> Track_04 17.822327 84.14441 46.49935 21.961042
#> Track_07 9.697886 42.87446 18.73917 9.248818
#> Track_08 7.484097 40.85511 18.41412 7.161977
#> Track_09 9.777151 48.61190 25.98308 9.617720
#> Track_13 NA 49.81725 26.66142 3.916862
#> Track_15 NA NA 21.55694 38.425764
#> Track_16 NA NA NA 19.877274
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[65]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 5.058531 23.00927 6.895275 10.30531 20.114217 11.518267
#> Track_02 NA NA 19.75203 6.782321 8.16494 16.867300 10.127308
#> Track_03 NA NA NA 24.124247 13.33558 4.242529 10.381634
#> Track_04 NA NA NA NA 14.51010 22.081589 12.773191
#> Track_07 NA NA NA NA NA 10.282220 7.895563
#> Track_08 NA NA NA NA NA NA 8.475768
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 8.861457 80.54922 41.76965 11.633499
#> Track_02 7.636401 71.88609 35.81654 8.622138
#> Track_03 11.106896 43.15300 21.14358 7.999651
#> Track_04 9.235314 89.14551 46.88502 12.677201
#> Track_07 7.309309 45.73594 17.73942 5.808077
#> Track_08 8.594088 39.65561 19.08592 5.323044
#> Track_09 4.598448 52.64740 26.64841 3.452739
#> Track_13 NA 55.43448 25.23167 3.356154
#> Track_15 NA NA 23.62025 42.824737
#> Track_16 NA NA NA 18.446032
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[66]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 14.91405 13.83874 16.55319 8.476261 14.205960 19.590316
#> Track_02 NA NA 7.27766 7.15763 12.733867 6.916652 6.449262
#> Track_03 NA NA NA 10.60193 5.944074 1.699563 5.967743
#> Track_04 NA NA NA NA 15.802529 11.710632 13.104280
#> Track_07 NA NA NA NA NA 5.923918 12.277361
#> Track_08 NA NA NA NA NA NA 5.275165
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 15.301943 79.53065 44.90848 15.682971
#> Track_02 4.822414 68.11755 39.54312 7.051960
#> Track_03 4.340217 42.27620 19.99515 1.835095
#> Track_04 8.614003 84.16466 50.46056 11.468875
#> Track_07 9.132850 45.50999 19.56507 7.067073
#> Track_08 5.334560 40.70898 19.33962 2.677824
#> Track_09 5.896881 52.57675 30.89670 4.882431
#> Track_13 NA 54.52784 27.96899 2.618459
#> Track_15 NA NA 21.95814 42.871666
#> Track_16 NA NA NA 20.613721
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[67]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 28.04033 9.137205 29.62303 17.044929 11.341595 8.895002
#> Track_02 NA NA 18.187471 10.48881 7.531625 13.826721 17.883787
#> Track_03 NA NA NA 22.42041 8.777673 3.622707 4.176511
#> Track_04 NA NA NA NA 10.277867 17.531534 21.203172
#> Track_07 NA NA NA NA NA 5.406758 9.504147
#> Track_08 NA NA NA NA NA NA 4.171412
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 13.554298 76.30066 50.04416 13.770397
#> Track_02 11.415373 69.10470 37.44126 22.193179
#> Track_03 7.150761 42.71532 22.18985 3.706131
#> Track_04 12.519143 87.85306 50.85432 28.287934
#> Track_07 4.529017 46.10468 21.02399 11.554799
#> Track_08 3.294296 42.96517 21.33333 6.739609
#> Track_09 6.888505 52.29175 31.35393 7.223945
#> Track_13 NA 51.88673 26.92856 10.581720
#> Track_15 NA NA 22.67079 39.241459
#> Track_16 NA NA NA 21.829471
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[68]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 18.87417 24.95816 28.312620 11.561143 17.703326 18.582663
#> Track_02 NA NA 12.58882 7.156539 7.549861 8.227615 6.302839
#> Track_03 NA NA NA 13.796731 9.285063 5.053002 7.141198
#> Track_04 NA NA NA NA 14.484344 11.498414 9.288491
#> Track_07 NA NA NA NA NA 4.817938 6.385351
#> Track_08 NA NA NA NA NA NA 3.376451
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 18.445135 79.53962 43.92773 22.880330
#> Track_02 6.199880 70.14921 40.16109 11.348675
#> Track_03 5.919527 43.41953 22.04466 2.304583
#> Track_04 8.145150 84.88611 51.42273 12.841810
#> Track_07 6.472395 47.87252 21.47657 7.999931
#> Track_08 3.219092 43.03329 20.73130 3.574255
#> Track_09 1.949247 55.36571 31.27571 5.378926
#> Track_13 NA 51.42403 26.61589 4.080779
#> Track_15 NA NA 22.53897 41.446360
#> Track_16 NA NA NA 20.964362
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[69]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 5.03554 16.85382 3.420754 13.05625 13.502218 10.103241
#> Track_02 NA NA 12.16176 7.430208 10.17150 10.419569 7.086021
#> Track_03 NA NA NA 18.698271 11.66470 10.419539 7.631361
#> Track_04 NA NA NA NA 12.88593 13.302884 12.211266
#> Track_07 NA NA NA NA NA 3.721857 9.091279
#> Track_08 NA NA NA NA NA NA 8.389776
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.962117 80.45522 49.66052 12.932137
#> Track_02 4.517642 67.59954 40.19576 8.053009
#> Track_03 8.846879 41.80243 22.57775 3.659882
#> Track_04 7.866639 83.19537 50.76715 14.258811
#> Track_07 6.519701 46.59745 21.10893 8.127533
#> Track_08 7.258321 41.74142 19.50107 7.295157
#> Track_09 5.539985 52.38050 30.77518 3.945756
#> Track_13 NA 55.30895 28.68301 4.844691
#> Track_15 NA NA 22.83572 42.091092
#> Track_16 NA NA NA 21.731126
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[70]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 6.781214 20.25665 11.32779 9.308779 10.443858 11.430855
#> Track_02 NA NA 19.92379 14.63780 6.657149 10.232931 13.356215
#> Track_03 NA NA NA 17.28923 10.939716 7.186699 6.544032
#> Track_04 NA NA NA NA 13.693936 11.367963 10.615986
#> Track_07 NA NA NA NA NA 4.894880 7.807321
#> Track_08 NA NA NA NA NA NA 4.623788
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 9.074268 78.28416 45.32293 20.936459
#> Track_02 11.012615 68.95456 37.17541 20.572732
#> Track_03 9.134395 40.04642 21.81589 0.941826
#> Track_04 6.997982 81.91762 48.91712 17.735349
#> Track_07 5.775359 44.37341 20.36531 11.408096
#> Track_08 4.953211 40.31810 19.73657 7.468958
#> Track_09 5.741235 48.34933 28.56709 6.857689
#> Track_13 NA 53.89361 27.87766 9.830360
#> Track_15 NA NA 21.28066 39.574205
#> Track_16 NA NA NA 21.695180
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[71]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 6.884893 21.86928 4.472320 13.522933 15.509824 21.821360
#> Track_02 NA NA 15.05372 5.045472 7.645390 9.207209 15.524653
#> Track_03 NA NA NA 19.298106 5.892894 4.445966 3.757890
#> Track_04 NA NA NA NA 11.004423 12.770133 19.212235
#> Track_07 NA NA NA NA NA 2.792803 7.423021
#> Track_08 NA NA NA NA NA NA 6.654897
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 13.888532 79.63140 43.49987 20.174229
#> Track_02 7.476713 69.58726 37.74078 13.326131
#> Track_03 7.326806 42.74052 21.48676 1.845044
#> Track_04 11.024775 79.86906 44.26994 17.556793
#> Track_07 2.731083 45.00478 20.59663 5.008398
#> Track_08 2.663600 42.82373 20.24217 3.423191
#> Track_09 8.056025 53.50668 30.58951 4.147736
#> Track_13 NA 54.10157 26.63666 6.177988
#> Track_15 NA NA 22.23001 41.663436
#> Track_16 NA NA NA 20.639638
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[72]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 15.84926 21.612124 7.147864 8.625700 11.446040 25.751458
#> Track_02 NA NA 9.376147 17.447895 10.707141 9.077344 11.438033
#> Track_03 NA NA NA 23.416742 10.622612 8.017536 3.496731
#> Track_04 NA NA NA NA 9.657884 12.936045 27.490279
#> Track_07 NA NA NA NA NA 4.741356 14.523240
#> Track_08 NA NA NA NA NA NA 11.339979
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 16.973296 79.25477 42.96485 16.906622
#> Track_02 4.921904 68.42308 38.79881 7.356711
#> Track_03 4.195340 42.93873 21.28860 4.002904
#> Track_04 18.300060 87.25455 47.22584 18.310367
#> Track_07 9.418420 48.81615 21.08554 7.084346
#> Track_08 6.436974 43.06572 19.00385 4.223644
#> Track_09 6.872773 50.60994 30.22936 6.973874
#> Track_13 NA 52.68351 26.77251 2.686576
#> Track_15 NA NA 21.86991 42.086226
#> Track_16 NA NA NA 20.044014
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[73]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 26.27 24.706002 9.683651 13.766342 21.220031 21.363079
#> Track_02 NA NA 7.718109 18.910599 10.424232 6.803433 7.025731
#> Track_03 NA NA NA 19.937366 7.812747 2.810691 5.758625
#> Track_04 NA NA NA NA 11.856142 17.021940 14.853280
#> Track_07 NA NA NA NA NA 5.110808 6.826871
#> Track_08 NA NA NA NA NA NA 4.123298
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 18.999130 80.56211 46.30820 25.827050
#> Track_02 6.494927 68.05201 42.84025 9.400483
#> Track_03 6.155259 41.29145 22.59285 1.615335
#> Track_04 13.890106 83.10429 49.58667 21.259422
#> Track_07 4.848340 44.62214 21.93669 8.407441
#> Track_08 3.531568 41.89943 22.24240 3.511634
#> Track_09 3.492964 53.73594 32.26904 6.573286
#> Track_13 NA 53.91008 29.61333 7.123940
#> Track_15 NA NA 22.30844 39.656919
#> Track_16 NA NA NA 22.316744
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[74]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 23.61411 24.066270 19.882437 10.687037 25.022758 11.685183
#> Track_02 NA NA 9.191651 8.378297 11.286364 10.216599 10.649986
#> Track_03 NA NA NA 14.947353 9.314195 1.091281 10.886399
#> Track_04 NA NA NA NA 12.310437 16.184636 11.295589
#> Track_07 NA NA NA NA NA 9.664388 2.999461
#> Track_08 NA NA NA NA NA NA 11.396040
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 20.582332 77.50480 46.09341 17.418921
#> Track_02 4.840899 66.57180 42.43955 7.365216
#> Track_03 4.608938 39.68129 22.52903 4.436873
#> Track_04 9.065027 81.19735 51.88274 10.085361
#> Track_07 7.974863 43.12952 22.05514 5.501314
#> Track_08 4.899161 38.75220 22.21521 4.812930
#> Track_09 8.915278 53.85732 31.56699 6.381923
#> Track_13 NA 48.16539 28.00312 3.326788
#> Track_15 NA NA 18.69455 39.684783
#> Track_16 NA NA NA 21.355479
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[75]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 5.679293 22.10257 11.680491 9.491314 21.30869 19.455833
#> Track_02 NA NA 16.25285 6.435266 8.454749 15.35421 13.952908
#> Track_03 NA NA NA 16.677084 12.123502 2.93488 4.767286
#> Track_04 NA NA NA NA 12.955990 16.60492 13.677906
#> Track_07 NA NA NA NA NA 10.48214 12.003150
#> Track_08 NA NA NA NA NA NA 4.729418
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 15.365686 81.59187 47.04047 12.156340
#> Track_02 15.404139 70.11363 39.53211 7.391059
#> Track_03 19.201972 42.89993 22.34823 8.051786
#> Track_04 21.594691 79.72252 48.02435 10.822194
#> Track_07 5.975977 46.25340 20.59920 4.770588
#> Track_08 17.373169 40.17573 21.02576 6.560905
#> Track_09 19.580102 50.21708 30.09238 7.289755
#> Track_13 NA 56.71498 25.91165 10.157072
#> Track_15 NA NA 20.91473 42.343475
#> Track_16 NA NA NA 20.102632
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[76]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 11.74713 27.22720 20.248697 12.456812 11.666525 8.505048
#> Track_02 NA NA 17.54747 8.213492 5.399380 7.228040 4.621462
#> Track_03 NA NA NA 16.552763 10.116770 10.349251 15.138408
#> Track_04 NA NA NA NA 8.997264 11.437160 10.367234
#> Track_07 NA NA NA NA NA 3.785822 5.407971
#> Track_08 NA NA NA NA NA NA 4.230990
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 20.965148 79.59713 42.04938 24.413382
#> Track_02 10.956679 69.57076 37.11859 15.216036
#> Track_03 7.121656 43.88827 21.84685 3.824143
#> Track_04 8.719423 78.03304 45.01693 15.789003
#> Track_07 6.750746 47.06953 20.26879 8.694193
#> Track_08 7.239088 42.88202 18.44796 8.466082
#> Track_09 10.651920 56.41641 28.35169 12.339009
#> Track_13 NA 53.64162 26.73738 6.339444
#> Track_15 NA NA 21.94944 39.287189
#> Track_16 NA NA NA 19.497548
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[77]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 31.86155 27.869813 20.16943 15.328334 21.437470 13.869210
#> Track_02 NA NA 8.395336 20.35161 11.481915 6.654289 14.610212
#> Track_03 NA NA NA 23.28868 9.219594 4.050493 11.328115
#> Track_04 NA NA NA NA 12.079592 18.051027 12.788908
#> Track_07 NA NA NA NA NA 5.982271 4.897012
#> Track_08 NA NA NA NA NA NA 6.769038
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 23.195418 78.58892 38.16815 27.090976
#> Track_02 5.745940 69.87532 38.73335 7.673868
#> Track_03 5.727728 43.12953 20.47047 1.089180
#> Track_04 14.744310 90.70207 47.63432 22.124757
#> Track_07 6.454950 46.91514 19.35725 8.547628
#> Track_08 3.797793 42.04141 18.97140 4.038155
#> Track_09 9.273897 52.00778 25.81054 10.918442
#> Track_13 NA 55.03731 26.08120 4.947664
#> Track_15 NA NA 23.66541 44.183785
#> Track_16 NA NA NA 20.713161
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[78]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.449343 19.85343 4.727699 8.595454 9.766616 19.770223
#> Track_02 NA NA 15.36160 2.779272 5.644347 6.617782 15.463457
#> Track_03 NA NA NA 20.167330 8.422202 7.859841 3.700126
#> Track_04 NA NA NA NA 9.439751 11.187839 19.611312
#> Track_07 NA NA NA NA NA 3.918484 9.951528
#> Track_08 NA NA NA NA NA NA 9.485616
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 7.881447 79.09696 49.09943 13.564494
#> Track_02 5.394549 69.78554 41.20404 9.462934
#> Track_03 9.638027 40.84545 21.94636 4.373137
#> Track_04 7.989905 82.35214 50.63932 13.939621
#> Track_07 2.514183 46.33445 22.46460 5.225072
#> Track_08 5.762048 41.40885 20.28759 3.639576
#> Track_09 10.521167 53.18013 33.17308 5.396461
#> Track_13 NA 56.53411 29.71120 5.901018
#> Track_15 NA NA 19.11392 41.376053
#> Track_16 NA NA NA 21.058720
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[79]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 27.2262 23.780616 5.93443 13.071710 16.900309 26.584167
#> Track_02 NA NA 6.180456 31.33261 10.254650 7.867670 7.874028
#> Track_03 NA NA NA 26.73812 7.353043 5.868189 3.863529
#> Track_04 NA NA NA NA 16.117260 19.253543 29.613027
#> Track_07 NA NA NA NA NA 4.597037 9.563799
#> Track_08 NA NA NA NA NA NA 6.371393
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 15.454594 81.13364 45.82147 19.965995
#> Track_02 8.919684 67.86726 41.85166 6.959090
#> Track_03 7.459933 45.54535 23.16575 3.456663
#> Track_04 18.956861 83.29222 46.17429 22.425760
#> Track_07 3.184766 48.67958 22.43040 5.207737
#> Track_08 4.958803 42.22186 20.57168 2.654157
#> Track_09 9.521319 51.47121 31.17839 4.343651
#> Track_13 NA 56.99111 29.03427 4.965537
#> Track_15 NA NA 21.90374 43.279300
#> Track_16 NA NA NA 21.695119
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[80]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 11.61436 25.20838 18.556632 9.090552 24.079667 7.739313
#> Track_02 NA NA 14.81508 7.820656 5.833896 14.063035 6.563638
#> Track_03 NA NA NA 17.689566 10.987926 1.244967 14.265919
#> Track_04 NA NA NA NA 11.394032 17.112061 13.169653
#> Track_07 NA NA NA NA NA 9.963058 4.212803
#> Track_08 NA NA NA NA NA NA 13.477338
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 14.749289 79.64520 43.45658 18.682061
#> Track_02 5.737624 67.24353 37.05667 9.643539
#> Track_03 8.041320 41.35384 21.50314 4.501706
#> Track_04 8.492106 82.04384 48.13552 13.040118
#> Track_07 5.917385 48.43538 21.34458 7.012039
#> Track_08 7.194680 41.24159 21.27806 4.233129
#> Track_09 8.189075 55.55557 28.63517 8.747178
#> Track_13 NA 52.96062 26.70660 3.625730
#> Track_15 NA NA 21.95305 40.858270
#> Track_16 NA NA NA 20.059199
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[81]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 17.0855 11.01945 29.87992 15.951799 9.838529 9.217313
#> Track_02 NA NA 14.54479 10.17123 5.932019 12.409562 13.974036
#> Track_03 NA NA NA 22.91098 8.910873 1.943211 3.599795
#> Track_04 NA NA NA NA 11.094316 20.589496 23.038442
#> Track_07 NA NA NA NA NA 7.275006 10.350565
#> Track_08 NA NA NA NA NA NA 3.688068
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 12.510870 78.28335 49.70567 10.923900
#> Track_02 5.559337 71.13687 39.61489 13.879160
#> Track_03 7.874244 43.33169 21.82038 1.554197
#> Track_04 12.874819 83.11648 46.30367 22.274050
#> Track_07 4.511465 47.75181 21.22595 8.388354
#> Track_08 5.902241 43.01641 21.24169 1.584712
#> Track_09 8.645374 52.63245 30.83130 3.069971
#> Track_13 NA 53.87139 26.84307 7.251155
#> Track_15 NA NA 22.88161 41.879841
#> Track_16 NA NA NA 21.083166
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[82]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 6.568692 12.978333 8.470736 9.781475 14.930271 8.470134
#> Track_02 NA NA 8.707147 10.583547 9.800816 10.061959 6.503745
#> Track_03 NA NA NA 15.198825 8.174602 1.701127 5.589384
#> Track_04 NA NA NA NA 8.015995 17.302418 9.379630
#> Track_07 NA NA NA NA NA 9.082321 5.830399
#> Track_08 NA NA NA NA NA NA 7.281636
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 8.913743 77.71244 42.24941 17.025972
#> Track_02 8.379020 70.29334 37.34373 12.159907
#> Track_03 8.689313 41.31076 19.75203 2.817498
#> Track_04 5.612590 79.02366 41.23994 19.587566
#> Track_07 3.870949 45.82766 19.20052 10.277930
#> Track_08 10.186640 40.67991 19.80226 1.550330
#> Track_09 6.012031 52.59079 27.13665 8.531357
#> Track_13 NA 54.41785 24.17755 11.696599
#> Track_15 NA NA 23.94459 39.435508
#> Track_16 NA NA NA 19.809662
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[83]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 11.48194 21.67777 24.10993 11.931910 10.806895 15.020713
#> Track_02 NA NA 11.74115 10.69917 6.695788 8.423851 7.469964
#> Track_03 NA NA NA 12.54813 7.667566 9.244832 7.531550
#> Track_04 NA NA NA NA 14.019496 16.210002 11.251309
#> Track_07 NA NA NA NA NA 2.143858 4.209330
#> Track_08 NA NA NA NA NA NA 5.956801
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 16.375671 83.05116 44.31602 16.265332
#> Track_02 7.120336 70.55819 38.08144 7.767397
#> Track_03 5.604526 41.24971 20.19728 4.044610
#> Track_04 7.535976 83.74762 49.57597 10.508725
#> Track_07 4.910123 45.71775 19.89684 3.708207
#> Track_08 6.551830 45.61994 19.32985 5.452160
#> Track_09 4.585300 52.29245 27.68814 3.735843
#> Track_13 NA 53.01194 26.16410 2.649575
#> Track_15 NA NA 24.02978 43.703383
#> Track_16 NA NA NA 20.097721
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[84]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 8.804401 17.29595 13.43491 10.96705 9.521712 16.266146
#> Track_02 NA NA 10.94403 20.98780 13.25775 9.189186 9.317722
#> Track_03 NA NA NA 26.32459 11.99915 7.644738 3.793025
#> Track_04 NA NA NA NA 11.02408 14.494383 27.256238
#> Track_07 NA NA NA NA NA 5.407567 14.562473
#> Track_08 NA NA NA NA NA NA 9.310142
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 9.423104 76.46943 41.28870 15.080186
