The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
We simulate a small data set with a covariance structure to explore the actions of RFlocalfdr. This package implements an empirical Bayes method of determining a significance level for the Random Forest MDI (Mean Decrease in Impurity) variable importance measure. See Dunne et al. (2022) for details
We
simulate the data set
fit a Random Forest model
use RFlocalfdr to estimate the significant variables
estimate the significant variables using
as comparators.
We plot a small data set of \(300\times 508\) to explore the data generation method. This dataset consist of bands, with blocks of \(\{1, 2, 4, 8, 16, 32, 64\}\) of identical variables (see figure @ref(fig:simulation2). The variables are \(\in \{0,1,2\}\), a common encoding for genomic data where the numbers represent the number of copies of the minor allele. Only band 1 is used to calculate the \(y\) vector and \(y\) is 1 if any of \(X[, c(1, 2, 4, 8, 16, 32, 64)]\) is non-zero, so \(y\) is unbalanced, containing more 1’s than 0’s.
set.seed(13)
num_samples <- 300
num_bands <- 4
band_rank <- 6
num_vars <- num_bands * (2 ** (band_rank+1) -1)
print(num_vars)
X <- matrix(NA, num_samples , num_vars)
set.seed(123)
temp<-matrix(0,508,3)
var_index <- 1
for(band in 1:num_bands) {
for (rank in 0:band_rank) {
for (i in 1:2**rank) {
temp[var_index,]<-c(band , rank, var_index)
var_index <- var_index +1
}
}
}
#png("./supp_figures/small_simulated_data_set.png")
plot(temp[,1],ylim=c(0,10),type="p")
lines(temp[,2],type="b",col="red")
legend(0,10,c("band","rank"),pch=1,col=c(1,2))
#dev.off()
abline(v=c( 1, 2 , 4 , 8 ,16 ,32, 64 ))
table(temp[temp[,1]==1,2])
## # 0 1 2 3 4 5 6
## # 1 2 4 8 16 32 64
We now generate the daa for the simulation. We have 50 bands and 300 observations so \(X\) is \(300 \times 6350\) with 127 non-null variables. We fit a standard RF to this dataset and record the resulting MDI importance score.
set.seed(13)
num_samples <- 300
num_bands <- 50
band_rank <- 6
num_vars <- num_bands * (2 ** (band_rank+1) -1)
print(num_vars)
X <- matrix(NA, num_samples , num_vars)
set.seed(123)
var_index <- 1
for(band in 1:num_bands) {
for (rank in 0:band_rank) {
# cat("rank=",rank,"\n")
var <- sample(0:2, num_samples, replace=TRUE)
for (i in 1:2**rank) {
X[,var_index] <- var
var_index <- var_index +1
}
# print(X[1:2,1:140])
# system("sleep 3")
}
}
y <- as.numeric(X[,1] > 1 | X[,2] > 1 | X[,4] > 1 | X[,8] > 1 | X[,16] > 1 |
X[,32] > 1 | X[,64] > 1 )
data <- cbind(y,X)
colnames(data) <- c("y",make.names(1:num_vars))
rfModel <- ranger(data=data,dependent.variable.name="y", importance="impurity",
classification=TRUE, mtry=100,num.trees = 10000, replace=TRUE, seed = 17 )
imp <-log(ranger::importance(rfModel))
t2 <-count_variables(rfModel)
plot(density(imp))
roccurve <- roc(c(rep(1,127),rep(0,6350-127)),imp)
plot(roccurve)
auc(roccurve) # 0.9912
cutoffs <- c(0,1,4,10)
#png("./supp_figures/simulated_data_determine_cutoff.png")
res.con<- determine_cutoff(imp,t2,cutoff=cutoffs,plot=c(0,1,4,10))
#dev.off()
We plot the kernel density estimate of the histogram of the data \(y\), and the skew normal fit, \(t_1\), using the data up to the quantile \(Q\), shown in red.
by plotting \(\max(|y - t_1|)\) versus the cutoff values, we determine the appropriate cutoff. In this case it is just \(t2>0\)
temp<-imp[t2 > 0]
qq <- plotQ(temp,debug.flag = 1)
ppp<-run.it.importances(qq,temp,debug=0)
aa<-significant.genes(ppp,temp,cutoff=0.05,do.plot=2)
length(aa$probabilities) # 95
tt1 <-as.numeric(gsub("X([0-9]*)","\\1",names(aa$probabilities)))
tt2 <- table(ifelse((tt1 < 127),1,2))
# 1 2
# 59 36
# The false discovery rate is 0.3789474
tt2[2]/(tt2[1]+tt2[2])
#59 36 36/(36+59) = 0.3789474
predicted_values<-rep(0, 6350);predicted_values[tt1]<-1
conf_matrix<-table(predicted_values,c(rep(1,127),rep(0,6350-127)))
conf_matrix
sensitivity(conf_matrix) #0.994215 TP/(TP+FN)
specificity(conf_matrix) #0.4645669 TN/(FP+TN)
roccurve <- roc(c(rep(1,127),rep(0,6350-127)),predicted_values)
plot(roccurve)
auc(roccurve) #0.7294
accuracy<-(conf_matrix[1,1]+conf_matrix[2,2])/(sum(conf_matrix))
accuracy # 0.983622
The FDR is 0.379. We can also calculate the sensitivity, sensitivity and accruacy.