#> Track_02 4.313634 68.45484 36.83644 9.252526
#> Track_03 6.979636 41.03462 20.02907 1.580621
#> Track_04 19.720422 85.50740 42.73034 23.845098
#> Track_07 9.835667 46.92594 18.50857 10.593941
#> Track_08 5.919885 42.06533 17.85676 6.101283
#> Track_09 7.010478 51.33671 28.66457 3.648848
#> Track_13 NA 54.98074 26.27556 5.555381
#> Track_15 NA NA 23.62223 41.174740
#> Track_16 NA NA NA 19.611009
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[85]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 33.72777 30.637945 26.70769 19.004087 21.491361 34.068312
#> Track_02 NA NA 9.194864 11.48756 10.416021 8.843124 5.688245
#> Track_03 NA NA NA 17.63571 8.117884 6.383570 4.524707
#> Track_04 NA NA NA NA 9.215319 10.752998 16.183146
#> Track_07 NA NA NA NA NA 2.340996 9.721613
#> Track_08 NA NA NA NA NA NA 7.434091
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 27.905250 81.01211 41.34395 33.532440
#> Track_02 4.407217 68.40967 40.01641 11.305540
#> Track_03 6.043141 42.22240 21.55339 2.000564
#> Track_04 10.287823 80.89679 46.59942 20.543980
#> Track_07 6.090207 44.50993 19.97392 9.684054
#> Track_08 5.487696 41.85065 19.65120 7.727108
#> Track_09 5.971913 54.19340 32.19197 5.857260
#> Track_13 NA 55.42689 28.47497 8.152585
#> Track_15 NA NA 22.86558 41.008417
#> Track_16 NA NA NA 21.567954
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[86]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 8.746494 12.952465 2.325772 12.514023 17.577179 8.854707
#> Track_02 NA NA 7.129081 8.369193 14.207998 10.114978 8.730278
#> Track_03 NA NA NA 13.143168 9.393591 3.733511 6.583296
#> Track_04 NA NA NA NA 13.010137 17.628165 8.982942
#> Track_07 NA NA NA NA NA 10.678866 7.199537
#> Track_08 NA NA NA NA NA NA 8.795620
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 11.776116 79.64756 47.61434 19.723442
#> Track_02 5.621747 69.84293 41.17180 11.929635
#> Track_03 1.846756 44.37774 21.61831 4.939112
#> Track_04 11.974839 81.37173 48.54368 19.808712
#> Track_07 11.919580 44.85507 19.15299 12.688332
#> Track_08 5.407707 39.87123 20.55414 2.077532
#> Track_09 8.157000 52.48567 28.78232 10.852519
#> Track_13 NA 54.68383 28.69431 6.257811
#> Track_15 NA NA 21.80469 40.428863
#> Track_16 NA NA NA 21.108707
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[87]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 16.413 28.99866 28.636460 12.388329 14.490776 36.22190
#> Track_02 NA NA 16.44689 9.783216 6.146483 7.335097 21.32793
#> Track_03 NA NA NA 16.483097 11.346499 9.411099 4.45691
#> Track_04 NA NA NA NA 13.197571 12.877489 19.80144
#> Track_07 NA NA NA NA NA 3.471109 15.99848
#> Track_08 NA NA NA NA NA NA 13.94377
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 13.433767 81.84365 46.89777 16.366195
#> Track_02 5.853227 69.54866 40.87184 7.198295
#> Track_03 11.589512 41.05617 22.44343 8.306500
#> Track_04 12.289626 80.56892 51.32901 11.387605
#> Track_07 4.343266 48.03562 22.41891 5.046524
#> Track_08 2.037387 44.08017 21.14040 2.334851
#> Track_09 16.930404 50.34998 32.46610 12.097228
#> Track_13 NA 54.43640 27.92386 3.738908
#> Track_15 NA NA 20.97185 41.721414
#> Track_16 NA NA NA 20.424160
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[88]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 28.59708 26.504292 35.622848 13.556148 13.9515400 31.455188
#> Track_02 NA NA 8.546353 6.934584 11.919385 11.5360361 9.278391
#> Track_03 NA NA NA 13.739448 8.302245 7.9929792 3.859558
#> Track_04 NA NA NA NA 16.126705 15.8859992 14.243739
#> Track_07 NA NA NA NA NA 0.9866081 11.852636
#> Track_08 NA NA NA NA NA NA 11.430823
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 34.570638 81.39344 43.10118 19.983501
#> Track_02 11.558676 68.35991 39.40722 7.949948
#> Track_03 4.159692 41.44651 20.88777 4.094717
#> Track_04 15.212289 83.17594 50.22720 12.336687
#> Track_07 13.480683 42.51295 18.95421 4.250297
#> Track_08 12.993182 41.74320 18.69124 3.976665
#> Track_09 5.433977 50.98231 30.28098 7.023285
#> Track_13 NA 49.97013 27.96666 8.721161
#> Track_15 NA NA 20.47859 41.754172
#> Track_16 NA NA NA 19.919863
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[89]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.74088 20.27413 6.198172 9.716231 9.993569 11.475559
#> Track_02 NA NA 18.90787 7.275332 7.456013 7.347354 10.321544
#> Track_03 NA NA NA 19.498739 12.458798 10.790045 10.007586
#> Track_04 NA NA NA NA 13.501224 13.147669 11.987404
#> Track_07 NA NA NA NA NA 2.748029 6.294833
#> Track_08 NA NA NA NA NA NA 5.100304
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 13.523525 79.59393 47.31253 11.027347
#> Track_02 13.380129 71.45997 39.68555 9.295058
#> Track_03 6.669893 43.61986 23.16316 8.325131
#> Track_04 12.750230 84.89115 50.09142 13.018051
#> Track_07 9.518007 45.60851 20.23982 4.971626
#> Track_08 7.871569 42.46306 19.48846 2.791330
#> Track_09 6.502205 49.02328 28.00151 3.478606
#> Track_13 NA 52.07924 27.78710 5.321486
#> Track_15 NA NA 22.35225 41.509495
#> Track_16 NA NA NA 20.006151
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[90]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 24.23369 29.91901 40.78502 15.036338 20.073896 27.389829
#> Track_02 NA NA 12.52421 13.83126 6.891523 6.308989 9.652752
#> Track_03 NA NA NA 11.84133 9.671640 6.527834 5.307405
#> Track_04 NA NA NA NA 17.736504 14.970788 12.153816
#> Track_07 NA NA NA NA NA 4.157013 8.512271
#> Track_08 NA NA NA NA NA NA 4.636381
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 21.620426 81.19755 47.31015 29.715092
#> Track_02 3.665905 69.26302 42.55055 13.114528
#> Track_03 8.171342 44.43118 23.67257 1.723691
#> Track_04 13.108607 84.83943 55.70754 13.039898
#> Track_07 4.435824 47.09331 22.48479 10.014540
#> Track_08 4.433737 41.53854 21.37778 6.705615
#> Track_09 6.432224 49.62253 31.34680 5.832146
#> Track_13 NA 55.42979 29.93701 8.580704
#> Track_15 NA NA 21.55785 42.646149
#> Track_16 NA NA NA 23.101951
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[91]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 23.36382 27.06614 20.784318 9.481421 16.836225 22.780852
#> Track_02 NA NA 12.79465 6.339665 12.682100 8.260206 5.873233
#> Track_03 NA NA NA 19.801315 12.129148 6.476053 7.589658
#> Track_04 NA NA NA NA 12.708815 12.105875 11.143281
#> Track_07 NA NA NA NA NA 6.133430 10.658637
#> Track_08 NA NA NA NA NA NA 5.395682
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 21.488352 80.51899 41.45226 22.479501
#> Track_02 5.513911 73.23657 40.57049 9.346789
#> Track_03 7.380415 42.35768 21.50003 3.125369
#> Track_04 10.090610 85.30765 48.18588 15.489995
#> Track_07 9.460189 49.50312 20.56352 9.330596
#> Track_08 4.690910 44.01360 20.06525 3.502921
#> Track_09 2.674680 57.64041 31.29869 4.630408
#> Track_13 NA 57.28639 28.45252 4.376383
#> Track_15 NA NA 23.93778 43.593590
#> Track_16 NA NA NA 20.951655
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[92]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 22.58756 21.646848 18.18784 9.957906 13.811331 20.375063
#> Track_02 NA NA 7.590606 8.29504 12.184687 10.728516 6.706085
#> Track_03 NA NA NA 15.07102 8.630923 7.129861 3.940642
#> Track_04 NA NA NA NA 13.112981 12.639333 12.873487
#> Track_07 NA NA NA NA NA 2.729410 9.229234
#> Track_08 NA NA NA NA NA NA 7.243730
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 19.544012 77.18722 36.92256 18.191443
#> Track_02 5.193036 69.05936 36.97991 7.287900
#> Track_03 3.727351 41.97849 19.91080 2.962891
#> Track_04 10.444192 84.54499 44.75494 12.663323
#> Track_07 7.650859 43.64311 17.08566 6.063391
#> Track_08 6.284259 40.18116 16.44490 4.362897
#> Track_09 4.545002 49.08225 25.54291 3.424066
#> Track_13 NA 51.41443 24.87621 1.814332
#> Track_15 NA NA 24.17283 41.062795
#> Track_16 NA NA NA 18.523757
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[93]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 7.970823 13.22892 9.867794 7.637107 9.122265 8.652368
#> Track_02 NA NA 13.43297 7.076584 6.858530 8.337433 5.452002
#> Track_03 NA NA NA 18.730864 5.551344 5.015868 9.076222
#> Track_04 NA NA NA NA 10.968281 12.759170 10.034030
#> Track_07 NA NA NA NA NA 2.939993 3.748102
#> Track_08 NA NA NA NA NA NA 4.345843
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.383633 75.82340 41.60856 11.220448
#> Track_02 7.859144 67.91457 34.11359 7.890938
#> Track_03 6.077453 41.67714 19.96176 7.512149
#> Track_04 10.390180 82.51226 43.19522 10.786725
#> Track_07 3.396226 43.83631 19.27100 3.942663
#> Track_08 1.926802 41.50471 18.21539 2.643623
#> Track_09 5.555126 52.08830 25.79983 3.375076
#> Track_13 NA 52.06809 24.45699 4.768790
#> Track_15 NA NA 22.39533 41.665900
#> Track_16 NA NA NA 17.410174
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[94]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 20.23538 17.55854 7.936231 8.036015 10.690137 14.134832
#> Track_02 NA NA 6.76689 21.570699 11.644735 9.928972 5.133889
#> Track_03 NA NA NA 20.283369 8.011586 5.261920 5.003327
#> Track_04 NA NA NA NA 10.269029 12.686148 17.186419
#> Track_07 NA NA NA NA NA 4.222222 7.523580
#> Track_08 NA NA NA NA NA NA 5.718612
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 25.117026 79.94963 43.78858 17.5859885
#> Track_02 8.415607 66.70802 39.04215 6.8791266
#> Track_03 5.600488 41.43140 20.22731 0.3846316
#> Track_04 26.925276 86.22829 47.13234 20.3376946
#> Track_07 13.291069 48.84067 21.10385 8.1848427
#> Track_08 11.344715 42.46139 18.95611 5.3144941
#> Track_09 9.689584 54.18730 30.01170 4.9656824
#> Track_13 NA 53.54703 29.09515 5.6979455
#> Track_15 NA NA 23.47739 41.2880924
#> Track_16 NA NA NA 20.2138912
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[95]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.84367 11.851299 3.422564 13.543650 14.489702 6.474025
#> Track_02 NA NA 9.127937 4.122738 9.940757 10.734512 3.956492
#> Track_03 NA NA NA 12.227341 9.613582 9.354480 7.826274
#> Track_04 NA NA NA NA 15.175596 16.196916 8.446909
#> Track_07 NA NA NA NA NA 2.917209 6.966058
#> Track_08 NA NA NA NA NA NA 6.724565
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.652576 77.63785 47.46823 9.844146
#> Track_02 3.999715 66.70679 39.17378 6.673349
#> Track_03 4.590246 41.63394 21.87307 3.441347
#> Track_04 6.740930 80.37215 49.12773 10.794959
#> Track_07 8.011520 43.94777 20.14260 6.508532
#> Track_08 8.667419 41.04111 18.88325 6.117636
#> Track_09 4.999167 53.29036 30.28433 4.755710
#> Track_13 NA 52.72860 28.10779 3.144083
#> Track_15 NA NA 19.98955 41.033170
#> Track_16 NA NA NA 20.595981
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[96]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 20.24876 24.30796 23.529959 13.383018 20.674038 31.583212
#> Track_02 NA NA 10.97995 2.540155 6.876145 8.406459 14.664726
#> Track_03 NA NA NA 14.710182 7.407545 2.818480 4.887373
#> Track_04 NA NA NA NA 10.882334 12.538243 17.387277
#> Track_07 NA NA NA NA NA 5.295889 12.393324
#> Track_08 NA NA NA NA NA NA 6.816183
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 15.254382 79.47878 42.01889 28.185039
#> Track_02 6.619407 70.20519 39.22554 14.546047
#> Track_03 7.440421 43.76971 21.52137 3.509067
#> Track_04 9.641095 82.65561 48.02839 18.697204
#> Track_07 3.430360 46.07618 20.15948 9.819550
#> Track_08 5.212882 42.55904 20.37057 4.792051
#> Track_09 12.803711 54.34232 31.94352 3.604330
#> Track_13 NA 55.43226 26.87795 10.630462
#> Track_15 NA NA 22.76942 40.693818
#> Track_16 NA NA NA 21.030201
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[97]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 15.48743 14.90600 14.094061 11.008848 11.887256 9.016505
#> Track_02 NA NA 18.06705 8.570826 8.082951 11.027384 8.907843
#> Track_03 NA NA NA 21.057929 8.383163 5.737357 10.658413
#> Track_04 NA NA NA NA 11.545648 15.402512 11.407830
#> Track_07 NA NA NA NA NA 3.903326 4.051577
#> Track_08 NA NA NA NA NA NA 5.567865
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 9.452629 80.78046 48.24593 20.365675
#> Track_02 9.348521 73.80449 38.66283 22.054543
#> Track_03 7.924856 45.66388 22.25595 4.912772
#> Track_04 11.122028 82.44664 45.80316 26.081842
#> Track_07 3.198570 45.25090 19.81219 10.477426
#> Track_08 3.975542 42.76512 19.78288 6.775680
#> Track_09 5.354235 52.66289 27.48873 13.125927
#> Track_13 NA 55.11177 26.88543 11.365098
#> Track_15 NA NA 23.02187 40.356083
#> Track_16 NA NA NA 20.979572
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[98]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 12.26198 22.91532 19.707906 8.174032 9.859691 9.554191
#> Track_02 NA NA 13.09684 5.898567 8.646695 9.490827 8.671215
#> Track_03 NA NA NA 15.356521 10.475211 9.631911 11.983152
#> Track_04 NA NA NA NA 14.250641 15.200205 14.391109
#> Track_07 NA NA NA NA NA 2.519065 3.264850
#> Track_08 NA NA NA NA NA NA 3.181065
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 20.541934 79.72593 39.86247 24.207904
#> Track_02 10.093038 69.45352 36.05244 14.450150
#> Track_03 3.838948 42.08427 20.75097 2.237452
#> Track_04 10.419414 82.89924 46.20873 17.044497
#> Track_07 10.203989 46.78338 18.83344 11.209283
#> Track_08 9.588573 43.66834 18.05509 10.290646
#> Track_09 11.173378 51.23139 24.51788 13.039569
#> Track_13 NA 52.77231 26.48093 5.538039
#> Track_15 NA NA 24.51012 39.783885
#> Track_16 NA NA NA 20.243769
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[99]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 18.79977 19.686805 23.674192 9.616628 20.830645 8.837499
#> Track_02 NA NA 7.394391 6.381176 10.816852 8.519885 13.259209
#> Track_03 NA NA NA 12.152575 7.998155 2.619262 10.614899
#> Track_04 NA NA NA NA 17.396188 13.068209 20.229897
#> Track_07 NA NA NA NA NA 8.380205 3.787731
#> Track_08 NA NA NA NA NA NA 10.335029
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 20.362544 79.89936 47.25954 20.701181
#> Track_02 5.914109 68.36908 41.47264 8.267716
#> Track_03 2.458149 42.74888 22.00258 2.754542
#> Track_04 8.604027 85.17729 53.51996 12.483057
#> Track_07 10.089652 45.98946 21.43688 8.245257
#> Track_08 2.931705 39.71686 20.84434 1.216702
#> Track_09 12.658609 50.68025 28.04295 10.123722
#> Track_13 NA 51.76908 28.51417 2.959195
#> Track_15 NA NA 20.74022 40.060300
#> Track_16 NA NA NA 20.905707
#> Track_18 NA NA NA NA
#>
#> $DTW_distance_metric_simulations[[100]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 26.337 25.459338 16.52677 13.854124 19.980933 16.434187
#> Track_02 NA NA 9.066104 16.03706 9.996894 7.277265 8.421332
#> Track_03 NA NA NA 21.37516 8.505259 4.001387 8.709080
#> Track_04 NA NA NA NA 9.556263 15.686266 10.600256
#> Track_07 NA NA NA NA NA 5.429870 3.766276
#> Track_08 NA NA NA NA NA NA 5.203649
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 16.970768 79.18988 46.07902 22.343054
#> Track_02 7.947804 65.97813 41.42832 7.201442
#> Track_03 9.482045 38.87227 21.49404 2.326973
#> Track_04 9.793728 84.89606 51.86595 17.982075
#> Track_07 2.742895 46.15214 22.36871 6.554361
#> Track_08 5.223912 42.32055 22.05720 2.527673
#> Track_09 5.248441 52.55438 30.83330 6.866511
#> Track_13 NA 54.94145 29.23351 6.891463
#> Track_15 NA NA 21.38803 40.606602
#> Track_16 NA NA NA 21.623677
#> Track_18 NA NA NA NA
simil_frechet_constrained_mount <- simil_Frechet_metric(sbMountTom, test = TRUE,
sim = sim_constrained_mount,
superposition = "Origin")
#> $Frechet_distance_metric
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.279842 2.850616 3.456392 3.0722654 2.5749065 -1.00000
#> Track_02 NA NA 3.341435 3.927654 3.2117748 2.5626023 13.41113
#> Track_03 NA NA NA 1.017582 1.1341969 1.5248585 10.26856
#> Track_04 NA NA NA NA 0.9778481 1.5083366 -1.00000
#> Track_07 NA NA NA NA NA 0.6551211 10.20212
#> Track_08 NA NA NA NA NA NA 10.85560
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 8.117402 3.8477477 1.628249 4.0689702
#> Track_02 -1.000000 4.0555640 1.399802 4.7677945
#> Track_03 -1.000000 1.4451106 2.131949 1.9479554
#> Track_04 5.237550 0.7921084 2.656155 1.3210050
#> Track_07 6.173595 0.8440002 1.863835 1.0265770
#> Track_08 6.744614 1.4952190 1.243762 2.3724889
#> Track_09 6.244025 -1.0000000 -1.000000 9.3647714
#> Track_13 NA -1.0000000 7.740744 5.8777083
#> Track_15 NA NA 2.660558 0.9479547
#> Track_16 NA NA NA 2.7298320
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_p_values
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.23 0.04 0.83 0.59 0.00 0
#> Track_02 NA NA 0.86 0.96 0.99 0.24 1
#> Track_03 NA NA NA 0.00 0.02 0.62 1
#> Track_04 NA NA NA NA 0.00 0.00 0
#> Track_07 NA NA NA NA NA 0.20 1
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1 0.38 0.27 0.58
#> Track_02 0 0.32 0.34 1.00
#> Track_03 0 0.38 0.44 0.95
#> Track_04 1 0.43 0.30 0.00
#> Track_07 1 0.47 0.21 0.17
#> Track_08 1 0.43 0.33 0.98
#> Track_09 1 0.39 0.30 1.00
#> Track_13 NA 0.45 1.00 1.00
#> Track_15 NA NA 0.36 0.40
#> Track_16 NA NA NA 0.36
#> Track_18 NA NA NA NA
#>
#> $Frechet_metric_p_values_combined
#> [1] 0
#>
#> $Frechet_distance_metric_simulations
#> $Frechet_distance_metric_simulations[[1]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.255229 3.668611 0.7539642 3.371635 3.9244360 4.171108
#> Track_02 NA NA 2.339849 2.2520426 2.332771 2.9084127 2.278089
#> Track_03 NA NA NA 4.1810556 0.462398 0.4805472 1.116620
#> Track_04 NA NA NA NA 4.097778 4.3699774 4.460671
#> Track_07 NA NA NA NA NA 0.5649751 1.551428
#> Track_08 NA NA NA NA NA NA 1.396676
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.144957 -1.000000 -1.000000 4.2815300
#> Track_02 1.392547 11.743477 7.825613 2.7985224
#> Track_03 1.143923 9.456406 -1.000000 0.6233060
#> Track_04 3.596871 -1.000000 8.798744 4.6650496
#> Track_07 1.317856 9.625560 -1.000000 1.0340836
#> Track_08 1.507229 9.126410 -1.000000 0.5353474
#> Track_09 1.038977 9.588418 6.412388 0.9636433
#> Track_13 NA 10.445535 6.766445 1.5104779
#> Track_15 NA NA 6.040702 -1.0000000
#> Track_16 NA NA NA 5.4591356
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[2]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.041027 3.350108 1.493096 2.916191 3.2008815 2.8084834
#> Track_02 NA NA 2.555549 1.377720 2.633147 2.8556572 2.6234303
#> Track_03 NA NA NA 3.461735 1.071597 1.0349527 1.2382395
#> Track_04 NA NA NA NA 3.433434 3.7463236 3.3875284
#> Track_07 NA NA NA NA NA 0.3617435 0.1796879
#> Track_08 NA NA NA NA NA NA 0.4211351
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.977097 -1.000000 8.143788 3.2602483
#> Track_02 1.202253 11.674351 7.796410 2.7373104
#> Track_03 2.270949 9.580862 -1.000000 0.8608766
#> Track_04 2.525543 12.992004 -1.000000 3.6924190
#> Track_07 2.338563 10.029455 5.345501 0.3835475
#> Track_08 2.336805 9.751731 -1.000000 0.1849898
#> Track_09 2.320846 -1.000000 5.403630 0.6997652
#> Track_13 NA -1.000000 7.007515 2.2943035
#> Track_15 NA NA 6.287926 9.6592053
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[3]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.861238 3.233871 0.7183938 2.946758 3.5104417 3.465911
#> Track_02 NA NA 3.617603 1.9343385 2.291438 3.2748489 4.169846
#> Track_03 NA NA NA 3.8521938 1.518171 0.8283642 1.105086
#> Track_04 NA NA NA NA 3.240143 4.0884622 4.272391
#> Track_07 NA NA NA NA NA 0.9931704 2.422902
#> Track_08 NA NA NA NA NA NA 1.817907
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.4255531 12.686460 8.550537 3.5587141
#> Track_02 1.4878397 -1.000000 7.567953 3.4816055
#> Track_03 2.2585599 9.455628 5.888128 0.8404566
#> Track_04 2.7446478 13.280678 8.939864 4.0697504
#> Track_07 0.9061476 10.189358 5.752947 1.5654343
#> Track_08 1.9543469 9.267402 5.227271 1.1042884
#> Track_09 3.1285370 9.477761 6.559085 1.3904472
#> Track_13 NA -1.000000 -1.000000 2.1758597
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.4635217
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[4]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.302961 3.930480 2.702340 2.628245 3.178035 3.4604580
#> Track_02 NA NA 2.892561 1.885497 1.754165 2.590871 2.4279930
#> Track_03 NA NA NA 4.069661 1.383276 1.690500 0.4840037
#> Track_04 NA NA NA NA 3.302267 4.269385 3.6215756
#> Track_07 NA NA NA NA NA 1.149873 0.9003121
#> Track_08 NA NA NA NA NA NA 1.3487003
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.4643750 13.156831 7.833732 4.3348453
#> Track_02 1.2674530 12.403115 7.515154 3.3479108
#> Track_03 1.6393759 -1.000000 -1.000000 1.0807039
#> Track_04 2.3991046 13.600184 -1.000000 4.2244392
#> Track_07 0.9788993 -1.000000 -1.000000 1.6861466
#> Track_08 2.1654087 9.978933 -1.000000 1.8466393
#> Track_09 1.2795203 -1.000000 5.760013 0.8042773
#> Track_13 NA 11.311056 6.834224 1.9854632
#> Track_15 NA NA 6.361738 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[5]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.998934 3.696909 1.910931 2.343194 3.223703 2.0258374
#> Track_02 NA NA 2.131482 1.863104 2.574104 2.819782 2.1792115
#> Track_03 NA NA NA 3.988792 2.526125 2.058274 2.4521812
#> Track_04 NA NA NA NA 3.826169 4.429217 3.5181797
#> Track_07 NA NA NA NA NA 1.071215 0.3602829
#> Track_08 NA NA NA NA NA NA 1.2282120
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.271123 -1.00000 7.150660 4.1866578
#> Track_02 0.823004 12.21503 7.075817 2.7560395
#> Track_03 1.515161 10.15227 -1.000000 0.6516558
#> Track_04 2.536905 -1.00000 8.739315 5.3254052
#> Track_07 2.046804 10.86255 5.004123 2.6814663
#> Track_08 2.191166 -1.00000 4.258832 1.9321152
#> Track_09 1.773589 11.14592 5.214344 2.6936440
#> Track_13 NA 11.53015 6.427378 2.3473517
#> Track_15 NA NA 7.005873 9.5015001
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[6]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.450253 2.845292 2.144649 3.338134 3.3222011 2.6737487
#> Track_02 NA NA 2.921337 1.122929 2.543430 2.8759353 2.0470048
#> Track_03 NA NA NA 3.971518 2.002314 0.9788143 1.2701462
#> Track_04 NA NA NA NA 3.242898 3.9108573 3.0674720
#> Track_07 NA NA NA NA NA 1.4264329 0.8273856
#> Track_08 NA NA NA NA NA NA 0.8438165
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.700461 12.35280 -1.000000 3.036393
#> Track_02 1.669322 -1.00000 7.808820 3.047086
#> Track_03 1.236964 9.55152 5.860091 0.197737
#> Track_04 2.791806 13.35256 8.628029 4.161847
#> Track_07 1.904734 10.25925 -1.000000 2.037511
#> Track_08 1.629205 -1.00000 -1.000000 1.057531
#> Track_09 1.167699 -1.00000 5.859678 1.408019
#> Track_13 NA 10.78356 6.805550 1.434639
#> Track_15 NA NA -1.000000 9.354251
#> Track_16 NA NA NA 5.715562
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[7]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.874363 4.611801 2.751480 2.621945 3.964475 3.7277491
#> Track_02 NA NA 2.371377 1.793814 1.999857 2.224742 1.6582168
#> Track_03 NA NA NA 3.938729 2.371377 1.006509 0.9694845
#> Track_04 NA NA NA NA 3.430014 3.918103 3.0118853
#> Track_07 NA NA NA NA NA 1.434217 1.7401827
#> Track_08 NA NA NA NA NA NA 1.1424121
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.2768846 13.155571 8.493925 3.906708
#> Track_02 0.9461580 11.268455 7.871282 2.510492
#> Track_03 1.4237229 9.003416 6.146389 1.397139
#> Track_04 2.6523335 -1.000000 -1.000000 4.133325
#> Track_07 1.4755985 10.535051 6.228734 1.210401
#> Track_08 1.2845143 9.288625 -1.000000 0.394871
#> Track_09 0.4687274 9.959701 6.749218 1.392662
#> Track_13 NA -1.000000 6.955771 1.490302
#> Track_15 NA NA 6.375581 9.362228
#> Track_16 NA NA NA -1.000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[8]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.037965 3.229868 2.229836 2.233159 3.1915676 2.222634
#> Track_02 NA NA 2.517720 3.170376 2.207074 2.8010782 1.714351
#> Track_03 NA NA NA 5.116013 1.901398 1.6539529 1.047700
#> Track_04 NA NA NA NA 3.566713 4.2915431 4.096885
#> Track_07 NA NA NA NA NA 0.7389914 1.105618
#> Track_08 NA NA NA NA NA NA 1.276496
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.263217 12.84531 7.779720 3.2561905
#> Track_02 1.201894 -1.00000 7.760482 2.8139516
#> Track_03 2.059924 -1.00000 -1.000000 0.9856355
#> Track_04 3.092415 14.38274 8.543793 4.6264153
#> Track_07 1.027982 10.84152 5.616740 1.1107503
#> Track_08 1.947040 -1.00000 4.982805 0.6742170
#> Track_09 1.088483 -1.00000 -1.000000 0.9182536
#> Track_13 NA -1.00000 -1.000000 1.7222561
#> Track_15 NA NA -1.000000 9.8729527
#> Track_16 NA NA NA 5.2466720
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[9]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.9426001 3.468048 1.199665 3.260677 3.0997654 1.871284
#> Track_02 NA NA 3.232065 2.129022 2.174810 2.5723835 1.060344
#> Track_03 NA NA NA 4.049596 2.183335 1.3946378 2.538972
#> Track_04 NA NA NA NA 3.988439 3.9477642 3.006335
#> Track_07 NA NA NA NA NA 0.9294086 1.233348
#> Track_08 NA NA NA NA NA NA 1.593084
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.7427989 -1.000000 8.420353 3.2319441
#> Track_02 1.3439053 -1.000000 7.651085 2.3870151
#> Track_03 2.1803473 -1.000000 5.894125 2.1614213
#> Track_04 2.7478426 12.829759 9.378489 4.1700799
#> Track_07 1.2454720 -1.000000 5.483477 0.2164941
#> Track_08 2.1498189 9.369164 -1.000000 1.0480996
#> Track_09 0.5473649 10.947395 6.594640 1.3267333
#> Track_13 NA 10.775773 6.680441 1.4246426
#> Track_15 NA NA -1.000000 9.7668207
#> Track_16 NA NA NA 5.2773894
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[10]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.830182 4.766894 3.921906 3.332939 5.0633637 5.0220057
#> Track_02 NA NA 2.847102 1.328226 2.424174 2.9277377 3.0158000
#> Track_03 NA NA NA 3.517159 1.733570 0.4332204 0.6343534
#> Track_04 NA NA NA NA 3.574066 3.7253992 3.1725313
#> Track_07 NA NA NA NA NA 1.3541918 2.1421250
#> Track_08 NA NA NA NA NA NA 1.0622279
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.1607354 13.410219 8.033684 5.0633637
#> Track_02 1.7673155 12.221560 7.949401 2.9020415
#> Track_03 1.6079457 9.394155 5.797167 0.3486954
#> Track_04 3.0716635 12.843689 9.044681 3.6367379
#> Track_07 0.6606625 10.212168 5.550132 1.4021321
#> Track_08 1.4450345 9.310039 -1.000000 1.0510353
#> Track_09 1.9001353 9.671292 6.381432 0.9572704
#> Track_13 NA -1.000000 6.184842 1.4329780
#> Track_15 NA NA 6.367576 9.3696879
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[11]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.652481 3.853165 1.210928 3.104054 3.6008909 2.8451509
#> Track_02 NA NA 2.474531 2.906897 2.690487 2.4410500 2.5361671
#> Track_03 NA NA NA 4.531000 2.220709 0.9974177 2.2926043
#> Track_04 NA NA NA NA 3.540369 4.1331359 2.9050762
#> Track_07 NA NA NA NA NA 1.4919300 0.2960758
#> Track_08 NA NA NA NA NA NA 1.6775458
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.130625 12.741806 -1.000000 3.9209434
#> Track_02 1.299524 -1.000000 -1.000000 2.5343827
#> Track_03 1.818144 8.930191 6.163954 0.1956642
#> Track_04 2.742983 -1.000000 -1.000000 4.4977295
#> Track_07 1.376319 -1.000000 5.951220 1.9949066
#> Track_08 1.475151 9.144391 -1.000000 0.5291801
#> Track_09 1.339893 -1.000000 6.218194 2.1781486
#> Track_13 NA 10.619469 -1.000000 1.7899309
#> Track_15 NA NA 6.002753 8.8971312
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[12]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.786395 5.391990 3.819901 3.891422 5.5000814 5.6903939
#> Track_02 NA NA 2.633532 1.781148 2.235489 2.9419420 2.7996280
#> Track_03 NA NA NA 4.398185 1.604449 0.6379262 0.3351352
#> Track_04 NA NA NA NA 3.904975 5.4040084 4.5118791
#> Track_07 NA NA NA NA NA 1.5129133 1.9350153
#> Track_08 NA NA NA NA NA NA 0.9243782
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 4.931426 13.059430 7.677740 6.0488680
#> Track_02 1.690707 -1.000000 8.054313 3.4482956
#> Track_03 1.009249 9.632894 6.363548 0.8149709
#> Track_04 3.419728 -1.000000 9.606703 5.3047782
#> Track_07 1.647771 -1.000000 -1.000000 2.1659715
#> Track_08 1.458764 9.251026 -1.000000 1.0307425
#> Track_09 1.308137 9.638315 6.569692 0.7483711
#> Track_13 NA 10.638318 7.144569 1.8019476
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[13]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.9505711 4.730249 1.177088 3.164975 3.9046805 3.028262
#> Track_02 NA NA 3.515483 1.866276 2.216852 3.5828794 2.146782
#> Track_03 NA NA NA 4.083942 2.019312 0.8197077 1.379323
#> Track_04 NA NA NA NA 3.427475 3.8150713 2.868099
#> Track_07 NA NA NA NA NA 1.3078647 1.198006
#> Track_08 NA NA NA NA NA NA 1.182465
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.799019 12.884003 -1.000000 3.5501618
#> Track_02 3.117908 11.944218 -1.000000 2.5997833
#> Track_03 1.158323 9.341840 6.113908 1.6351200
#> Track_04 3.301216 13.090718 8.524467 3.7056760
#> Track_07 2.332177 9.734194 -1.000000 1.0610706
#> Track_08 2.201571 9.331411 -1.000000 0.8154228
#> Track_09 1.213629 10.267345 6.249023 1.2732851
#> Track_13 NA 10.437187 7.055775 2.1312561
#> Track_15 NA NA 6.115356 9.3980770
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[14]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.938477 3.323326 1.684513 3.547288 3.484125 3.3060185
#> Track_02 NA NA 3.528635 3.962277 1.646621 2.775028 3.6324705
#> Track_03 NA NA NA 2.916038 2.551894 1.149242 0.2941179
#> Track_04 NA NA NA NA 4.199196 3.575983 2.8604511
#> Track_07 NA NA NA NA NA 1.482502 2.5726180
#> Track_08 NA NA NA NA NA NA 1.1213253
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.107059 12.767923 8.195854 3.7478670
#> Track_02 2.542725 -1.000000 6.485517 4.1676491
#> Track_03 1.456797 9.445405 -1.000000 0.4858061
#> Track_04 2.161315 12.070938 8.251237 3.4480392
#> Track_07 2.162188 10.566094 5.062576 2.9352537
#> Track_08 1.518469 -1.000000 4.734713 1.4700160
#> Track_09 1.158952 9.554040 5.424234 0.6167037
#> Track_13 NA 10.697148 6.200533 1.7509164
#> Track_15 NA NA -1.000000 9.0261566
#> Track_16 NA NA NA 5.2791762
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[15]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.854438 3.818733 0.8398661 2.746016 3.3593558 2.8151559
#> Track_02 NA NA 2.768961 1.7552080 1.760815 2.0909448 1.7178206
#> Track_03 NA NA NA 4.3553022 1.543022 1.4909383 1.2340208
#> Track_04 NA NA NA NA 3.439874 3.7659214 3.5672957
#> Track_07 NA NA NA NA NA 0.3303428 0.4663707
#> Track_08 NA NA NA NA NA NA 0.5259396
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.5673628 12.563893 7.825782 3.4098873
#> Track_02 1.1214967 11.427000 7.054339 2.2753417
#> Track_03 1.4671111 -1.000000 5.410036 1.0688203
#> Track_04 2.8652668 -1.000000 8.616218 3.7997121
#> Track_07 1.0630251 -1.000000 -1.000000 0.5934055
#> Track_08 1.3294717 9.534730 -1.000000 0.5865813
#> Track_09 0.8102619 9.750552 -1.000000 0.3470163
#> Track_13 NA 10.329037 6.247283 1.0956056
#> Track_15 NA NA 6.331207 9.4048667
#> Track_16 NA NA NA 5.1553293
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[16]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.143017 4.931306 3.268677 2.956677 4.8770065 4.4960303
#> Track_02 NA NA 2.608087 1.578178 2.333750 3.1095938 2.7995660
#> Track_03 NA NA NA 3.555673 1.848134 0.5589283 0.3721451
#> Track_04 NA NA NA NA 3.864420 4.1572713 3.6058164
#> Track_07 NA NA NA NA NA 1.8491395 2.1267164
#> Track_08 NA NA NA NA NA NA 0.7487700
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.799348 -1.00000 8.632647 4.6405208
#> Track_02 1.767229 12.66829 -1.000000 3.0604063
#> Track_03 1.046274 10.14854 -1.000000 0.4532038
#> Track_04 2.509427 -1.00000 9.769773 4.0625180
#> Track_07 1.960516 -1.00000 6.077409 2.0423401
#> Track_08 1.603688 -1.00000 -1.000000 0.9691198
#> Track_09 1.259568 -1.00000 -1.000000 0.4044049
#> Track_13 NA 11.18811 7.379008 1.4634494
#> Track_15 NA NA 5.715415 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[17]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.693569 5.783552 4.427659 4.570607 4.5237745 5.2163118
#> Track_02 NA NA 3.054709 1.228729 2.189679 2.5257197 2.3669993
#> Track_03 NA NA NA 3.676142 1.217313 1.5792791 0.7491536
#> Track_04 NA NA NA NA 3.119718 3.5710495 2.9404891
#> Track_07 NA NA NA NA NA 0.5959096 0.8371213
#> Track_08 NA NA NA NA NA NA 1.3979725
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 6.509531 -1.00000 7.049725 5.9209911
#> Track_02 3.126491 12.28956 7.278063 3.3029510
#> Track_03 1.093420 -1.00000 -1.000000 0.9090279
#> Track_04 3.362817 13.18574 -1.000000 3.9492012
#> Track_07 2.068313 10.11140 5.504125 1.5255727
#> Track_08 2.510581 -1.00000 4.947472 1.6224148
#> Track_09 1.177102 10.27309 6.119599 1.1159907
#> Track_13 NA -1.00000 -1.000000 1.2860280
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.5764175
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[18]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.6452582 3.977474 1.297199 2.766705 3.389957 2.354261
#> Track_02 NA NA 3.332612 1.659272 2.199882 2.845064 1.709218
#> Track_03 NA NA NA 4.762650 2.738884 1.436458 1.722161
#> Track_04 NA NA NA NA 2.710843 3.912952 3.155124
#> Track_07 NA NA NA NA NA 1.396420 1.737451
#> Track_08 NA NA NA NA NA NA 1.663119
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.674018 12.840908 8.132158 3.1876650
#> Track_02 1.047163 12.231067 -1.000000 2.6881547
#> Track_03 2.753929 -1.000000 -1.000000 2.4093968
#> Track_04 2.079429 13.166617 7.972319 3.5069282
#> Track_07 1.193288 -1.000000 5.492773 0.6248952
#> Track_08 1.836795 9.450964 -1.000000 1.0563939
#> Track_09 1.177729 10.616763 6.579141 1.8131085
#> Track_13 NA 11.277106 -1.000000 1.6410746
#> Track_15 NA NA 6.438411 -1.0000000
#> Track_16 NA NA NA 4.9948101
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[19]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.599442 2.850030 2.964696 3.318897 4.369767 3.268432
#> Track_02 NA NA 3.168724 1.256384 2.223072 2.720209 1.974707
#> Track_03 NA NA NA 4.246459 1.602095 2.750963 1.836991
#> Track_04 NA NA NA NA 3.393931 3.811388 3.128313
#> Track_07 NA NA NA NA NA 1.164963 0.314520
#> Track_08 NA NA NA NA NA NA 1.104058
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.692318 12.064659 7.818578 3.6904130
#> Track_02 1.778717 -1.000000 6.800372 2.6360007
#> Track_03 1.575346 9.341244 -1.000000 1.6530565
#> Track_04 2.736744 13.330190 7.917125 3.8043325
#> Track_07 2.321397 -1.000000 4.639245 0.4452083
#> Track_08 2.698539 -1.000000 4.108714 1.0985819
#> Track_09 1.724446 10.227485 4.915645 0.6761379
#> Track_13 NA 10.892231 6.159129 2.0018233
#> Track_15 NA NA 6.788220 9.5570532
#> Track_16 NA NA NA 4.2966513
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[20]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.592437 5.901876 4.025257 3.454617 4.0833900 3.6806589
#> Track_02 NA NA 3.210099 1.122250 2.707093 2.8185674 2.0122146
#> Track_03 NA NA NA 4.153663 2.580681 1.8846484 2.2027092
#> Track_04 NA NA NA NA 3.648409 3.9402433 3.1343536
#> Track_07 NA NA NA NA NA 0.7938842 0.8267221
#> Track_08 NA NA NA NA NA NA 0.8077955
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 4.787295 13.353939 -1.000000 5.1052280
#> Track_02 1.643397 -1.000000 8.139655 2.9797985
#> Track_03 2.289949 8.700501 5.842308 0.9943144
#> Track_04 2.370514 12.854102 -1.000000 3.8308427
#> Track_07 2.249591 -1.000000 5.732400 2.2312128
#> Track_08 2.070402 9.513827 5.321088 1.3678627
#> Track_09 1.461472 10.190919 6.127959 1.5186851
#> Track_13 NA -1.000000 7.187388 1.4914343
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.7905113
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[21]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.839691 5.070613 2.487240 2.943767 3.390411 2.6947959
#> Track_02 NA NA 3.290471 1.226799 2.132170 2.540450 1.7778061
#> Track_03 NA NA NA 4.723410 2.559172 2.237885 2.4795002
#> Track_04 NA NA NA NA 3.550844 3.618917 2.9001265
#> Track_07 NA NA NA NA NA 0.489803 0.6266166
#> Track_08 NA NA NA NA NA NA 0.7708537
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.4150510 -1.000000 7.644339 4.3865652
#> Track_02 0.9087613 11.929207 7.252475 2.9938773
#> Track_03 2.5027608 9.023530 5.691266 0.8379562
#> Track_04 1.9717116 -1.000000 8.402719 3.8455073
#> Track_07 1.4617399 10.076381 5.122754 1.7923611
#> Track_08 1.6472052 9.602183 4.783970 1.5087525
#> Track_09 0.9509959 10.351551 5.516292 1.7938600
#> Track_13 NA -1.000000 -1.000000 2.0796601
#> Track_15 NA NA 6.215154 9.0246503
#> Track_16 NA NA NA 5.1270202
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[22]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.866334 5.409755 2.901281 4.395265 4.9243412 6.125450
#> Track_02 NA NA 2.712529 2.672926 1.995659 2.7467749 2.319761
#> Track_03 NA NA NA 4.367462 1.365161 0.2247863 1.417587
#> Track_04 NA NA NA NA 3.216006 4.3114902 4.691468
#> Track_07 NA NA NA NA NA 1.1236239 1.808430