In order to make the comparisons with other methods, the following packages amy need to be installed.
We try the Boruta algorithm (Kursa and Rudnicki (2010)).
library(Boruta)
set.seed(120)
boruta1 <- Boruta(X,as.factor(y), num.threads = 7,getImp=getImpRfGini)
print(boruta1)
#Boruta performed 99 iterations in 19.54727 secs.
#4 attributes confirmed important: X4859, X58, X6132, X7;
# 6346 attributes confirmed unimportant: X1, X10, X100, X1000, X1001 and 6341 more;
plotImpHistory(boruta1)
aa <- which(boruta1$finalDecision=="Confirmed")
bb <- which(boruta1$finalDecision=="Tentative")
predicted_values <-rep(0,6350);predicted_values[c(aa,bb)]<-1
conf_matrix<-table(predicted_values,c(rep(1,127),rep(0,6350-127)))
conf_matrix
sensitivity(conf_matrix) #0.9996786 TP/(TP+FN)
specificity(conf_matrix) #0.01574803 TN/(FP+TN)
roccurve <- roc(c(rep(1,127),rep(0,6350-127)),predicted_values)
plot(roccurve)
auc(roccurve) #0.5077
accuracy<-(conf_matrix[1,1]+conf_matrix[2,2])/(sum(conf_matrix))
accuracy #0.98
This is provided by the package Pomona (Fouodo (2022))
library(Pomona)
colnames(X) <- make.names(1:dim(X)[2])
set.seed(111)
res <- var.sel.rfe(X, y, prop.rm = 0.2, recalculate = TRUE, tol = 10,
ntree = 500, mtry.prop = 0.2, nodesize.prop = 0.1, no.threads = 7,
method = "ranger", type = "classification", importance = "impurity",
case.weights = NULL)
res$var
#[1] "X1" "X106" "X11" "X12" "X127" "X13" "X15" "X16" "X2"
#[10] "X23" "X24" "X3" "X4" "X44" "X46" "X4885" "X5" "X54"
#[19] "X5474" "X6" "X7" "X72" "X9" "X91"
tt <-as.numeric(gsub("X([0-9]*)","\\1", res$var))
table(ifelse((tt < 127),1,2))
# 1 2
#21 3 0.0833
res<-c(1,106, 11, 12, 127, 13, 15, 16, 2, 23, 24, 3, 4, 44, 46, 4885, 5, 54, 5474, 6, 7, 72, 9, 91)
predicted_values <-rep(0,6350);predicted_values[c(res)]<-1
conf_matrix<-table(predicted_values,c(rep(1,127),rep(0,6350-127)))
conf_matrix
sensitivity(conf_matrix) # 0.9996786 TP/(TP+FN)
specificity(conf_matrix) #0 0.1732283 TN/(FP+TN)
roccurve <- roc(c(rep(1,127),rep(0,6350-127)),predicted_values)
plot(roccurve)
auc(roccurve) #0.5865
accuracy<-(conf_matrix[1,1]+conf_matrix[2,2])/(sum(conf_matrix))
accuracy # 0.9831496
See Nembrini et al. (2018). AIR is provided in the package ranger, using the option impurity_corrected.
rfModel2 <- ranger(data=data,dependent.variable.name="y", importance="impurity_corrected",
classification=TRUE, mtry=100,num.trees = 10000, replace=TRUE, seed = 17 )
ww<- importance_pvalues( rfModel2, method = "janitza")
p <- ww[,"pvalue"]
cc <- which(p< 0.05)
predicted_values <-rep(0,6350);predicted_values[cc]<-1
conf_matrix<-table(predicted_values,c(rep(1,127),rep(0,6350-127)))
conf_matrix
#predicted_values 0 1
# 0 5950 0
# 1 273 127
#FDR is 273/(127+273) = 0.6825
sensitivity(conf_matrix) #0.9561305 TP/(TP+FN)
specificity(conf_matrix) #1 TN/(FP+TN)
roccurve <- roc(c(rep(1,127),rep(0,6350-127)),predicted_values)
plot(roccurve)
auc(roccurve) # 0.9781
accuracy<-(conf_matrix[1,1]+conf_matrix[2,2])/(sum(conf_matrix))
accuracy # 0.9570079
As the null values, as modelled bt the AIR procedure, are symmetric around 0, the question arises as to whether we can apply the locfdr (Efron, Turnbull, and Narasimhan (2015)) procedure. In this case, it reduces the FDR from 0.682 to 0.601.