#> Track_08 NA NA NA NA NA NA 1.556230
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.129325 -1.000000 6.874792 5.2683477
#> Track_02 1.149978 -1.000000 -1.000000 2.7821377
#> Track_03 1.666198 8.790295 5.131779 0.2887189
#> Track_04 3.490921 13.010847 8.260229 4.4708252
#> Track_07 1.130896 9.925458 5.883375 1.2330739
#> Track_08 1.732860 8.804790 5.045983 0.4758817
#> Track_09 1.223932 9.234420 6.354426 1.1871423
#> Track_13 NA 10.264819 6.771802 1.5676257
#> Track_15 NA NA 6.036083 8.8175634
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[23]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.586508 5.323331 2.377620 3.545216 4.483843 4.9121782
#> Track_02 NA NA 3.463201 1.643884 2.149066 2.762376 2.7086850
#> Track_03 NA NA NA 4.697705 2.401290 1.081369 0.4297033
#> Track_04 NA NA NA NA 3.674930 4.277711 4.3839252
#> Track_07 NA NA NA NA NA 1.407729 2.1941531
#> Track_08 NA NA NA NA NA NA 0.8693486
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.331059 13.341162 7.707571 5.5942117
#> Track_02 2.888583 11.985746 6.989406 3.1338278
#> Track_03 1.110949 -1.000000 -1.000000 0.1718400
#> Track_04 4.395022 -1.000000 8.516809 4.7236407
#> Track_07 2.947900 10.166386 4.909834 2.2954878
#> Track_08 1.887155 9.352463 4.760386 0.9577758
#> Track_09 1.101227 9.461760 -1.000000 0.4282225
#> Track_13 NA -1.000000 -1.000000 1.2606165
#> Track_15 NA NA 6.323985 9.0524006
#> Track_16 NA NA NA 5.1224092
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[24]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.710882 3.290556 3.275577 2.803412 3.436624 2.8666717
#> Track_02 NA NA 3.750376 1.103029 1.668053 2.682011 2.5035201
#> Track_03 NA NA NA 4.849570 2.406659 1.943875 1.4000932
#> Track_04 NA NA NA NA 2.720158 3.818082 3.5645688
#> Track_07 NA NA NA NA NA 1.016019 1.0515765
#> Track_08 NA NA NA NA NA NA 0.9759252
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.625931 -1.000000 8.171350 3.6078121
#> Track_02 2.612575 12.392915 7.341138 2.7894849
#> Track_03 1.664562 -1.000000 5.578207 2.1237164
#> Track_04 3.419555 13.451301 8.123917 3.8182736
#> Track_07 1.715935 10.733478 5.770754 1.1251536
#> Track_08 2.072427 9.737652 -1.000000 0.2206623
#> Track_09 1.114981 10.023213 -1.000000 1.1484169
#> Track_13 NA 10.701517 6.721141 2.2309267
#> Track_15 NA NA 6.686374 9.6370977
#> Track_16 NA NA NA 4.7220334
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[25]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.6572 4.793676 3.846230 3.044831 3.5572960 3.5572002
#> Track_02 NA NA 2.635375 1.522457 2.345249 3.0330843 2.0754911
#> Track_03 NA NA NA 3.602150 1.493171 1.7934303 0.8621428
#> Track_04 NA NA NA NA 3.767953 4.4439343 3.2831752
#> Track_07 NA NA NA NA NA 0.7068312 0.8264834
#> Track_08 NA NA NA NA NA NA 1.3554020
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 4.201075 -1.00000 -1.000000 4.761356
#> Track_02 1.840872 12.63079 8.003163 3.015397
#> Track_03 1.479082 10.02362 5.903864 0.954897
#> Track_04 2.254075 13.50310 9.344800 3.891536
#> Track_07 2.334302 10.69204 5.665914 2.209990
#> Track_08 2.904561 -1.00000 5.010194 2.114629
#> Track_09 1.549187 -1.00000 6.062823 1.278340
#> Track_13 NA -1.00000 -1.000000 1.673387
#> Track_15 NA NA -1.000000 9.655603
#> Track_16 NA NA NA -1.000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[26]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.246935 4.031539 1.358503 2.856494 3.6586200 2.867389
#> Track_02 NA NA 3.166731 1.878172 1.665071 2.4535722 2.007036
#> Track_03 NA NA NA 5.411013 2.061666 2.0860705 1.197153
#> Track_04 NA NA NA NA 3.659004 4.2141802 4.217600
#> Track_07 NA NA NA NA NA 0.8107406 1.237341
#> Track_08 NA NA NA NA NA NA 1.714273
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.4342973 -1.000000 7.727631 4.0619972
#> Track_02 1.6127987 -1.000000 6.451924 3.2020499
#> Track_03 1.6699421 8.895295 5.016073 0.1152157
#> Track_04 3.4299263 -1.000000 7.918519 5.3229374
#> Track_07 1.4334339 10.002573 4.883758 2.1004002
#> Track_08 2.0686515 -1.000000 4.040650 2.2126987
#> Track_09 0.6225361 -1.000000 -1.000000 1.3401217
#> Track_13 NA -1.000000 5.956265 2.1582302
#> Track_15 NA NA 6.294571 8.8755885
#> Track_16 NA NA NA 5.0249039
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[27]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.026376 4.896748 1.623047 2.861852 3.046736 3.362921
#> Track_02 NA NA 2.919772 2.195406 2.030111 3.076621 1.752761
#> Track_03 NA NA NA 4.835208 2.220619 2.598366 1.724224
#> Track_04 NA NA NA NA 3.112658 3.989708 3.115352
#> Track_07 NA NA NA NA NA 1.319147 1.005818
#> Track_08 NA NA NA NA NA NA 2.115991
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.2501521 -1.000000 7.486583 4.8464323
#> Track_02 1.5108317 11.303357 7.559833 2.6915959
#> Track_03 2.7675174 -1.000000 -1.000000 0.9609336
#> Track_04 2.3546951 12.950635 -1.000000 4.5404527
#> Track_07 0.8250727 9.838369 5.642521 1.7279297
#> Track_08 2.2002454 9.362042 4.708275 2.3506488
#> Track_09 1.1498723 -1.000000 -1.000000 1.5255127
#> Track_13 NA 10.596061 -1.000000 2.3506488
#> Track_15 NA NA 5.758113 8.6712262
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[28]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.390164 3.802864 1.338664 3.005796 3.3542124 4.1880219
#> Track_02 NA NA 2.412819 1.685793 2.866265 2.6500816 2.4120800
#> Track_03 NA NA NA 3.761657 1.504663 0.7300495 0.8656595
#> Track_04 NA NA NA NA 3.586070 3.6643858 4.1273242
#> Track_07 NA NA NA NA NA 0.7801784 2.3629952
#> Track_08 NA NA NA NA NA NA 1.5946077
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.5605665 13.112980 7.379856 4.5395786
#> Track_02 1.8691681 12.241628 -1.000000 2.6662149
#> Track_03 0.7048031 -1.000000 5.477712 0.2718133
#> Track_04 3.3865092 13.540231 8.178018 3.9688013
#> Track_07 2.1271629 10.107481 4.697568 1.5314992
#> Track_08 1.3002504 -1.000000 -1.000000 0.6463066
#> Track_09 0.7753133 9.933418 -1.000000 1.1321798
#> Track_13 NA -1.000000 -1.000000 0.9726719
#> Track_15 NA NA -1.000000 9.6064348
#> Track_16 NA NA NA 5.2154559
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[29]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.674984 2.801787 1.432904 2.506112 3.5382555 3.0439149
#> Track_02 NA NA 2.430430 2.099295 2.599693 3.3686125 3.1670200
#> Track_03 NA NA NA 4.011815 1.732345 1.7844165 2.1858403
#> Track_04 NA NA NA NA 3.181292 4.0838566 3.5730014
#> Track_07 NA NA NA NA NA 0.9123655 0.6512307
#> Track_08 NA NA NA NA NA NA 0.7544012
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.2105213 -1.00000 8.693983 3.0466452
#> Track_02 2.3405595 12.13397 -1.000000 2.7618370
#> Track_03 2.3447018 -1.00000 6.267196 0.9722284
#> Track_04 2.6301375 -1.00000 9.399539 4.1447370
#> Track_07 0.6011726 10.53596 -1.000000 1.5506197
#> Track_08 1.4615193 -1.00000 5.340679 1.3793167
#> Track_09 0.9322232 10.43834 5.891730 1.8404081
#> Track_13 NA 11.13419 -1.000000 1.9459971
#> Track_15 NA NA 5.613148 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[30]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.723751 3.300838 2.706363 3.325939 3.3814673 2.7668588
#> Track_02 NA NA 3.642669 4.331370 2.542764 2.8064028 2.2854513
#> Track_03 NA NA NA 3.862966 1.800020 1.3949076 1.7872958
#> Track_04 NA NA NA NA 5.248568 5.2485682 4.4392028
#> Track_07 NA NA NA NA NA 0.4398976 0.5791166
#> Track_08 NA NA NA NA NA NA 0.6619918
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.8776628 12.420520 8.160905 3.3331303
#> Track_02 1.7699564 12.128883 7.140193 3.0395063
#> Track_03 1.6823449 9.129133 5.635883 0.9924079
#> Track_04 3.5548162 12.389330 -1.000000 4.1821367
#> Track_07 1.5221891 -1.000000 4.835098 1.3763071
#> Track_08 1.5107813 -1.000000 4.833293 0.7943036
#> Track_09 0.9914236 9.980354 5.400756 1.0261176
#> Track_13 NA 10.639564 -1.000000 1.3834987
#> Track_15 NA NA 6.496122 9.2600533
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[31]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.608451 4.293670 0.8620933 3.290649 2.9381380 3.8058943
#> Track_02 NA NA 2.705104 3.0669684 2.335049 2.9011976 2.5677317
#> Track_03 NA NA NA 5.1998779 1.145312 1.9643789 0.5879361
#> Track_04 NA NA NA NA 4.039218 3.9628919 4.7151973
#> Track_07 NA NA NA NA NA 0.9090091 0.6660074
#> Track_08 NA NA NA NA NA NA 1.3787310
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.315370 -1.000000 6.531943 4.4610134
#> Track_02 1.234246 12.404211 6.985469 2.7219562
#> Track_03 2.024049 9.831336 5.209279 0.8905046
#> Track_04 3.032286 -1.000000 7.294891 5.2088849
#> Track_07 1.179695 10.180231 4.939755 0.9185245
#> Track_08 1.521703 -1.000000 4.235226 1.1054856
#> Track_09 1.623309 -1.000000 4.894670 0.4340520
#> Track_13 NA -1.000000 5.905475 1.6985860
#> Track_15 NA NA -1.000000 9.6868382
#> Track_16 NA NA NA 4.5512073
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[32]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.300842 4.249736 2.466374 2.843769 3.252370 4.3953002
#> Track_02 NA NA 3.647233 1.621765 2.423715 2.847151 3.7076924
#> Track_03 NA NA NA 4.259508 1.788190 2.025559 0.6177263
#> Track_04 NA NA NA NA 3.348290 4.179412 4.0774028
#> Track_07 NA NA NA NA NA 1.119540 1.9942272
#> Track_08 NA NA NA NA NA NA 2.5398939
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.7560837 12.941722 7.913157 3.286912
#> Track_02 2.2475216 12.655612 -1.000000 3.074051
#> Track_03 1.4975583 9.391784 5.907049 2.088155
#> Track_04 3.1350619 -1.000000 9.307344 4.380315
#> Track_07 0.3473247 10.398384 6.007517 1.105392
#> Track_08 1.2919632 9.875960 -1.000000 0.962217
#> Track_09 1.7432013 9.718137 -1.000000 2.557850
#> Track_13 NA -1.000000 -1.000000 1.432098
#> Track_15 NA NA -1.000000 9.654925
#> Track_16 NA NA NA 4.946172
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[33]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.010752 4.169181 3.057149 2.751890 3.3078641 3.3254689
#> Track_02 NA NA 3.123909 1.414926 2.442603 3.0706795 3.6099229
#> Track_03 NA NA NA 3.910902 1.842059 1.8750105 2.6605075
#> Track_04 NA NA NA NA 3.791359 4.5928146 4.9965692
#> Track_07 NA NA NA NA NA 0.6343039 1.2481636
#> Track_08 NA NA NA NA NA NA 0.8999744
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.375170 -1.000000 7.681680 3.5886938
#> Track_02 1.269844 -1.000000 -1.000000 2.7105678
#> Track_03 1.920489 -1.000000 5.108251 0.6089502
#> Track_04 2.580413 -1.000000 8.782813 3.6506755
#> Track_07 1.259052 10.107549 5.153339 1.2816815
#> Track_08 1.844101 9.636227 4.521486 1.3950010
#> Track_09 2.477790 9.863316 4.254041 2.2014692
#> Track_13 NA -1.000000 6.277867 1.4022034
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[34]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.120744 3.434853 1.535786 2.688657 3.1615485 3.748231
#> Track_02 NA NA 2.292472 1.543967 1.810183 2.2591149 2.629050
#> Track_03 NA NA NA 3.509671 1.501287 0.9652147 1.045183
#> Track_04 NA NA NA NA 3.449774 3.7479137 3.438033
#> Track_07 NA NA NA NA NA 0.7618091 2.455818
#> Track_08 NA NA NA NA NA NA 2.252362
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.6641544 12.824530 7.932921 3.5164908
#> Track_02 0.9912510 11.733807 7.155408 2.4798618
#> Track_03 2.2776395 9.455574 -1.000000 0.4575002
#> Track_04 2.5294690 12.695540 8.629558 3.4552689
#> Track_07 0.8968984 10.571660 -1.000000 1.9136443
#> Track_08 2.2776395 9.847219 4.909402 1.4213120
#> Track_09 2.6402382 9.260594 5.948372 0.7100478
#> Track_13 NA 11.306714 -1.000000 2.2529731
#> Track_15 NA NA -1.000000 9.3410433
#> Track_16 NA NA NA 5.5482988
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[35]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.479826 2.881901 3.473815 3.366668 3.7822150 2.8364241
#> Track_02 NA NA 2.743252 2.531267 2.438773 2.6948791 2.0124613
#> Track_03 NA NA NA 4.954490 2.116605 2.1034116 1.6931054
#> Track_04 NA NA NA NA 3.709635 4.0676430 3.6002575
#> Track_07 NA NA NA NA NA 0.4459692 0.5806680
#> Track_08 NA NA NA NA NA NA 0.8849901
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.109799 11.768271 -1.000000 3.1352583
#> Track_02 1.703209 11.342233 -1.000000 2.5850399
#> Track_03 1.011054 -1.000000 -1.000000 0.7282808
#> Track_04 4.288981 -1.000000 -1.000000 4.6548818
#> Track_07 1.717063 9.438321 6.049265 1.4571333
#> Track_08 2.162057 9.005558 5.614209 1.3870357
#> Track_09 1.157207 9.603600 6.443189 1.1367790
#> Track_13 NA 9.741066 -1.000000 1.1572067
#> Track_15 NA NA 4.794266 8.7656709
#> Track_16 NA NA NA 6.0820715
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[36]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.688183 3.838025 0.7457386 2.844860 4.4469521 2.523791
#> Track_02 NA NA 2.537594 2.3353417 2.843232 3.0444601 1.223736
#> Track_03 NA NA NA 4.1828887 2.516659 0.6991844 1.500107
#> Track_04 NA NA NA NA 2.732459 5.0894343 2.884842
#> Track_07 NA NA NA NA NA 3.1835604 2.082406
#> Track_08 NA NA NA NA NA NA 1.993464
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.1408434 13.327091 8.120588 4.6060857
#> Track_02 1.3121411 12.120506 7.582906 2.8434681
#> Track_03 1.7081120 9.593640 5.406454 0.5129237
#> Track_04 2.4754149 13.531856 8.035963 4.6403360
#> Track_07 1.6383452 -1.000000 5.308325 3.0223722
#> Track_08 2.4540282 9.093105 -1.000000 0.2187478
#> Track_09 0.5610029 -1.000000 6.387161 1.7840380
#> Track_13 NA -1.000000 6.308087 2.1687803
#> Track_15 NA NA -1.000000 9.2865581
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[37]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.206736 3.522331 0.9065417 2.766275 3.3514064 2.6740547
#> Track_02 NA NA 3.592762 2.0428775 2.281991 2.6285196 2.5263581
#> Track_03 NA NA NA 3.5013078 1.258061 1.8868764 0.8502473
#> Track_04 NA NA NA NA 3.054056 3.8660495 2.6810273
#> Track_07 NA NA NA NA NA 0.9128993 0.9307121
#> Track_08 NA NA NA NA NA NA 1.8220764
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.1518900 12.616023 8.383248 3.4098458
#> Track_02 2.3417704 12.039359 7.399647 2.9607806
#> Track_03 1.4466022 9.163884 5.899042 0.6381366
#> Track_04 2.0547618 12.664481 8.833007 3.5536972
#> Track_07 1.3543201 -1.000000 5.800629 0.9552228
#> Track_08 2.2453915 -1.000000 5.045969 1.2532665
#> Track_09 0.6333887 10.002133 6.447950 0.9519293
#> Track_13 NA 10.610307 7.043293 2.1981235
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[38]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.89619 4.126738 1.102702 2.438984 3.8507590 2.4589462
#> Track_02 NA NA 3.071584 1.377469 1.861312 3.0351159 1.8236112
#> Track_03 NA NA NA 4.224420 2.399187 0.4766975 1.9997249
#> Track_04 NA NA NA NA 3.459500 4.2676907 3.1718136
#> Track_07 NA NA NA NA NA 1.7903903 0.4122578
#> Track_08 NA NA NA NA NA NA 2.0517386
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.1483233 -1.000000 8.324553 4.7664151
#> Track_02 1.4131775 12.419566 -1.000000 3.9265903
#> Track_03 1.9073594 -1.000000 -1.000000 0.9288486
#> Track_04 2.6278161 -1.000000 -1.000000 5.0983149
#> Track_07 0.7913312 -1.000000 6.077531 2.7546372
#> Track_08 1.7794084 9.549295 5.920883 0.9524255
#> Track_09 0.6561377 10.633000 -1.000000 2.6178034
#> Track_13 NA -1.000000 -1.000000 2.7515059
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.8750039
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[39]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.300378 3.016113 1.044449 3.115359 3.3447137 2.5946187
#> Track_02 NA NA 2.432897 3.004121 3.677779 3.4666247 3.1912781
#> Track_03 NA NA NA 3.831909 2.067743 1.5478572 1.7295170
#> Track_04 NA NA NA NA 3.760028 4.4514686 3.4164359
#> Track_07 NA NA NA NA NA 0.7333819 0.7047580
#> Track_08 NA NA NA NA NA NA 0.8868154
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.522418 12.080064 -1.000000 3.2556302
#> Track_02 1.273156 -1.000000 -1.000000 2.9950342
#> Track_03 1.582087 9.075828 -1.000000 0.9053843
#> Track_04 2.397370 -1.000000 8.454118 4.0088606
#> Track_07 2.490245 9.739270 4.806955 1.3118219
#> Track_08 2.424991 9.099978 4.571365 0.6691026
#> Track_09 1.922075 9.975076 5.323044 1.1855553
#> Track_13 NA 10.646170 6.968834 2.0812258
#> Track_15 NA NA 6.726731 8.9151504
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[40]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.367378 3.572946 2.199909 2.689354 3.5755183 2.8419440
#> Track_02 NA NA 2.542391 1.569446 2.548284 2.6220293 2.3036790
#> Track_03 NA NA NA 3.722747 2.210968 0.3363588 1.8621161
#> Track_04 NA NA NA NA 4.875646 3.8798127 4.0595360
#> Track_07 NA NA NA NA NA 2.0080038 0.3717828
#> Track_08 NA NA NA NA NA NA 1.7223817
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.606092 -1.00000 7.937714 3.4617973
#> Track_02 1.194724 12.05578 -1.000000 2.5089695
#> Track_03 2.040520 -1.00000 -1.000000 0.5954141
#> Track_04 2.706436 13.18100 -1.000000 3.7872813
#> Track_07 1.411291 10.46224 5.248581 1.9997233
#> Track_08 2.002251 -1.00000 5.379921 0.3159775
#> Track_09 1.182004 10.39015 -1.000000 1.4653441
#> Track_13 NA 11.30308 -1.000000 2.1763289
#> Track_15 NA NA -1.000000 9.5868350
#> Track_16 NA NA NA 5.4009959
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[41]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.171515 3.563278 0.8072897 2.799005 3.5626079 3.583778
#> Track_02 NA NA 2.218818 2.0720763 2.662397 2.7351051 1.946414
#> Track_03 NA NA NA 3.8989150 1.723742 0.8635164 0.482083
#> Track_04 NA NA NA NA 3.661950 4.1316875 3.943325
#> Track_07 NA NA NA NA NA 1.0595131 1.966978
#> Track_08 NA NA NA NA NA NA 1.478032
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.2712611 12.96610 -1.000000 3.5324503
#> Track_02 1.9979477 11.76760 -1.000000 2.4760165
#> Track_03 1.7245231 -1.00000 6.045444 0.4987214
#> Track_04 2.6707447 -1.00000 9.340566 3.9468514
#> Track_07 0.7810043 -1.00000 -1.000000 1.2682946
#> Track_08 1.4878514 9.40687 -1.000000 0.5463192
#> Track_09 1.8500845 -1.00000 -1.000000 0.8856910
#> Track_13 NA 10.87362 6.677131 1.5125605
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.7167862
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[42]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.163036 4.728795 2.403570 2.764783 3.569614 2.7553786
#> Track_02 NA NA 2.773611 2.200996 1.768849 2.887018 1.5186441
#> Track_03 NA NA NA 3.875204 2.002380 3.010617 2.4213179
#> Track_04 NA NA NA NA 3.794837 5.250676 3.6769126
#> Track_07 NA NA NA NA NA 1.367474 0.5371377
#> Track_08 NA NA NA NA NA NA 1.3811926
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.2180188 -1.000000 8.741817 3.4272844
#> Track_02 1.0920918 -1.000000 7.890738 2.5351806
#> Track_03 1.7619630 -1.000000 6.131900 1.7904242
#> Track_04 2.9186325 12.882600 9.758528 4.4784486
#> Track_07 0.9298752 -1.000000 6.122758 0.7342901
#> Track_08 2.2767672 9.954832 -1.000000 1.3508884
#> Track_09 1.0396800 10.629614 6.466067 1.2298101
#> Track_13 NA 10.586426 6.915854 1.4716744
#> Track_15 NA NA 5.659240 -1.0000000
#> Track_16 NA NA NA 5.4511156
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[43]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.133208 4.709036 3.359601 3.222488 3.3678588 3.2969482
#> Track_02 NA NA 2.567647 1.223107 2.051511 2.9086262 1.4571718
#> Track_03 NA NA NA 3.698656 1.789961 2.1181151 1.4363901
#> Track_04 NA NA NA NA 3.241960 4.1132700 2.6802766
#> Track_07 NA NA NA NA NA 0.8580415 0.7762796
#> Track_08 NA NA NA NA NA NA 1.5814168
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.6579985 -1.000000 7.456716 4.8272435
#> Track_02 1.0693863 11.485538 7.141375 2.7573195
#> Track_03 1.6075484 8.930906 -1.000000 0.9856158
#> Track_04 2.2503113 -1.000000 8.357134 3.8948603
#> Track_07 1.3904516 -1.000000 5.132943 1.8655967
#> Track_08 2.1955861 9.432325 4.425666 2.1047017
#> Track_09 0.7611945 10.150851 5.696544 1.5816843
#> Track_13 NA 10.416152 6.226298 1.7065123
#> Track_15 NA NA 6.259835 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[44]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.288792 5.697408 5.832283 3.303318 3.4820918 2.9159358
#> Track_02 NA NA 2.891995 1.754785 2.471011 2.9528402 2.7093189
#> Track_03 NA NA NA 3.867722 2.576001 2.5608347 2.8616756
#> Track_04 NA NA NA NA 4.184702 5.3102989 4.6107307
#> Track_07 NA NA NA NA NA 0.5161517 0.4267261
#> Track_08 NA NA NA NA NA NA 0.6291162
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.305942 12.79904 7.113077 4.745829
#> Track_02 1.506637 -1.00000 7.875771 2.329677
#> Track_03 1.583944 -1.00000 -1.000000 1.155030
#> Track_04 2.294254 -1.00000 9.433279 3.793182
#> Track_07 2.531954 -1.00000 -1.000000 1.508705
#> Track_08 2.838807 -1.00000 4.995342 1.596965
#> Track_09 2.924164 -1.00000 5.455164 2.005811
#> Track_13 NA -1.00000 -1.000000 2.154589
#> Track_15 NA NA 6.137069 9.673171
#> Track_16 NA NA NA 5.791915
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[45]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.9708639 4.439126 2.632399 2.331545 3.250981 5.685281
#> Track_02 NA NA 3.212022 2.067190 1.692192 2.976380 4.762763
#> Track_03 NA NA NA 4.068745 1.935959 2.727375 2.474397
#> Track_04 NA NA NA NA 3.389268 4.884333 4.290764
#> Track_07 NA NA NA NA NA 1.550531 4.122218
#> Track_08 NA NA NA NA NA NA 5.302640
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.1209658 -1.000000 -1.000000 4.6851846
#> Track_02 1.4424642 -1.000000 -1.000000 3.5843992
#> Track_03 2.2188915 9.420785 -1.000000 0.6332893
#> Track_04 3.2506417 -1.000000 8.960108 4.0317324
#> Track_07 0.3050644 -1.000000 5.637440 2.4441894
#> Track_08 1.6374443 -1.000000 4.406969 3.3554447
#> Track_09 4.4585528 9.994056 7.291421 1.8436338
#> Track_13 NA -1.000000 5.851983 2.7036814
#> Track_15 NA NA -1.000000 9.4613080
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[46]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.306304 3.044013 4.282864 4.390679 4.5884608 3.4078066
#> Track_02 NA NA 3.982131 1.289833 2.526314 3.0497953 2.3008407
#> Track_03 NA NA NA 4.368710 1.911442 1.8795166 1.3369362
#> Track_04 NA NA NA NA 3.704323 4.1355902 3.2515938
#> Track_07 NA NA NA NA NA 0.4321183 0.9892201
#> Track_08 NA NA NA NA NA NA 1.3888873
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.290783 12.114633 8.511735 3.531815
#> Track_02 2.508612 12.454036 6.829517 3.355057
#> Track_03 1.468917 9.574891 -1.000000 1.064023
#> Track_04 3.023788 13.597554 8.046615 4.277586
#> Track_07 2.128138 -1.000000 4.548954 1.392315
#> Track_08 2.625910 9.497732 4.178835 1.319539
#> Track_09 1.223625 10.386107 5.429051 1.055097
#> Track_13 NA 11.030977 6.494296 1.632827
#> Track_15 NA NA 6.729432 9.447639
#> Track_16 NA NA NA 5.005349
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[47]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.269849 4.412863 0.6793902 3.182311 4.8273560 3.8893074
#> Track_02 NA NA 2.129077 3.4846541 2.745443 2.4923188 1.4524719
#> Track_03 NA NA NA 5.3609797 1.958324 0.4221815 0.7216934
#> Track_04 NA NA NA NA 3.763466 5.2784776 4.3335791
#> Track_07 NA NA NA NA NA 2.2636583 1.9460365
#> Track_08 NA NA NA NA NA NA 1.1106586
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.992649 -1.000000 -1.000000 3.6989531
#> Track_02 1.221065 11.345501 8.223438 2.1631816
#> Track_03 1.492827 9.219353 6.286473 0.8593933
#> Track_04 3.392873 -1.000000 9.292454 4.1946723
#> Track_07 1.621416 -1.000000 5.805780 1.1971063
#> Track_08 1.914493 8.856584 -1.000000 1.2292244
#> Track_09 1.091773 9.940852 -1.000000 0.9221713
#> Track_13 NA 10.572451 -1.000000 1.2210645
#> Track_15 NA NA 5.080453 9.5182655
#> Track_16 NA NA NA 6.1392013
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[48]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.9847277 3.012047 1.224382 2.974587 3.5369371 2.906838
#> Track_02 NA NA 2.658467 1.487892 2.165230 2.5418279 3.059022
#> Track_03 NA NA NA 4.065230 1.601365 1.4198987 1.022384
#> Track_04 NA NA NA NA 3.762134 4.1349588 4.093759
#> Track_07 NA NA NA NA NA 0.4424127 2.557325
#> Track_08 NA NA NA NA NA NA 2.495850
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.195688 13.35088 -1.000000 3.3520366
#> Track_02 2.060598 -1.00000 -1.000000 2.8973024
#> Track_03 0.913997 -1.00000 -1.000000 0.4446174
#> Track_04 3.333304 14.35414 8.869332 4.3790962
#> Track_07 1.921075 10.90059 5.286092 1.4623408
#> Track_08 1.943200 10.46693 4.958071 1.1959621
#> Track_09 0.838288 -1.00000 -1.000000 1.4538022
#> Track_13 NA -1.00000 6.605421 1.3399598
#> Track_15 NA NA 7.039496 -1.0000000
#> Track_16 NA NA NA 5.2871515
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[49]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.569567 3.901117 1.291405 2.981421 3.123317 2.4944044
#> Track_02 NA NA 2.595212 1.414068 2.662110 2.255316 1.5321680
#> Track_03 NA NA NA 4.001456 2.312960 1.277732 1.5128291
#> Track_04 NA NA NA NA 3.799854 3.605535 3.1117438
#> Track_07 NA NA NA NA NA 1.046257 1.3871813
#> Track_08 NA NA NA NA NA NA 0.7396202
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.0982274 13.242604 8.357348 3.8387764
#> Track_02 0.9986850 12.174624 7.849390 2.8086266
#> Track_03 1.8029844 9.606959 -1.000000 0.9076040
#> Track_04 2.3671020 13.588691 9.135665 4.1038467
#> Track_07 1.9061301 10.454053 5.382507 2.0910095
#> Track_08 1.2567528 -1.000000 5.604293 0.9743417
#> Track_09 0.5171327 10.788091 6.339034 1.3455244
#> Track_13 NA 11.260240 6.853408 2.0263944
#> Track_15 NA NA 6.250403 -1.0000000
#> Track_16 NA NA NA 5.4730601
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[50]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.781241 5.614069 6.274924 4.045430 4.7812410 4.5891409
#> Track_02 NA NA 2.175945 1.815517 2.085596 2.1858463 1.8821250
#> Track_03 NA NA NA 3.564263 1.596965 1.4826275 1.2930878
#> Track_04 NA NA NA NA 3.960084 3.9889744 3.8559529
#> Track_07 NA NA NA NA NA 0.2803349 0.6798167
#> Track_08 NA NA NA NA NA NA 0.4377882
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.149312 13.87863 6.698370 4.7173349
#> Track_02 1.111696 12.20565 7.109413 2.2817553
#> Track_03 1.067757 -1.00000 5.515851 1.0282636
#> Track_04 2.595164 -1.00000 8.860122 3.9838794
#> Track_07 1.559270 10.76328 5.048338 0.6890534
#> Track_08 1.566939 10.57967 4.928454 0.5224723
#> Track_09 1.230799 -1.00000 5.227666 0.7454655
#> Track_13 NA -1.00000 -1.000000 1.4270653
#> Track_15 NA NA 7.595891 -1.0000000
#> Track_16 NA NA NA 4.8786023
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[51]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.682052 4.149856 1.116395 2.695767 4.5901277 2.8479636
#> Track_02 NA NA 2.758960 2.083941 1.730471 3.2785387 2.0005827
#> Track_03 NA NA NA 4.821993 1.673924 0.6163938 1.6648131
#> Track_04 NA NA NA NA 3.551193 5.3269680 3.7093630
#> Track_07 NA NA NA NA NA 1.9660431 0.5307659
#> Track_08 NA NA NA NA NA NA 1.8428634
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.365882 -1.00000 8.263835 3.6626246
#> Track_02 1.829470 11.70809 -1.000000 2.5641806
#> Track_03 1.104680 -1.00000 -1.000000 1.0329523
#> Track_04 3.795372 -1.00000 -1.000000 4.6536386
#> Track_07 1.343808 10.06038 -1.000000 0.9679164
#> Track_08 1.701729 -1.00000 5.772440 1.0804854
#> Track_09 1.483178 -1.00000 6.071069 0.8208274
#> Track_13 NA 10.24703 -1.000000 1.4415318
#> Track_15 NA NA 5.841545 9.1485380
#> Track_16 NA NA NA 5.6476248
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[52]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.22621 3.984509 2.354804 3.091850 3.440164 2.929054
#> Track_02 NA NA 2.693803 0.749332 2.952136 3.270707 1.964292
#> Track_03 NA NA NA 3.422285 1.900561 1.781511 1.062332
#> Track_04 NA NA NA NA 3.760483 3.991121 2.712287
#> Track_07 NA NA NA NA NA 0.374934 1.161160
#> Track_08 NA NA NA NA NA NA 1.438852
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.5568380 13.03080 -1.000000 4.0030927
#> Track_02 1.5464149 11.96246 8.132007 2.9988341
#> Track_03 2.2533730 -1.00000 5.797516 0.5159822
#> Track_04 2.2763645 12.66211 -1.000000 3.7127190
#> Track_07 1.4284086 -1.00000 5.290784 1.3445192
#> Track_08 2.1601081 -1.00000 -1.000000 1.5772309
#> Track_09 0.6136369 -1.00000 6.179468 1.0949915
#> Track_13 NA -1.00000 6.597516 1.6450205
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.3408564
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[53]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.676944 5.335314 4.023592 3.106572 4.218308 4.269375
#> Track_02 NA NA 3.203483 1.856307 1.555866 2.714243 2.152377
#> Track_03 NA NA NA 4.066991 2.239473 1.480582 1.165325
#> Track_04 NA NA NA NA 3.241844 4.177229 3.367157
#> Track_07 NA NA NA NA NA 1.239283 1.104416
#> Track_08 NA NA NA NA NA NA 0.989693
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.3435841 12.958164 7.537568 4.4429955
#> Track_02 1.1501584 11.541657 -1.000000 2.6735715
#> Track_03 2.1031537 -1.000000 -1.000000 1.1655557
#> Track_04 2.6268595 -1.000000 8.868707 3.8629152
#> Track_07 0.9325954 10.160481 5.684117 1.2020096
#> Track_08 1.6206517 8.921712 -1.000000 0.4229947
#> Track_09 1.0876285 9.395239 5.591878 0.6259688
#> Track_13 NA 10.391552 6.276116 2.0697716
#> Track_15 NA NA 6.468227 -1.0000000
#> Track_16 NA NA NA 5.0738498
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[54]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.205913 4.272021 0.7917093 2.462902 3.539975 4.3835554
#> Track_02 NA NA 2.570734 2.9590983 2.398807 2.975226 2.7579822
#> Track_03 NA NA NA 5.0548517 2.675199 2.392418 0.4721494
#> Track_04 NA NA NA NA 3.076331 4.321551 5.1510505
#> Track_07 NA NA NA NA NA 1.091395 2.6340385
#> Track_08 NA NA NA NA NA NA 1.9550625
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.935858 -1.000000 8.288904 3.747358
#> Track_02 1.450655 -1.000000 -1.000000 2.760534
#> Track_03 1.387785 -1.000000 6.073641 1.606745
#> Track_04 3.680406 13.458079 -1.000000 4.443352
#> Track_07 1.519532 -1.000000 5.875305 1.699487
#> Track_08 1.677785 -1.000000 4.906221 1.014642
#> Track_09 1.484284 8.610558 5.603104 1.283144
#> Track_13 NA 10.030177 -1.000000 1.330304
#> Track_15 NA NA 6.186227 -1.000000
#> Track_16 NA NA NA 5.061654
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[55]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.970204 4.722207 2.633653 2.541805 4.018924 3.697267
#> Track_02 NA NA 2.265532 1.278273 2.021213 2.396324 1.671074
#> Track_03 NA NA NA 3.532732 2.551623 1.166245 1.143582
#> Track_04 NA NA NA NA 2.903163 3.654316 2.632936
#> Track_07 NA NA NA NA NA 1.516986 1.623912
#> Track_08 NA NA NA NA NA NA 1.236198
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.469712 13.318990 7.491376 4.4713102
#> Track_02 1.077772 12.060043 7.359163 2.3997739
#> Track_03 2.204026 9.912488 5.986440 0.4661160
#> Track_04 1.894595 -1.000000 8.428357 3.6358033
#> Track_07 1.077583 -1.000000 5.546205 2.3284220
#> Track_08 2.043944 9.729132 -1.000000 0.7224334
#> Track_09 1.080469 -1.000000 -1.000000 1.1462901
#> Track_13 NA 11.572520 -1.000000 2.0998968
#> Track_15 NA NA -1.000000 9.7151960
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[56]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.01653 5.164748 2.819772 3.584941 4.4513985 4.705947
#> Track_02 NA NA 2.558411 1.750528 1.657955 2.3523687 2.011636
#> Track_03 NA NA NA 4.231881 1.721027 1.2964706 0.578797
#> Track_04 NA NA NA NA 3.490138 4.0927626 3.689397
#> Track_07 NA NA NA NA NA 0.7987937 1.432390
#> Track_08 NA NA NA NA NA NA 1.300360
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.033523 -1.000000 7.588439 4.8316200
#> Track_02 2.072074 -1.000000 7.163568 2.5471732
#> Track_03 0.983288 9.885102 -1.000000 0.6794460
#> Track_04 3.552576 13.938783 8.756399 4.3224489
#> Track_07 1.989826 10.631027 5.524773 1.2935045
#> Track_08 1.943320 -1.000000 5.000721 0.6660803
#> Track_09 0.643856 -1.000000 6.161633 0.9253061
#> Track_13 NA 10.806755 -1.000000 1.5219497
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[57]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.066814 3.693460 2.298751 2.429611 3.1607975 3.288588
#> Track_02 NA NA 2.483436 1.779882 2.522994 2.4149755 1.847418
#> Track_03 NA NA NA 4.281760 2.246750 1.1658351 1.361966
#> Track_04 NA NA NA NA 3.998818 4.2738473 3.179651
#> Track_07 NA NA NA NA NA 0.9708395 2.822939
#> Track_08 NA NA NA NA NA NA 2.053065
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.216554 -1.000000 8.180805 4.691812
#> Track_02 1.162837 12.435317 8.102475 3.404863
#> Track_03 1.535826 9.953073 5.904416 1.132393
#> Track_04 2.873175 14.213585 -1.000000 5.451195
#> Track_07 1.626750 10.859205 5.837082 2.826376
#> Track_08 1.342201 10.278298 5.687739 1.925821
#> Track_09 1.448268 -1.000000 7.264371 1.684816
#> Track_13 NA -1.000000 -1.000000 2.330558
#> Track_15 NA NA -1.000000 9.462981
#> Track_16 NA NA NA 5.976246
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[58]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.053493 3.990206 0.9998767 2.889304 3.3752060 3.779668
#> Track_02 NA NA 2.978484 1.4487881 2.310300 2.8095624 3.001949
#> Track_03 NA NA NA 4.4251234 1.572285 0.6411052 1.407573
#> Track_04 NA NA NA NA 3.670884 4.2479174 4.308655
#> Track_07 NA NA NA NA NA 0.9071429 2.601531
#> Track_08 NA NA NA NA NA NA 1.986207
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.294872 13.65682 8.705429 3.6947884
#> Track_02 1.622427 13.00929 -1.000000 3.0220033
#> Track_03 1.373422 -1.00000 5.705198 0.1352541
#> Track_04 3.070163 14.45249 -1.000000 4.4654580
#> Track_07 1.177224 11.08979 6.001336 1.8118103
#> Track_08 2.173592 -1.00000 5.575171 1.0823468
#> Track_09 1.745043 10.38686 6.828608 1.4168571
#> Track_13 NA 11.38836 6.835516 1.4042968
#> Track_15 NA NA 6.569971 9.9875607
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[59]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.525056 3.78222 1.909328 2.919850 3.3724424 2.321753
#> Track_02 NA NA 2.25362 4.291251 2.792810 3.3721399 1.550936
#> Track_03 NA NA NA 4.911159 1.724988 1.5130878 1.479470
#> Track_04 NA NA NA NA 3.492705 3.9259054 3.545397
#> Track_07 NA NA NA NA NA 0.4746073 1.244076
#> Track_08 NA NA NA NA NA NA 1.489109
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.8192155 13.18421 -1.000000 3.5076493
#> Track_02 2.2859319 11.28321 -1.000000 2.6130785
#> Track_03 2.1997947 -1.00000 -1.000000 0.9188376
#> Track_04 2.7419276 14.04375 8.513890 4.4911168
#> Track_07 1.1132891 10.57854 -1.000000 0.8538318
#> Track_08 1.5549937 10.11809 5.122654 0.5959273
#> Track_09 0.8735736 10.86252 6.507906 1.4343073
#> Track_13 NA 11.48711 6.663384 1.6482373
#> Track_15 NA NA 6.948310 9.8468728
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[60]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.490983 4.077914 1.251171 2.512421 3.2767462 2.710387
#> Track_02 NA NA 2.612887 3.696395 2.924915 3.0329755 2.073113
#> Track_03 NA NA NA 5.154509 2.373516 1.7646635 1.501630
#> Track_04 NA NA NA NA 3.211323 4.0354851 3.682548
#> Track_07 NA NA NA NA NA 0.8697665 1.035412
#> Track_08 NA NA NA NA NA NA 0.960027
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.894141 -1.00000 -1.000000 3.4054338
#> Track_02 1.071230 -1.00000 -1.000000 2.8182439
#> Track_03 1.551703 9.43925 5.743616 1.2905202
#> Track_04 4.124054 -1.00000 8.228469 4.2968690
#> Track_07 2.276643 10.72356 5.469247 1.4138067
#> Track_08 2.164636 -1.00000 4.957390 0.4741461
#> Track_09 1.249257 10.53460 5.893217 0.9890671
#> Track_13 NA -1.00000 6.952659 1.8594177
#> Track_15 NA NA 6.790231 9.7662555
#> Track_16 NA NA NA 5.1222676
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[61]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.478525 5.553918 4.129360 3.606501 4.6002501 3.189380
#> Track_02 NA NA 2.789975 1.334168 2.011980 2.4653007 1.975582
#> Track_03 NA NA NA 3.822599 1.893454 0.8531978 2.287526
#> Track_04 NA NA NA NA 3.295250 3.6816598 3.306567
#> Track_07 NA NA NA NA NA 1.1759888 0.392807
#> Track_08 NA NA NA NA NA NA 1.539668
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 4.583863 -1.000000 6.720280 4.5095032
#> Track_02 1.501929 12.421307 7.094726 2.5150928
#> Track_03 1.360577 9.831322 -1.000000 1.6672460
#> Track_04 2.526720 13.613619 8.428851 3.8694922
#> Track_07 1.510421 -1.000000 5.141907 0.6496331
#> Track_08 1.254958 9.957861 -1.000000 0.9815257
#> Track_09 1.767606 -1.000000 5.128027 0.8298348
#> Track_13 NA -1.000000 -1.000000 2.2098542
#> Track_15 NA NA 7.053637 10.0410532
#> Track_16 NA NA NA 4.6591123
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[62]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.625131 3.240357 2.611519 2.555461 3.4724481 2.530052
#> Track_02 NA NA 2.683024 2.585342 1.992647 2.9693017 2.189220
#> Track_03 NA NA NA 4.704365 1.800072 0.4571252 1.565816
#> Track_04 NA NA NA NA 3.184303 5.1223402 4.882721
#> Track_07 NA NA NA NA NA 1.8452906 2.567029