plot(density(ww[,"importance"]))
imp <- ww[,"importance"]
#imp <-imp/sqrt(var(imp))
#plot(density(imp))
library(locfdr)
aa<-locfdr(imp,df=13)
which( (aa$fdr< 0.05) & (imp>0))
cc2 <- which( (aa$fdr< 0.05) & (imp>0))
length(cc2) # [1] 309
length(intersect(cc,cc2)) #[1] 309
(length(cc2) - length(which(cc2 <= 127)))/length(cc2) #[1] 0.6019417 fdr
predicted_values <-rep(0,6350);predicted_values[cc2]<-1
conf_matrix<-table(predicted_values,c(rep(1,127),rep(0,6350-127)))
conf_matrix
sensitivity(conf_matrix) # 0.9701109 TP/(TP+FN)
specificity(conf_matrix) #0.9685039 TN/(FP+TN)
roccurve <- roc(c(rep(1,127),rep(0,6350-127)),predicted_values)
plot(roccurve)
auc(roccurve) # 0.9693
accuracy<-(conf_matrix[1,1]+conf_matrix[2,2])/(sum(conf_matrix))
accuracy # 0.9700787
note that PIMP
permutes the response vector \(y\) \(S\) times to give \(y^{*s}\)
For each permutation, a new RF is grown and the permutation variable importance measure (VarImp\(^{*s}\)) for all predictor variables X is computed.
The vector ‘perVarImp’ of \(S\) VarImp measures for every predictor variable is used to approximate the null importance distributions for each variable (see PimpTest)
we are doing \(p\) tests, hence a multiple testing correction is in order
we base our work on the PIMP implementation provided by Celik (2015) Variable Importance Testing Approaches
pump as described by Altman is only applicable to permutation importance.
however we see no impediment in extending the method to Gini importance
we have done that in our code and also
library(vita) #vita: Variable Importance Testing Approaches
y<-factor(y)
X<-data.frame(X)
set.seed(117)
cl.ranger <- ranger(y~. , X,mtry = 3,num.trees = 1000, importance = 'impurity')
system.time(pimp.varImp.cl<-my_ranger_PIMP(X,y,cl.ranger,S=10, parallel=TRUE, ncores=3))
pimp.t.cl <- vita::PimpTest(pimp.varImp.cl,para = FALSE)
aa <- summary(pimp.t.cl,pless = 0.1)
tt<-as.numeric(gsub("X([0-9]*)","\\1", names(which(aa$cmat2[,"p-value"]< 0.05))))
table(ifelse((tt < 127),1,2))
# 1 2
# 38 527 527 /(527+38) = 00.9327434
predicted_values <-rep(0,6350);predicted_values[which(aa$cmat2[,"p-value"]< 0.05)]<-1
conf_matrix<-table(predicted_values,c(rep(1,127),rep(0,6350-127)))
conf_matrix
sensitivity(conf_matrix) #0.9154749 TP/(TP+FN)
specificity(conf_matrix) #0.3070866 TN/(FP+TN)
roccurve <- roc(c(rep(1,127),rep(0,6350-127)),predicted_values)
plot(roccurve)
auc(roccurve) # 0.6113
accuracy<-(conf_matrix[1,1]+conf_matrix[2,2])/(sum(conf_matrix))
accuracy # 0.9033071
Method | true positives | false positives | Sensitivity | AUC |
RFlocalfdr | 59 | 36 | 0.99 | 0.73 |
Boruta | 2 | 2 | 0.99 | 0.50 |
RFE | 22 | 2 | 0.99 | 0.58 |
AIR | 176 | 273 | 0.96 | 0.98 |
PIMP | 39 | 556 | 0.91 | 0.61 |
Performance of variable selection for the simulated example by several methods. The best outcomes for each category are in bold face. RFE has performed better than Boruta but apart from that, ordering the methods wi ll depend on the cost of false positives versus the cost of false negatives.
Method | true positives | false positives | FDR | Sensitivity|specificity | AUC |
RFlocalfdr | 59 | 36 | 0.38 | 0.99 | * | 0.73 |
Boruta | 2 | 2 | * | 0.99 | * | 0.50 |
RFE | 22 | 2 | 0.08 | 0.99 | * | 0.58 |
AIR | 176 | 273 | 0.68 | 0.96 | * | 0.98 |
AIR+locfdr | 123 | 186 | 0.61 | 0.97 | 0.97 | 0.97 |
PIMP | 39 | 556 | 0.93 | 0.91 | * | 0.61 |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.