#> Track_08 NA NA NA NA NA NA 1.777092
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.5985805 12.48607 -1.000000 3.6107898
#> Track_02 2.2242633 11.91055 -1.000000 3.0478272
#> Track_03 1.1930883 -1.00000 6.025137 0.8561979
#> Track_04 4.8732578 -1.00000 -1.000000 5.1590471
#> Track_07 2.4979979 10.41437 5.982036 2.1416361
#> Track_08 1.6145301 -1.00000 5.573366 0.4157971
#> Track_09 0.2354991 -1.00000 7.347332 1.7727563
#> Track_13 NA 10.19166 7.183858 1.5094468
#> Track_15 NA NA 6.134871 8.9000280
#> Track_16 NA NA NA 5.6908271
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[63]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.850834 3.845153 1.607348 2.735258 3.1026360 2.6004585
#> Track_02 NA NA 2.236252 2.249623 2.935528 2.9549353 1.8291959
#> Track_03 NA NA NA 3.916991 1.839873 1.5727948 1.2191509
#> Track_04 NA NA NA NA 3.572943 3.7163442 2.8658345
#> Track_07 NA NA NA NA NA 0.3675064 0.9851379
#> Track_08 NA NA NA NA NA NA 1.1272335
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.331380 12.396476 -1.000000 3.5511260
#> Track_02 1.412427 11.219520 8.519771 2.5223845
#> Track_03 2.393721 -1.000000 6.346620 1.0893473
#> Track_04 2.413154 12.869642 -1.000000 3.8487503
#> Track_07 1.416246 9.661269 6.162463 1.1456200
#> Track_08 1.676356 9.293848 5.827209 1.0967183
#> Track_09 0.620076 10.003878 -1.000000 0.9844061
#> Track_13 NA -1.000000 7.456651 1.5871460
#> Track_15 NA NA 4.809030 -1.0000000
#> Track_16 NA NA NA 6.0009161
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[64]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.9436285 3.613007 1.044544 2.886673 3.2179529 2.7565524
#> Track_02 NA NA 2.759487 1.495170 2.266696 2.5101849 2.1322915
#> Track_03 NA NA NA 4.273344 1.462339 1.0923461 1.6176070
#> Track_04 NA NA NA NA 3.736696 4.0027791 3.6025129
#> Track_07 NA NA NA NA NA 0.9081876 0.4129915
#> Track_08 NA NA NA NA NA NA 0.5356399
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.917547 12.463695 -1.000000 4.2785179
#> Track_02 1.974113 -1.000000 7.331162 3.3773668
#> Track_03 1.189646 9.062832 -1.000000 0.7230555
#> Track_04 3.238744 13.180201 8.754472 4.7793838
#> Track_07 2.208378 9.606878 5.082372 2.1130350
#> Track_08 1.843708 -1.000000 -1.000000 1.6799112
#> Track_09 1.935942 -1.000000 -1.000000 2.1463183
#> Track_13 NA 10.149817 6.636735 1.6208828
#> Track_15 NA NA 6.100399 8.5296410
#> Track_16 NA NA NA 5.4290322
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[65]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.7048953 4.611919 1.139801 3.030998 4.6596676 2.944088
#> Track_02 NA NA 3.918627 1.803944 2.338999 4.1652737 2.410740
#> Track_03 NA NA NA 5.066922 2.994149 0.6640912 1.634373
#> Track_04 NA NA NA NA 4.214038 5.4124231 3.777559
#> Track_07 NA NA NA NA NA 2.8918594 1.614847
#> Track_08 NA NA NA NA NA NA 1.731447
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.1721496 13.288715 7.783942 3.4543126
#> Track_02 1.7969263 12.617165 7.218077 2.8042189
#> Track_03 2.4684712 9.547112 -1.000000 1.7966014
#> Track_04 2.9244199 14.241308 8.946270 4.3996126
#> Track_07 1.9693212 -1.000000 4.890120 1.2332087
#> Track_08 2.5059733 -1.000000 5.245224 1.5878797
#> Track_09 0.8697301 10.481079 -1.000000 0.8041443
#> Track_13 NA 11.349360 6.480414 1.6042186
#> Track_15 NA NA -1.000000 9.8475568
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[66]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.650658 3.399370 2.228918 2.898949 3.6405261 3.183304
#> Track_02 NA NA 2.561604 1.623500 2.609817 2.8277203 1.795504
#> Track_03 NA NA NA 4.175888 1.180067 0.2454123 1.087689
#> Track_04 NA NA NA NA 4.108929 4.1506352 3.171438
#> Track_07 NA NA NA NA NA 1.3697496 1.968159
#> Track_08 NA NA NA NA NA NA 1.121852
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.5468439 -1.000000 -1.000000 3.4961323
#> Track_02 1.0426412 -1.000000 7.709138 2.3086641
#> Track_03 1.6076072 9.744212 5.350468 0.4714137
#> Track_04 2.4185906 -1.000000 9.310990 4.0314189
#> Track_07 2.3838616 -1.000000 5.390711 1.8811863
#> Track_08 1.7550390 9.508546 5.200677 0.4549258
#> Track_09 0.7719528 10.244591 -1.000000 0.6795669
#> Track_13 NA 11.016254 -1.000000 1.3729229
#> Track_15 NA NA 6.206084 9.7305599
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[67]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.333866 2.891170 3.842896 3.721875 3.3773466 2.6845410
#> Track_02 NA NA 3.530443 1.951507 2.017609 3.0762128 2.9493699
#> Track_03 NA NA NA 4.420514 1.715585 0.6352137 0.6444726
#> Track_04 NA NA NA NA 3.451372 4.2002517 3.7764625
#> Track_07 NA NA NA NA NA 1.1395044 1.4701488
#> Track_08 NA NA NA NA NA NA 0.8617319
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.0627529 -1.000000 9.016880 3.3495683
#> Track_02 2.1237630 12.322322 -1.000000 4.3272840
#> Track_03 1.4547199 9.510292 6.125710 0.8338493
#> Track_04 3.1890015 -1.000000 9.214620 5.5752876
#> Track_07 0.7814946 -1.000000 -1.000000 2.5976597
#> Track_08 1.0234956 9.599182 5.786180 1.3066874
#> Track_09 0.8464089 10.118433 6.463017 1.4773284
#> Track_13 NA -1.000000 6.445299 2.2151330
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[68]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.04043 4.577661 3.676734 2.937012 3.930344 3.2061168
#> Track_02 NA NA 2.707652 1.927931 2.177382 2.581425 1.6899214
#> Track_03 NA NA NA 3.895632 1.911176 1.133330 1.3807552
#> Track_04 NA NA NA NA 3.664881 3.935516 3.0279692
#> Track_07 NA NA NA NA NA 1.063024 0.8342329
#> Track_08 NA NA NA NA NA NA 0.9869653
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.3661977 13.30497 7.796564 4.8176644
#> Track_02 1.6183608 -1.00000 -1.000000 2.8321676
#> Track_03 1.3587224 -1.00000 6.108906 0.3478045
#> Track_04 2.9781584 13.52319 9.405152 4.1035070
#> Track_07 0.9061646 10.70121 5.918293 1.8936854
#> Track_08 0.9657954 -1.00000 5.558206 0.8288608
#> Track_09 0.1235177 -1.00000 6.450241 1.5251085
#> Track_13 NA -1.00000 6.461132 1.4015101
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.7611386
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[69]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.326571 3.583914 0.8189447 3.340057 4.0694358 2.666773
#> Track_02 NA NA 2.772887 1.6611029 2.145348 2.7516126 1.697828
#> Track_03 NA NA NA 4.0266144 2.455522 2.2845422 1.096892
#> Track_04 NA NA NA NA 3.677924 5.1363736 3.000050
#> Track_07 NA NA NA NA NA 0.7583313 1.700193
#> Track_08 NA NA NA NA NA NA 2.146219
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.9615961 12.918612 9.038846 3.5175019
#> Track_02 0.6975799 11.954306 -1.000000 2.4260966
#> Track_03 2.2158726 9.337812 -1.000000 0.9555273
#> Track_04 2.3053708 -1.000000 -1.000000 3.8560959
#> Track_07 1.5437552 10.478031 5.790731 1.4552865
#> Track_08 2.0748209 9.765461 5.054000 1.4149264
#> Track_09 1.1643698 10.294403 6.551715 0.9095160
#> Track_13 NA 11.283389 7.083505 2.1204488
#> Track_15 NA NA 6.363357 9.5317600
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[70]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.6596825 4.423102 1.772269 2.866129 3.5297459 3.0643689
#> Track_02 NA NA 4.007464 1.945081 2.162455 2.8744246 2.4888682
#> Track_03 NA NA NA 4.194388 2.226103 1.5345321 1.8453094
#> Track_04 NA NA NA NA 3.492057 3.9258050 3.6506351
#> Track_07 NA NA NA NA NA 0.8090109 0.9422550
#> Track_08 NA NA NA NA NA NA 0.5203885
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.194739 12.988864 8.018856 4.6528517
#> Track_02 1.658768 12.329451 7.407274 3.9483583
#> Track_03 2.231886 9.205920 5.822905 0.1506463
#> Track_04 2.264406 13.311976 -1.000000 4.2560216
#> Track_07 1.342439 10.167006 5.451737 2.3744039
#> Track_08 1.898946 9.500973 5.133125 1.9095324
#> Track_09 1.166029 9.995162 -1.000000 1.8913791
#> Track_13 NA -1.000000 -1.000000 2.3879238
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.9021354
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[71]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.015132 4.042020 0.3995859 3.124013 3.4469400 3.2869849
#> Track_02 NA NA 3.230091 1.2193963 2.152234 2.4990974 2.2734198
#> Track_03 NA NA NA 4.7005813 1.153075 0.9920071 0.9158496
#> Track_04 NA NA NA NA 3.288693 3.6134950 3.4921531
#> Track_07 NA NA NA NA NA 0.4317964 0.9383071
#> Track_08 NA NA NA NA NA NA 1.2006066
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.4378079 12.940916 -1.000000 4.6764947
#> Track_02 1.4228629 12.070922 -1.000000 3.0143154
#> Track_03 1.6244508 9.406459 -1.000000 0.2287429
#> Track_04 2.6364672 13.048471 -1.000000 4.6764947
#> Track_07 1.0919266 -1.000000 5.747715 0.9478907
#> Track_08 1.3197976 -1.000000 -1.000000 0.8195939
#> Track_09 0.8664806 -1.000000 -1.000000 1.0769230
#> Track_13 NA -1.000000 -1.000000 1.6321766
#> Track_15 NA NA -1.000000 9.3137683
#> Track_16 NA NA NA 5.6391974
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[72]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.596905 3.737920 1.250530 2.393987 3.180834 3.8203807
#> Track_02 NA NA 2.516944 2.666561 1.990182 2.397525 2.3249164
#> Track_03 NA NA NA 4.837884 2.028503 1.436097 0.3981437
#> Track_04 NA NA NA NA 3.398105 4.228830 4.8535640
#> Track_07 NA NA NA NA NA 1.124301 2.2824982
#> Track_08 NA NA NA NA NA NA 1.7252739
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.563678 -1.000000 8.092342 3.5386500
#> Track_02 1.258269 -1.000000 -1.000000 2.4871379
#> Track_03 1.186977 -1.000000 5.909854 0.7855605
#> Track_04 3.674809 14.124941 8.937994 5.3723171
#> Track_07 1.402375 10.727329 5.787155 1.4451216
#> Track_08 1.395684 9.924544 -1.000000 0.6623243
#> Track_09 1.282258 -1.000000 6.280658 1.1783825
#> Track_13 NA -1.000000 -1.000000 1.2591794
#> Track_15 NA NA 6.119463 -1.0000000
#> Track_16 NA NA NA 5.3586746
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[73]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.378949 4.835346 1.049997 3.198034 4.6652340 3.293074
#> Track_02 NA NA 2.217607 3.507084 2.666794 2.3586396 1.561380
#> Track_03 NA NA NA 4.835346 1.590372 0.4562164 1.331069
#> Track_04 NA NA NA NA 3.439038 4.3250147 3.298823
#> Track_07 NA NA NA NA NA 1.1631803 1.256834
#> Track_08 NA NA NA NA NA NA 1.117205
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.8047119 -1.000000 8.373740 4.9097164
#> Track_02 1.6455446 11.900421 8.263094 2.6429338
#> Track_03 1.5950028 9.721859 -1.000000 0.4266584
#> Track_04 3.1251627 13.683529 8.612348 5.2961312
#> Track_07 1.2288742 10.296817 5.815683 1.6466915
#> Track_08 1.4415020 9.728156 5.947370 0.5305169
#> Track_09 0.3247335 10.834563 6.760819 1.5969745
#> Track_13 NA 11.153579 7.000709 1.9204328
#> Track_15 NA NA 6.273686 -1.0000000
#> Track_16 NA NA NA 5.8356341
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[74]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.943039 4.167062 1.697220 2.659783 4.4132554 2.2180622
#> Track_02 NA NA 2.387417 2.002607 2.559510 2.5930824 2.0929109
#> Track_03 NA NA NA 4.051913 1.962969 0.2475824 2.0641853
#> Track_04 NA NA NA NA 3.203049 4.6923644 2.6378393
#> Track_07 NA NA NA NA NA 2.1537205 0.9789765
#> Track_08 NA NA NA NA NA NA 2.2983095
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.201572 -1.000000 -1.000000 3.6478588
#> Track_02 1.501716 11.348716 8.321206 2.5387990
#> Track_03 1.039422 8.961363 6.201666 0.9173718
#> Track_04 3.030905 12.841367 9.236349 4.0310600
#> Track_07 1.490120 9.769129 -1.000000 1.1061896
#> Track_08 1.379252 8.759645 -1.000000 1.0836798
#> Track_09 1.305569 -1.000000 -1.000000 1.3908646
#> Track_13 NA 9.917423 6.834255 1.0516567
#> Track_15 NA NA 5.011126 -1.0000000
#> Track_16 NA NA NA 5.7850050
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[75]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.89565 4.450085 1.839855 3.095926 4.7719641 3.8410799
#> Track_02 NA NA 3.148267 1.197515 2.277857 3.5029088 2.5561901
#> Track_03 NA NA NA 3.504382 2.497160 0.7598932 0.6316659
#> Track_04 NA NA NA NA 3.320446 3.9570146 3.0264267
#> Track_07 NA NA NA NA NA 2.4503638 1.9137559
#> Track_08 NA NA NA NA NA NA 0.9528823
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.738799 -1.00000 8.682063 3.7435768
#> Track_02 2.724984 -1.00000 -1.000000 2.6735045
#> Track_03 4.181695 9.59632 -1.000000 1.5979975
#> Track_04 3.896525 13.04093 -1.000000 3.5130199
#> Track_07 1.761758 -1.00000 5.678058 0.9498773
#> Track_08 4.211564 -1.00000 5.743954 1.5178097
#> Track_09 3.602872 10.01645 6.301078 1.1839962
#> Track_13 NA -1.00000 6.326244 2.7691873
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[76]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.600699 4.730801 2.658434 2.991295 3.3815783 2.2494063
#> Track_02 NA NA 3.240087 1.363467 1.855522 2.4954246 1.3735021
#> Track_03 NA NA NA 3.240356 2.117038 2.3603338 2.7210794
#> Track_04 NA NA NA NA 2.774944 3.3720076 2.4559280
#> Track_07 NA NA NA NA NA 0.6792463 0.7184993
#> Track_08 NA NA NA NA NA NA 1.1783439
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.471687 13.145008 7.893263 4.7344463
#> Track_02 1.921161 -1.000000 7.495966 3.4197814
#> Track_03 1.349747 9.470336 -1.000000 0.9320508
#> Track_04 1.953938 12.618627 -1.000000 3.7446795
#> Track_07 1.437791 -1.000000 5.751281 1.8435399
#> Track_08 1.970006 9.784303 -1.000000 1.7175634
#> Track_09 1.773632 10.957527 -1.000000 2.9002798
#> Track_13 NA 10.666907 6.810062 1.9662124
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.3305510
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[77]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.202765 5.090615 2.853988 3.456636 4.7021971 2.9212993
#> Track_02 NA NA 2.525912 3.116860 2.484498 2.8279941 2.8708842
#> Track_03 NA NA NA 5.468333 1.660303 0.9409999 2.5259662
#> Track_04 NA NA NA NA 4.035243 4.8415586 4.0205401
#> Track_07 NA NA NA NA NA 0.9283889 0.7455683
#> Track_08 NA NA NA NA NA NA 1.4749174
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.812716 -1.000000 6.957188 4.9127247
#> Track_02 1.230797 -1.000000 7.533082 2.3835514
#> Track_03 2.175375 9.821369 5.471975 0.1998276
#> Track_04 3.429110 14.632259 -1.000000 5.4683331
#> Track_07 1.127706 -1.000000 5.259639 1.5101804
#> Track_08 1.871042 -1.000000 4.899219 0.8600509
#> Track_09 1.700763 -1.000000 4.982664 2.2071792
#> Track_13 NA -1.000000 6.316712 1.5185601
#> Track_15 NA NA 6.618686 9.9926155
#> Track_16 NA NA NA 5.5399055
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[78]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.8031256 3.761564 0.5044206 2.633556 3.3739331 3.029691
#> Track_02 NA NA 3.405676 1.1341062 2.032507 2.7857493 2.824923
#> Track_03 NA NA NA 4.2651916 1.892694 1.5577662 1.036992
#> Track_04 NA NA NA NA 3.189521 3.9397060 3.531544
#> Track_07 NA NA NA NA NA 0.7459526 1.675398
#> Track_08 NA NA NA NA NA NA 2.049982
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.505450 12.999495 8.946680 3.3675632
#> Track_02 1.001303 12.449860 8.225703 2.8329092
#> Track_03 2.405455 -1.000000 -1.000000 1.0166603
#> Track_04 1.977978 -1.000000 -1.000000 3.9425950
#> Track_07 1.131466 -1.000000 -1.000000 0.9017854
#> Track_08 1.875969 9.722875 5.633781 1.0467905
#> Track_09 1.880001 -1.000000 7.029529 1.4722287
#> Track_13 NA 11.509131 7.486705 1.8727018
#> Track_15 NA NA 5.584976 -1.0000000
#> Track_16 NA NA NA 5.8361144
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[79]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.851936 4.345709 0.7007999 2.989137 4.472313 4.6436623
#> Track_02 NA NA 1.858128 4.5129757 2.099802 2.810669 1.6328012
#> Track_03 NA NA NA 4.9451414 1.542873 1.032180 0.4885371
#> Track_04 NA NA NA NA 3.599025 4.986365 5.2927569
#> Track_07 NA NA NA NA NA 1.107780 1.9188300
#> Track_08 NA NA NA NA NA NA 1.4849612
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.6944666 -1.00000 -1.000000 4.6145832
#> Track_02 1.5769653 12.05801 8.182035 2.3212515
#> Track_03 1.6951671 10.32600 -1.000000 0.6912703
#> Track_04 3.3336729 -1.00000 8.470906 4.7325301
#> Track_07 0.8143468 11.04647 -1.000000 1.2035423
#> Track_08 1.7755636 -1.00000 5.647698 0.3412327
#> Track_09 1.9513456 10.42676 -1.000000 1.1907680
#> Track_13 NA 11.74875 7.221109 2.2152338
#> Track_15 NA NA 6.250965 10.0160007
#> Track_16 NA NA NA 5.8650373
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[80]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.388541 4.305736 1.963951 2.166258 4.3231121 2.2183003
#> Track_02 NA NA 3.084813 1.719641 1.214682 3.5895845 1.5070927
#> Track_03 NA NA NA 3.821312 2.532451 0.2348557 2.7408625
#> Track_04 NA NA NA NA 2.798571 3.8942823 3.1116716
#> Track_07 NA NA NA NA NA 2.4263740 0.4721826
#> Track_08 NA NA NA NA NA NA 2.7010502
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.377924 -1.00000 8.057880 3.8444166
#> Track_02 1.048068 12.28410 7.346727 2.5642613
#> Track_03 1.932135 -1.00000 5.956413 0.9942626
#> Track_04 2.356342 -1.00000 8.887485 4.0910755
#> Track_07 0.827066 11.24791 6.135229 1.8458996
#> Track_08 1.945514 -1.00000 5.829460 0.9044969
#> Track_09 1.311499 11.21897 -1.000000 2.0053934
#> Track_13 NA 11.26160 6.556297 1.5275537
#> Track_15 NA NA -1.000000 9.7354629
#> Track_16 NA NA NA 5.3405718
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[81]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.631767 3.116900 4.612273 3.506461 3.1839630 2.5425717
#> Track_02 NA NA 3.087665 1.872713 2.036561 3.0120019 2.3853834
#> Track_03 NA NA NA 4.673646 1.670525 0.2773888 0.7320834
#> Track_04 NA NA NA NA 3.219472 4.5934732 4.0899983
#> Track_07 NA NA NA NA NA 1.5529315 1.4287330
#> Track_08 NA NA NA NA NA NA 0.7394305
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.8566380 12.430731 -1.000000 3.2974006
#> Track_02 1.5440111 12.576770 7.909622 3.3181258
#> Track_03 1.7006054 -1.000000 -1.000000 0.2077440
#> Track_04 2.9730838 13.774459 8.470137 4.8133615
#> Track_07 0.7166202 10.630919 5.912718 1.7511923
#> Track_08 2.2120837 9.658198 5.838891 0.2206643
#> Track_09 1.1746523 10.383248 -1.000000 0.9220471
#> Track_13 NA -1.000000 -1.000000 1.8426280
#> Track_15 NA NA 6.417002 9.4620213
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[82]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.6667428 3.087562 1.536115 2.860159 3.2248571 2.5127990
#> Track_02 NA NA 2.740793 1.276510 2.255604 2.9595429 2.0306353
#> Track_03 NA NA NA 3.526839 1.417821 0.3226035 0.9642912
#> Track_04 NA NA NA NA 2.671050 3.7625464 2.6799698
#> Track_07 NA NA NA NA NA 1.7256929 0.6758496
#> Track_08 NA NA NA NA NA NA 1.2116277
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.254783 12.755179 8.027511 3.562149
#> Track_02 1.468962 12.327821 7.450939 3.126984
#> Track_03 2.000066 9.730615 -1.000000 1.074148
#> Track_04 1.735093 -1.000000 7.741197 4.176344
#> Track_07 0.949336 -1.000000 5.160344 2.209453
#> Track_08 2.284112 9.547389 5.218783 1.021696
#> Track_09 1.081661 10.529906 5.515443 1.734002
#> Track_13 NA 11.529456 6.181140 2.973714
#> Track_15 NA NA 7.023801 9.237286
#> Track_16 NA NA NA 5.286261
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[83]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.813149 4.535974 3.112860 3.384452 3.3425239 3.4066218
#> Track_02 NA NA 3.094679 1.777349 2.310635 2.3543400 2.0065154
#> Track_03 NA NA NA 3.922080 1.410855 1.6805444 1.2131339
#> Track_04 NA NA NA NA 3.671468 3.8117709 3.2643815
#> Track_07 NA NA NA NA NA 0.3227554 0.6064402
#> Track_08 NA NA NA NA NA NA 0.8107352
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.403045 -1.00000 -1.000000 3.8506866
#> Track_02 1.728871 12.32167 7.601235 2.6355714
#> Track_03 1.391530 -1.00000 5.436947 0.9728786
#> Track_04 2.578426 13.05800 9.045622 3.7009851
#> Track_07 1.295823 -1.00000 5.384216 0.5807977
#> Track_08 1.490922 -1.00000 -1.000000 0.8256938
#> Track_09 0.746694 -1.00000 5.867207 0.5466099
#> Track_13 NA -1.00000 -1.000000 1.1915819
#> Track_15 NA NA 6.866065 9.7916562
#> Track_16 NA NA NA 5.3760982
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[84]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.321479 3.599453 1.535614 2.391450 2.9459956 3.0869799
#> Track_02 NA NA 2.766110 2.812719 2.641012 2.7819070 2.1137839
#> Track_03 NA NA NA 5.384362 2.405114 1.5840971 0.7208192
#> Track_04 NA NA NA NA 3.371239 4.1413438 4.5955571
#> Track_07 NA NA NA NA NA 0.9206307 2.4431459
#> Track_08 NA NA NA NA NA NA 1.7880099
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.889613 12.644080 7.403977 3.3990884
#> Track_02 1.067106 12.062788 7.412191 2.7969436
#> Track_03 1.794149 9.315137 5.370076 0.3300475
#> Track_04 3.663803 13.841310 8.194514 5.3843620
#> Track_07 1.977666 10.474774 5.013824 2.0800607
#> Track_08 1.850510 -1.000000 4.678156 1.2769538
#> Track_09 1.445281 10.015358 6.006177 0.7979938
#> Track_13 NA 11.066792 -1.000000 1.6710232
#> Track_15 NA NA 6.612085 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[85]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.128703 5.234447 2.883469 3.887286 4.4179769 4.9230710
#> Track_02 NA NA 2.592140 1.679348 2.608752 2.6442966 1.6908275
#> Track_03 NA NA NA 3.855304 1.550659 1.0742262 0.8111547
#> Track_04 NA NA NA NA 3.163690 3.6176844 3.5816323
#> Track_07 NA NA NA NA NA 0.9869655 1.5636180
#> Track_08 NA NA NA NA NA NA 1.4700007
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 4.0942384 13.572870 7.836992 5.8062545
#> Track_02 0.9813042 -1.000000 7.887841 2.7795256
#> Track_03 1.6734113 9.540535 5.841968 0.5865259
#> Track_04 2.2553628 -1.000000 8.527318 4.2815747
#> Track_07 1.6225760 10.183135 -1.000000 2.0635022
#> Track_08 1.8036401 -1.000000 5.257448 1.6303507
#> Track_09 0.9414692 -1.000000 6.570982 1.1040604
#> Track_13 NA -1.000000 6.941646 2.2533743
#> Track_15 NA NA 6.521812 -1.0000000
#> Track_16 NA NA NA 6.0158784
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[86]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.065396 3.030148 0.3046679 3.479059 3.8604604 2.5802989
#> Track_02 NA NA 2.280930 1.1317341 3.066394 3.0255802 2.2109694
#> Track_03 NA NA NA 3.3017166 1.942475 0.9389328 1.3007628
#> Track_04 NA NA NA NA 3.528668 4.0512200 2.8546444
#> Track_07 NA NA NA NA NA 2.4092691 0.8943869
#> Track_08 NA NA NA NA NA NA 1.9024141
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.005383 12.605546 8.693723 3.8539448
#> Track_02 1.136013 -1.000000 8.241195 2.9577148
#> Track_03 1.154299 9.577517 -1.000000 1.0404225
#> Track_04 2.172150 12.805220 -1.000000 4.0785921
#> Track_07 2.301641 -1.000000 5.517794 2.6988787
#> Track_08 1.887768 8.754904 5.652053 0.2940697
#> Track_09 1.407332 -1.000000 -1.000000 2.2367359
#> Track_13 NA -1.000000 7.178252 1.8553178
#> Track_15 NA NA 6.107634 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[87]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.444051 5.242059 4.119120 3.056275 3.6373635 5.983893
#> Track_02 NA NA 3.218332 2.009987 1.838097 2.3676765 3.528896
#> Track_03 NA NA NA 3.567385 2.391671 1.9943278 1.185715
#> Track_04 NA NA NA NA 3.422258 3.7376750 3.210062
#> Track_07 NA NA NA NA NA 0.6911516 3.272015
#> Track_08 NA NA NA NA NA NA 2.971397
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.6336656 13.488580 -1.000000 4.0632147
#> Track_02 1.3020307 -1.000000 -1.000000 2.6381715
#> Track_03 2.6429336 9.196852 6.228301 1.5713438
#> Track_04 3.0593885 12.740810 -1.000000 3.9689090
#> Track_07 0.5756036 -1.000000 -1.000000 1.0387529
#> Track_08 1.1707240 -1.000000 5.808503 0.4378321
#> Track_09 3.3706054 9.651282 -1.000000 2.7106748
#> Track_13 NA -1.000000 -1.000000 1.5388232
#> Track_15 NA NA 5.970517 9.6239071
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[88]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 4.072685 5.012765 5.386300 3.716256 3.855519 5.1932405
#> Track_02 NA NA 2.595111 1.754654 2.964754 3.070413 2.0767532
#> Track_03 NA NA NA 3.727017 1.855598 1.659032 0.5902742
#> Track_04 NA NA NA NA 4.688814 5.244406 3.2322563
#> Track_07 NA NA NA NA NA 1.055587 2.3540426
#> Track_08 NA NA NA NA NA NA 2.2766379
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 5.6030481 13.080629 7.925012 4.3306501
#> Track_02 1.9970700 11.790795 7.886329 2.5305677
#> Track_03 1.3254430 9.400713 5.811243 0.8806997
#> Track_04 2.7422226 -1.000000 9.471145 4.1132525
#> Track_07 2.8195191 -1.000000 -1.000000 1.1732865
#> Track_08 2.8183853 -1.000000 5.003175 1.1234869
#> Track_09 0.6980775 9.772905 6.379287 1.3881476
#> Track_13 NA -1.000000 7.039108 2.0614188
#> Track_15 NA NA 5.785054 -1.0000000
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[89]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.7968728 3.452157 0.9122463 3.060756 3.4451449 3.0197790
#> Track_02 NA NA 3.295730 1.3103905 2.448388 2.9836538 2.6332648
#> Track_03 NA NA NA 5.0192487 2.341211 2.1857756 1.4456971
#> Track_04 NA NA NA NA 3.721029 4.1015988 3.7622940
#> Track_07 NA NA NA NA NA 0.7751622 0.8956384
#> Track_08 NA NA NA NA NA NA 0.7998154
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.394429 12.93787 8.659511 3.5955168
#> Track_02 2.241165 12.56325 8.008463 2.9724381
#> Track_03 1.150347 -1.00000 6.330542 1.8576610
#> Track_04 3.131970 -1.00000 -1.000000 4.2292828
#> Track_07 2.241165 10.39633 5.605914 0.7857112
#> Track_08 2.046679 9.90516 5.218837 0.4184372
#> Track_09 1.315797 -1.00000 5.771468 0.6897818
#> Track_13 NA -1.00000 -1.000000 2.1697008
#> Track_15 NA NA 6.499307 9.6704597
#> Track_16 NA NA NA 5.1964890
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[90]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.937976 4.911679 4.715641 3.293302 4.226914 4.4253876
#> Track_02 NA NA 2.484970 2.296544 1.835363 2.671869 2.2468644
#> Track_03 NA NA NA 3.628625 2.077009 1.468277 0.6282405
#> Track_04 NA NA NA NA 3.900824 4.414267 3.6716695
#> Track_07 NA NA NA NA NA 1.194140 1.5501117
#> Track_08 NA NA NA NA NA NA 0.9732553
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.1711793 -1.000000 -1.000000 4.8897055
#> Track_02 0.9769666 12.283101 8.213309 2.7281349
#> Track_03 1.7634572 9.979908 6.693224 1.0251903
#> Track_04 2.9220637 13.439232 10.039334 3.8915727
#> Track_07 0.9862997 -1.000000 -1.000000 1.9597654
#> Track_08 1.8310362 9.699267 5.630577 1.1504341
#> Track_09 1.3700430 10.049488 6.391058 0.6972117
#> Track_13 NA -1.000000 7.256469 1.8522160
#> Track_15 NA NA 5.992664 9.6759993
#> Track_16 NA NA NA 6.2864544
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[91]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.002843 4.911519 2.836267 2.573434 3.677997 3.748381
#> Track_02 NA NA 3.314765 1.039181 2.700881 2.953071 1.632106
#> Track_03 NA NA NA 4.342151 2.518699 1.436392 1.715391
#> Track_04 NA NA NA NA 3.358911 3.930429 2.642753
#> Track_07 NA NA NA NA NA 1.139342 1.764040
#> Track_08 NA NA NA NA NA NA 1.479359
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.524570 13.66402 7.654178 4.6730109
#> Track_02 1.325092 12.99520 -1.000000 2.9514266
#> Track_03 2.098053 -1.00000 5.696629 1.1491806
#> Track_04 2.337269 14.00541 -1.000000 3.9854949
#> Track_07 1.855991 11.19033 5.662965 1.9379013
#> Track_08 1.733487 -1.00000 5.270838 0.8880974
#> Track_09 0.574293 -1.00000 6.738865 1.3193325
#> Track_13 NA 11.67199 -1.000000 1.6263349
#> Track_15 NA NA 6.861821 10.0487072
#> Track_16 NA NA NA 5.6373164
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[92]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.303774 3.612418 1.689218 2.741967 3.4857808 3.1394692
#> Track_02 NA NA 2.421489 1.646323 2.757054 3.1433255 2.2482103
#> Track_03 NA NA NA 3.886559 1.635004 1.2686889 0.5428862
#> Track_04 NA NA NA NA 3.640880 4.2911437 3.5708393
#> Track_07 NA NA NA NA NA 0.8274278 1.2204165
#> Track_08 NA NA NA NA NA NA 0.9902730
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.8994059 12.798102 7.233234 3.6515748
#> Track_02 1.5004768 11.896467 7.512793 2.7711626
#> Track_03 1.0983486 9.506987 5.428269 0.5810364
#> Track_04 2.9609408 13.388047 8.445934 4.0764179
#> Track_07 1.7549308 -1.000000 4.829156 1.1786982
#> Track_08 1.7661848 9.312376 -1.000000 0.6880505
#> Track_09 0.7907562 -1.000000 5.344226 0.4714052
#> Track_13 NA 10.439609 6.134141 1.2369581
#> Track_15 NA NA 7.034202 9.3815251
#> Track_16 NA NA NA -1.0000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[93]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.735174 2.804440 1.233023 2.240991 2.9469150 2.4244703
#> Track_02 NA NA 2.939606 1.437768 1.938808 2.5674410 1.7214904
#> Track_03 NA NA NA 3.721436 1.217532 1.0490207 1.6892157
#> Track_04 NA NA NA NA 2.963771 3.7240405 2.9540584
#> Track_07 NA NA NA NA NA 0.6573689 0.5585610
#> Track_08 NA NA NA NA NA NA 0.8899757
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.6205169 12.235274 7.687397 3.2325812
#> Track_02 1.5085687 12.001055 6.849408 2.4610776
#> Track_03 1.4337623 9.491433 -1.000000 2.0028952
#> Track_04 2.3905673 -1.000000 8.194201 3.7312724
#> Track_07 0.6399307 -1.000000 5.494592 1.0449015
#> Track_08 1.2672407 -1.000000 4.872941 1.1279971
#> Track_09 0.9282297 -1.000000 5.283058 0.7814937
#> Track_13 NA 10.719886 6.083612 1.6157197
#> Track_15 NA NA -1.000000 9.5839339
#> Track_16 NA NA NA 4.5788445
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[94]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.502274 4.202927 1.420209 2.427403 3.460473 3.233073
#> Track_02 NA NA 2.364138 3.165606 2.148566 2.788522 1.537327
#> Track_03 NA NA NA 4.542720 1.783287 1.140787 1.104826
#> Track_04 NA NA NA NA 2.962396 4.090963 3.462699
#> Track_07 NA NA NA NA NA 1.324209 1.219258
#> Track_08 NA NA NA NA NA NA 1.426340
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 4.419683 13.112832 7.800904 4.2093101
#> Track_02 1.149186 11.480708 7.750273 2.4668145
#> Track_03 1.747391 9.311113 5.454560 0.1021707
#> Track_04 4.113637 -1.000000 8.864955 4.5236259
#> Track_07 2.454832 -1.000000 6.107571 2.1097037
#> Track_08 2.735435 -1.000000 5.058955 1.1295262
#> Track_09 1.516759 10.411365 6.245672 1.2991582
#> Track_13 NA -1.000000 7.177260 1.7674977
#> Track_15 NA NA -1.000000 -1.0000000
#> Track_16 NA NA NA 5.4340119
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[95]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.8834052 3.068657 0.3500183 3.116294 3.6176185 2.641062
#> Track_02 NA NA 2.366157 1.2232329 2.313950 2.7934493 1.445059
#> Track_03 NA NA NA 3.6050318 2.055892 2.0110526 1.223451
#> Track_04 NA NA NA NA 3.465242 3.9674304 2.666370
#> Track_07 NA NA NA NA NA 0.5250695 1.106644
#> Track_08 NA NA NA NA NA NA 1.448922
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1.8346105 12.34954 8.652223 3.3054002
#> Track_02 0.9515495 11.48089 7.793447 2.3034070
#> Track_03 1.3934119 -1.00000 6.121799 0.5187895
#> Track_04 2.1709657 12.66384 9.001614 3.5044215
#> Track_07 1.5789171 -1.00000 5.585816 1.4986029
#> Track_08 1.9864470 -1.00000 5.063788 1.8913969
#> Track_09 0.5440573 -1.00000 6.356014 1.0288463
#> Track_13 NA 10.54117 6.886514 1.3628162
#> Track_15 NA NA -1.000000 9.1792099
#> Track_16 NA NA NA 5.7484309
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[96]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 2.832392 4.374030 2.961449 3.220582 4.6000566 4.7078285
#> Track_02 NA NA 2.475249 1.108168 2.098569 2.5732523 2.5530902
#> Track_03 NA NA NA 3.584493 1.542202 0.5462420 0.9781761
#> Track_04 NA NA NA NA 3.541168 3.6793348 3.1634027
#> Track_07 NA NA NA NA NA 0.9727481 2.0532082
#> Track_08 NA NA NA NA NA NA 1.5646067
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.5393709 13.39652 7.658935 5.0804582
#> Track_02 1.3155443 12.39504 -1.000000 3.1231665
#> Track_03 1.8513710 -1.00000 5.906345 0.7141608
#> Track_04 2.5185185 13.48680 8.853012 4.1679360
#> Track_07 0.9990992 -1.00000 5.692461 2.0096918
#> Track_08 1.6735078 9.84015 5.487162 1.0667982
#> Track_09 2.1762414 10.50858 -1.000000 1.1874567
#> Track_13 NA -1.00000 6.515892 2.5647073
#> Track_15 NA NA 6.615420 -1.0000000
#> Track_16 NA NA NA 5.7732562
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[97]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.264157 2.855739 1.862709 3.521371 3.6926198 2.9684338
#> Track_02 NA NA 3.639426 1.662530 2.723977 3.2610054 2.4670010
#> Track_03 NA NA NA 3.628314 1.692014 1.3995697 1.3513179
#> Track_04 NA NA NA NA 3.301573 3.8448432 2.8184483
#> Track_07 NA NA NA NA NA 0.5428881 0.5546589
#> Track_08 NA NA NA NA NA NA 0.8037903
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.5329533 12.75422 8.864559 3.679749
#> Track_02 2.0245738 -1.00000 -1.000000 4.627006
#> Track_03 1.6224552 10.05044 -1.000000 1.075696
#> Track_04 2.2400438 -1.00000 8.687132 4.498653
#> Track_07 1.0880576 -1.00000 -1.000000 2.246415
#> Track_08 1.3801130 -1.00000 -1.000000 1.823212
#> Track_09 0.5784169 10.69864 5.984081 2.216974
#> Track_13 NA -1.00000 -1.000000 2.628409
#> Track_15 NA NA -1.000000 9.087707
#> Track_16 NA NA NA -1.000000
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[98]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.890053 4.771999 2.525295 2.673694 3.2745377 2.9594128
#> Track_02 NA NA 3.189371 1.275148 1.948388 2.5429292 2.0465209
#> Track_03 NA NA NA 3.941576 2.462315 2.2473702 2.1259609
#> Track_04 NA NA NA NA 3.213296 3.7751861 3.2662138
#> Track_07 NA NA NA NA NA 0.6356361 0.3323220
#> Track_08 NA NA NA NA NA NA 0.6726266
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 3.833715 13.185651 7.340089 5.0540983
#> Track_02 2.298521 -1.000000 7.129825 3.5171300
#> Track_03 1.270639 9.320206 5.572661 0.3602092
#> Track_04 2.751884 -1.000000 8.357729 4.2976124
#> Track_07 2.096748 -1.000000 5.164822 2.6328597
#> Track_08 2.241568 9.926405 4.583013 2.3726022
#> Track_09 1.937860 -1.000000 5.094209 2.3011873
#> Track_13 NA 10.566865 6.398629 1.6151949
#> Track_15 NA NA 6.780708 -1.0000000
#> Track_16 NA NA NA 5.3428179
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[99]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1.985911 3.396907 2.413051 2.753956 3.9138326 2.8307831
#> Track_02 NA NA 2.249350 1.633160 2.523594 2.8585300 2.9658899
#> Track_03 NA NA NA 3.869491 1.342046 0.5501335 1.7716436
#> Track_04 NA NA NA NA 4.072293 4.3996169 4.4193302
#> Track_07 NA NA NA NA NA 1.5969701 0.4545755
#> Track_08 NA NA NA NA NA NA 2.1958974
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.721000 12.717910 8.606304 3.9534176
#> Track_02 1.265098 11.570834 -1.000000 2.7160833
#> Track_03 1.032775 9.414562 -1.000000 0.8491955
#> Track_04 2.980357 13.075743 -1.000000 4.3067296
#> Track_07 1.693605 -1.000000 5.942149 1.7630575
#> Track_08 2.029160 8.867454 5.645745 1.0309984
#> Track_09 2.137539 -1.000000 5.781036 2.1488256
#> Track_13 NA 10.325775 7.087645 1.4521792
#> Track_15 NA NA 5.829280 -1.0000000
#> Track_16 NA NA NA 5.8107113
#> Track_18 NA NA NA NA
#>
#> $Frechet_distance_metric_simulations[[100]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 3.599254 4.888369 2.192023 2.943687 3.8675252 2.9373120
#> Track_02 NA NA 2.867973 2.304998 2.053377 2.3958050 2.0297898
#> Track_03 NA NA NA 5.437622 1.915112 1.0194877 1.9190308
#> Track_04 NA NA NA NA 3.163937 3.9161015 3.1675264
#> Track_07 NA NA NA NA NA 0.9813936 0.3465952
#> Track_08 NA NA NA NA NA NA 0.9316302
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 2.9718000 13.051567 -1.000000 4.4215044
#> Track_02 1.1120744 11.287996 8.239942 2.4602638
#> Track_03 2.5421292 8.669262 -1.000000 0.4301633
#> Track_04 2.4620418 -1.000000 9.507061 4.2728348
#> Track_07 0.9668347 -1.000000 6.418037 1.4881756
#> Track_08 1.4784224 9.431593 -1.000000 0.9527193
#> Track_09 1.0062151 10.303182 -1.000000 1.4913890
#> Track_13 NA -1.000000 7.324600 1.8137561
#> Track_15 NA NA 6.160804 9.0466758
#> Track_16 NA NA NA 5.9547695
#> Track_18 NA NA NA NA
The resulting track similarity objects
can then be explored to check pairwise distances,
p-values, and combined
p-values. It is important to verify the presence of
invalid measurements (-1) in the results, especially
when working with highly disparate tracks generated by
Unconstrained models.
The track_intersection()
function is
designed to detect and quantify unique intersections
between real movement trajectories, helping to identify
behavioral interactions such as coordinated movement,
chasing, or random exploration. By
comparing actual tracks against simulated trajectories generated with
the simulate_track()
function, users can
statistically assess whether observed intersections occur more or less
frequently than expected under random conditions.
The input to this function is a track
R
object. If statistical testing is desired,
test
argument must be set
TRUE
and a
track simulation
R object provided via the
sim
argument.
The function offers several options for modifying the
starting positions of simulated tracks, controlled by
the origin.permutation
argument. When set
to "None"
, simulated trajectories retain
their original starting points, making them comparable to the actual
data without spatial modification. The
"Min.Box"
option randomly places the
starting points of simulated tracks within the minimum bounding
box surrounding all original starting points, simulating
movement within a defined area. The
"Conv.Hull"
option provides a more precise
alternative by placing simulated tracks within the convex
hull encompassing all original starting points, reflecting the
actual space occupied by the tracks. The
"Custom"
option allows users to specify an
area of interest by providing a set of coordinates
(custom.coord
) defining the region’s
vertices, which is particularly useful when prior knowledge of terrain
features or environmental factors suggests that movement may be
spatially constrained.
The H1
argument specifies the
alternative hypothesis to be tested. When set to
"Lower"
, the function evaluates whether
the observed intersections are significantly fewer than those generated
by simulations, which may indicate coordinated or gregarious
movement. When set to "Higher"
,
it tests whether the observed intersections are significantly greater,
which could be indicative of predatory or chasing
interactions. Users must provide a value for
H1
when the
test
argument is set to
TRUE
.
The output of the track_intersection()
function is a track intersection
R object
that provides a comprehensive assessment of how tracks intersect and,
when applicable, how these intersections compare to simulated datasets.
The core component of this object is the
Intersection_metric
, a matrix that details
the number of unique intersection points between pairs of trajectories.
When test = TRUE
, which requires a
track simulation
R object generated via
simulate_track()
provided through the
sim
argument, the function produces
additional outputs aimed at statistically evaluating the observed
intersections. One of these is the
Intersection_metric_p_values
matrix, which
compares the observed intersections to those derived from simulations.
Each p-value in this matrix indicates the proportion of
simulated datasets with intersection counts as extreme or more extreme
than the observed ones, depending on the selected
H1
hypothesis (whether intersections are
expected to be fewer or more frequent than random expectation). The
function also returns the
Intersection_metric_p_values_combined
, a
single value that summarizes the overall statistical significance of the
intersection metrics across all trajectory pairs. This combined
p-value provides a general indication of whether the total
number of intersections observed is significantly different from those
generated through simulations, either supporting or rejecting the
hypothesis under investigation. Additionally, the function provides the
Intersection_metric_simulations
, a list
containing matrices of intersection counts for each simulation
iteration. This detailed output allows users to explore how the number
of intersections varies across multiple randomized scenarios, providing
deeper insights into the robustness and consistency of the observed
patterns. By comparing these results to simulated tracks, researchers
can better evaluate whether the observed intersections are genuinely
meaningful or simply the result of random chance.
Detecting intersections between Paluxy River tracks and simulated tracks generated using the Directed model, without modifying the starting positions, and testing for reduced intersections.
int_directed_paluxy <- track_intersection(PaluxyRiver, test = TRUE, H1 = "Lower",
sim = sim_directed_paluxy,
origin.permutation = "None")
print(int_directed_paluxy)
#> $Intersection_metric
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_p_values
#> Track_1 Track_2
#> Track_1 NA 0.71
#> Track_2 NA NA
#>
#> $Intersection_metric_p_values_combined
#> [1] 0.71
#>
#> $Intersection_metric_simulations
#> $Intersection_metric_simulations[[1]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[2]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[3]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[4]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[5]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[6]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[7]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[8]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[9]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[10]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[11]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[12]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[13]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[14]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[15]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[16]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[17]]
#> Track_1 Track_2
#> Track_1 NA 5
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[18]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[19]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[20]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[21]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[22]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[23]]
#> Track_1 Track_2
#> Track_1 NA 4
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[24]]
#> Track_1 Track_2
#> Track_1 NA 5
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[25]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[26]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[27]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[28]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[29]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[30]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[31]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[32]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[33]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[34]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[35]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[36]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[37]]
#> Track_1 Track_2
#> Track_1 NA 7
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[38]]
#> Track_1 Track_2
#> Track_1 NA 5
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[39]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[40]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[41]]
#> Track_1 Track_2
#> Track_1 NA 2
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[42]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[43]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[44]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[45]]
#> Track_1 Track_2
#> Track_1 NA 2
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[46]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[47]]
#> Track_1 Track_2
#> Track_1 NA 2
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[48]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[49]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[50]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[51]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[52]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[53]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[54]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[55]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[56]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[57]]
#> Track_1 Track_2
#> Track_1 NA 4
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[58]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[59]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[60]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[61]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[62]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[63]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[64]]
#> Track_1 Track_2
#> Track_1 NA 2
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[65]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[66]]
#> Track_1 Track_2
#> Track_1 NA 4
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[67]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[68]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[69]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[70]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[71]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[72]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[73]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[74]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[75]]
#> Track_1 Track_2
#> Track_1 NA 4
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[76]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[77]]
#> Track_1 Track_2
#> Track_1 NA 2
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[78]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[79]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[80]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[81]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[82]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[83]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[84]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[85]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[86]]
#> Track_1 Track_2
#> Track_1 NA 4
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[87]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[88]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[89]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[90]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[91]]
#> Track_1 Track_2
#> Track_1 NA 2
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[92]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[93]]
#> Track_1 Track_2
#> Track_1 NA 5
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[94]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[95]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[96]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[97]]
#> Track_1 Track_2
#> Track_1 NA 3
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[98]]
#> Track_1 Track_2
#> Track_1 NA 1
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[99]]
#> Track_1 Track_2
#> Track_1 NA 0
#> Track_2 NA NA
#>
#> $Intersection_metric_simulations[[100]]
#> Track_1 Track_2
#> Track_1 NA 5
#> Track_2 NA NA
Detecting intersections between MountTom tracks (after subsetting) and simulated tracks generated using the Constrained model, with convex hull permutation of starting points, and testing for increased intersections.
int_constrained_mount <- track_intersection(sbMountTom, test = TRUE, H1 = "Higher",
sim = sim_constrained_mount,
origin.permutation = "Conv.Hull")
print(int_constrained_mount)
#> $Intersection_metric
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 1
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_p_values
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0.94 0.98 0.97 0.98 0.99 0.95
#> Track_02 NA NA 1.00 0.95 0.99 0.99 0.95
#> Track_03 NA NA NA 0.98 0.97 0.98 0.98
#> Track_04 NA NA NA NA 0.97 0.96 0.92
#> Track_07 NA NA NA NA NA 0.98 1.00
#> Track_08 NA NA NA NA NA NA 0.88
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 1 1.00 1.00 1.00
#> Track_02 1 1.00 1.00 1.00
#> Track_03 1 1.00 1.00 1.00
#> Track_04 1 1.00 1.00 1.00
#> Track_07 1 1.00 1.00 1.00
#> Track_08 1 1.00 1.00 1.00
#> Track_09 1 1.00 1.00 1.00
#> Track_13 NA 0.95 0.96 0.95
#> Track_15 NA NA 0.95 0.99
#> Track_16 NA NA NA 0.97
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_p_values_combined
#> [1] 0.75
#>
#> $Intersection_metric_simulations
#> $Intersection_metric_simulations[[1]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 1
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[2]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 1 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[3]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[4]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 1
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[5]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 1
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 1
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[6]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1 0 1 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 1
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[7]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 1
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 1 0 0
#> Track_15 NA NA 0 1
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[8]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 1 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 1 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[9]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 1
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[10]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 1 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[11]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 1 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[12]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 1 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[13]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 1 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[14]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 1 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[15]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[16]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[17]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 1 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 1 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[18]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[19]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 1 0 0 0 1
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[20]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 1
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[21]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[22]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[23]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[24]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[25]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[26]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[27]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[28]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 1
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[29]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[30]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 1 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[31]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[32]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 1 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[33]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[34]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 1
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 1 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[35]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 1 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[36]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 1 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[37]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 1 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[38]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 1 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[39]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[40]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 1
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[41]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 1
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[42]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[43]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 1 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[44]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[45]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 1 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[46]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[47]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 1 0 0 1
#> Track_03 NA NA NA 0 1 0 0
#> Track_04 NA NA NA NA 0 0 1
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[48]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 1 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 1
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[49]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[50]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[51]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 1 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 1
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[52]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 1
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 1
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[53]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[54]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 2 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[55]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[56]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[57]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[58]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 1
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[59]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 1
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[60]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 2 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[61]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[62]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[63]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 1 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[64]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[65]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 1
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[66]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[67]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 1
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[68]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[69]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[70]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 1 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[71]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[72]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[73]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 1 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[74]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 1 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[75]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[76]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 1
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 1
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 1
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[77]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 1 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[78]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 1 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 1 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[79]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[80]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[81]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1 0 0 0 0 1
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 1
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 1 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[82]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[83]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 1 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[84]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 1 0 0 0 0 0
#> Track_02 NA NA 0 1 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 1
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[85]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 1
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[86]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 1 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[87]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[88]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[89]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 1 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[90]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[91]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 1 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[92]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[93]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[94]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 1
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[95]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 1
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 1
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[96]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 1 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[97]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[98]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 1 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[99]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 1 0
#> Track_04 NA NA NA NA 1 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
#>
#> $Intersection_metric_simulations[[100]]
#> Track_01 Track_02 Track_03 Track_04 Track_07 Track_08 Track_09
#> Track_01 NA 0 0 0 0 0 0
#> Track_02 NA NA 0 0 0 0 0
#> Track_03 NA NA NA 0 0 0 0
#> Track_04 NA NA NA NA 0 0 0
#> Track_07 NA NA NA NA NA 0 0
#> Track_08 NA NA NA NA NA NA 0
#> Track_09 NA NA NA NA NA NA NA
#> Track_13 NA NA NA NA NA NA NA
#> Track_15 NA NA NA NA NA NA NA
#> Track_16 NA NA NA NA NA NA NA
#> Track_18 NA NA NA NA NA NA NA
#> Track_13 Track_15 Track_16 Track_18
#> Track_01 0 0 0 0
#> Track_02 0 0 0 0
#> Track_03 0 0 0 0
#> Track_04 0 0 0 0
#> Track_07 0 0 0 0
#> Track_08 0 0 0 0
#> Track_09 0 0 0 0
#> Track_13 NA 0 0 0
#> Track_15 NA NA 0 0
#> Track_16 NA NA NA 0
#> Track_18 NA NA NA NA
The combined_prob()
function is
designed to combine p-values obtained from
various similarity and intersection metrics to provide
a more comprehensive assessment of how well the observed
trajectories compare to those generated through simulation. The
function is useful when multiple metrics are applied to the same set of
data, as it allows users to integrate the results and obtain an
overall measure of significance.
The basic idea behind this function is to assess how the
observed similarity or intersection metrics compare to
those generated under various simulated scenarios. It
starts by receiving a list of track similarity
and/or track intersection
R objects, obtained from
simil_DTW_metric()
,
simil_Frechet_metric()
, and/or
track_intersection()
functions. To make
meaningful comparisons, the function ensures that all metrics provided
in the metrics
list have been derived
using the same number of simulations. If the metrics are incompatible,
the function raises an error to prevent incorrect calculations. The
process works by generating a matrix of
p-values where each entry represents the
combined significance of multiple metrics for a particular
trajectory pair. The function also provides an overall
p-value that summarizes the combined significance
across all trajectory pairs. This value indicates how
consistently the observed data differs from the simulated
datasets across all metrics.
The result is returned as a list consisting of two main components. The first component is a matrix of combined p-values for each trajectory pair, where the entries indicate the probability of observing the combined metrics across all simulations. This matrix provides a detailed comparison of how individual track pairs compare to the simulated datasets. The second component is a single overall p-value that summarizes the combined significance of all metrics across all pairs of trajectories, offering a comprehensive assessment of the dataset as a whole.
The combined_prob()
function provides
an efficient way to aggregate multiple similarity or
intersection metrics, making it an essential tool for users who
wish to comprehensively evaluate their models and
hypotheses. By allowing for the integration of different
metrics, the function offers a holistic approach to analyzing
and comparing track data.
Combining p-values for the Paluxy River
dataset based on analyses performed with the Directed model
simulations. In this example, we combine results from three
different methods: Dynamic Time Warping (DTW),
Fréchet distance, and intersection
counts. All of them were computed using the same simulated
dataset (sim_directed_paluxy
) and are stored in the objects
simil_dtw_directed_paluxy
,
simil_frechet_directed_paluxy
, and
int_directed_paluxy
.
combined_metrics_paluxy <- combined_prob(PaluxyRiver, metrics = list(
simil_dtw_directed_paluxy,
simil_frechet_directed_paluxy,
int_directed_paluxy
))
#> $`P_values (DTW_distance_metric, Frechet_distance_metric, Intersection_metric)`
#> Track_1 Track_2
#> Track_1 NA 0.04
#> Track_2 NA NA
#>
#> $`P_values_combined (DTW_distance_metric, Frechet_distance_metric, Intersection_metric)`
#> [1] 0.04
Clustering tracks is a powerful approach for
detecting patterns of movement that may reveal specific
behaviors or strategies employed by trackmakers. The
cluster_track()
function is designed to
process a set of tracks by calculating various movement
parameters and then classifying them into groups based on their
similarities. Instead of just comparing tracks
pairwise, this method allows for the identification of broader
behavioral patterns shared across multiple tracks.
The process begins with preparing the data, where tracks containing fewer than four steps are filtered out. Short tracks lack sufficient information about movement patterns and would introduce noise into the clustering process. Once filtered, the function calculates multiple movement parameters to characterize the trackmaker’s behavior. These parameters include metrics such as turning angles, step lengths, sinuosity, straightness, and velocity.
The cluster_track()
function uses the
mclust
package to perform
model-based clustering, which is particularly effective
because it identifies natural clusters by fitting
various Gaussian mixture models to the data. Unlike
methods that impose arbitrary groupings, model-based
clustering selects the most suitable model by optimizing the
Bayesian Information Criterion (BIC). This approach is
versatile, supporting single-parameter and multi-parameter
clustering, depending on the user’s analytical needs. When
only one parameter is selected, the function uses
simpler models with equal or variable variance. When
multiple parameters are specified, it examines the
entire range of Gaussian models provided by
mclust
.
The parameters used for clustering are specified via the
variables
argument. Users can choose from
a variety of options, including "TurnAng"
(mean turning angle), "sdTurnAng"
(standard deviation of turning angles),
"Distance"
(total distance covered),
"Length"
(total length of the trajectory),
"StLength"
(mean step length),
"sdStLength"
(standard deviation of step
length), "Sinuosity"
(path tortuosity),
"Straightness"
(straight-line efficiency),
"Velocity"
(mean velocity),
"sdVelocity"
(standard deviation of
velocity), "MaxVelocity"
(maximum
velocity), and "MinVelocity"
(minimum
velocity). This flexibility allows users to focus on specific aspects of
movement or combine multiple characteristics to create a comprehensive
profile of trackmaker behavior.
The data
argument expects a
track
R object and the
veltrack
argument requires a
track velocity
R object. These parameters
are used to enhance the clustering process by incorporating
speed-related information alongside spatial metrics.
The results of the clustering process have important biological implications. By grouping tracks with similar movement parameters, researchers can infer the behaviors that produced those tracks. For instance, tracks characterized by low sinuosity and high velocity might indicate animals moving directly toward a target, while high sinuosity and variable step lengths could suggest foraging or exploratory behavior.
Additionally, clustering can reveal coordinated movement. If multiple tracks fall within the same cluster and also exhibit high similarity when analyzed with methods like Dynamic Time Warping (DTW) or Fréchet distance, it could indicate group movement or coordinated hunting strategies.
Moreover, the clustering approach offers a practical way to refine datasets before applying more computationally demanding tests. By first identifying groups of tracks that share similar characteristics, users can focus on the most relevant comparisons, enhancing the robustness of their hypothesis testing. This pre-clustering step can significantly improve the efficiency and reliability of subsequent analyses, such as similarity metrics or intersection tests.
The output of the cluster_track()
function is a track clustering
R object,
which provides detailed information about the clustering process and the
resulting classification of tracks based on their movement parameters.
The output is structured as a list containing two primary components:
matrix
and
clust
. The
matrix
element is a data frame that holds
the calculated movement parameters for each track, including metrics
such as turning angles, step lengths, sinuosity, straightness, and
various velocity parameters. This matrix serves as the input data for
the clustering process, providing a comprehensive summary of the tracks’
movement characteristics. The clust
element is an Mclust
R object generated by
the mclust
package. This object contains
all the results of the model-based clustering analysis, including the
optimal model selected according to the Bayesian Information
Criterion (BIC). The clust
object
includes essential information such as the number of clusters identified
(G
), the specific model used
(modelName
), the mixing proportions of
each component (pro
), the means of each
cluster (mean
), and the variance
parameters (variance
). Additionally, it
provides the log-likelihood, BIC, and
ICL (Integrated Complete-data Likelihood) values
corresponding to the best-fitting model. The
classification of tracks is provided within the
clust
object as the
classification
element, which assigns each
track to a specific cluster. The z
matrix
within this object gives the probability of each track belonging to each
cluster, while the uncertainty
element
measures the confidence associated with each classification. The
cluster_track()
function’s output allows
users to assess how tracks are grouped based on their movement patterns,
providing valuable insights into potential behavioral strategies. This
clustering result can be directly used to guide further analyses, such
as comparing clusters with similarity metrics or testing whether
clusters correspond to specific ecological or behavioral hypotheses.
The cluster_track()
function provides a
flexible and powerful framework for identifying behavioral
patterns from trackway data, enabling researchers to draw
meaningful conclusions about the behavioral ecology of ancient
trackmakers.
First, compute velocities for the subsetted MountTom dataset using
the velocity_track()
function. This object
will later be passed to
cluster_track()
:
H_mounttom_subset <- c(
1.380, 1.404, 1.320, 1.736, 1.432, 1.508, 1.768, 0.760, 1.688, 1.620, 1.784
)
velocity_sbmounttom <- velocity_track(sbMountTom, H = H_mounttom_subset)
Next, perform clustering using key variables related to movement behavior: sinuosity, straightness, velocity, and turning angles.
clustering_mounttom <- cluster_track(
data = sbMountTom,
veltrack = velocity_sbmounttom,
variables = c("Sinuosity", "Straightness", "Velocity", "TurnAng")
)
#> $matrix
#> TurnAng sdTurnAng Distance Length StLength sdStLength Sinuosity
#> Track 1 136.55814 4.467360 7.792014 7.811916 0.9764895 0.06119478 0.10731264
#> Track 2 128.89378 5.148772 8.389291 8.419799 1.0524749 0.08712676 0.08820136
#> Track 3 132.46713 1.706197 5.076073 5.077853 1.2694634 0.11351166 0.03584756
#> Track 4 126.34470 4.993546 4.497133 4.509806 1.1274515 0.07470601 0.09660109
#> Track 5 119.69739 9.906308 5.320692 5.383720 0.8972866 0.12127608 0.14838188
#> Track 6 121.99335 3.409506 5.956414 5.964889 1.1929778 0.08185074 0.06692552
#> Track 7 -21.82486 3.439774 5.452531 5.460107 1.3650266 0.15108641 0.05357090
#> Track 8 -129.68565 10.200005 1.809277 1.831302 0.4578255 0.03101447 0.26363247
#> Track 9 116.28938 4.278817 4.556698 4.566460 1.1416149 0.05912482 0.07871941
#> Track 10 125.04038 6.748851 7.068614 7.109877 1.0156967 0.06445766 0.08320294
#> Track 11 110.61220 2.470679 4.767794 4.771307 1.1928269 0.09301194 0.04807342
#> Straightness Velocity sdVelocity MaxVelocity MinVelocity
#> Track 1 0.9974524 1.6451169 0.1700600 1.917671 1.3266073
#> Track 2 0.9963766 1.8297771 0.2544829 2.320863 1.4466571
#> Track 3 0.9996494 2.6896756 0.4022265 3.171859 2.2919025
#> Track 4 0.9971898 1.5988263 0.1776776 1.830533 1.4091998
#> Track 5 0.9882929 1.3769375 0.3049002 1.723051 0.9348176
#> Track 6 0.9985792 2.0722312 0.2334608 2.281173 1.7223504
#> Track 7 0.9986127 2.1609753 0.3879750 2.523341 1.6235843
#> Track 8 0.9879729 0.9330987 0.1046951 1.047985 0.7996623
#> Track 9 0.9978623 1.6857598 0.1438632 1.819262 1.4815711
#> Track 10 0.9941965 1.4563893 0.1524638 1.656302 1.2045057
#> Track 11 0.9992637 1.7026997 0.2176438 1.873988 1.4048908
#>
#> $clust
#> 'Mclust' model object: (EEE,7)
#>
#> Available components:
#> [1] "call" "data" "modelName" "n"
#> [5] "d" "G" "BIC" "loglik"
#> [9] "df" "bic" "icl" "hypvol"
#> [13] "parameters" "z" "classification" "uncertainty"
We then check the classification of tracks.
#> Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7 Track 8
#> 1 1 2 1 3 1 4 5
#> Track 9 Track 10 Track 11
#> 1 6 7
And the probability of each track belonging to each cluster.
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> Track 1 1 0 0 0 0 0 0
#> Track 2 1 0 0 0 0 0 0
#> Track 3 0 1 0 0 0 0 0
#> Track 4 1 0 0 0 0 0 0
#> Track 5 0 0 1 0 0 0 0
#> Track 6 1 0 0 0 0 0 0
#> Track 7 0 0 0 1 0 0 0
#> Track 8 0 0 0 0 1 0 0
#> Track 9 1 0 0 0 0 0 0
#> Track 10 0 0 0 0 0 1 0
#> Track 11 0 0 0 0 0 0 1
The resulting clusters can help infer behavioral strategies (e.g., direct vs. exploratory movement), and serve as a pre-selection step for deeper hypothesis testing. Tracks in the same cluster can be further analyzed with similarity metrics, intersection metrics, and the combined_prob() function to test whether observed movement patterns reflect non-random, coordinated, or functionally distinct behaviors—while also reducing computational cost by narrowing the scope of comparisons.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.