The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The ROCaggregator package allows you to aggregate multiple ROC (Receiver Operating Characteristic) curves. One of the scenarios where it can be helpful is in federated learning. Evaluating a model using the ROC AUC (Area Under the Curve) in a federated learning scenario will require to evaluating the model against data from different sites. This will eventually lead to partial ROCs from each site which can be aggregated to obtain a global metric to evaluate the model.
library(ROCaggregator)
For this use case, we’ll be using some external packages: - the ROCR
to compute the ROC at each node and to validate the AUC obtained; - the pracma
package to compute the AUC using the trapezoidal method; - the stats
package to create a linear model;
The use case will consist of 3 nodes with horizontally partitioned data. A linear model will be trained with part of the data and tested at each node, generating a ROC curve for each.
To compute the aggregated ROC, each node will have to provide: - the ROC (consisting of the false positive rate and true positive rate); - the thresholds/cutoffs used (in the same order as the ROC); - the total number of negative labels in the dataset; - the total number of samples in the dataset;
library(ROCR)
library(pracma)
library(stats)
set.seed(13)
<- function(n){
create_dataset <- n %/% 2
positive_labels <- n - positive_labels
negative_labels
= c(rep(0, negative_labels), rep(1, positive_labels))
y = rnorm(n, 10, sd = 1)
x1 = c(rnorm(positive_labels, 2.5, sd = 2), rnorm(negative_labels, 2, sd = 2))
x2 = y * 0.3 + rnorm(n, 0.2, sd = 0.3)
x3
data.frame(x1, x2, x3, y)[sample(n, n), ]
}
# Create the dataset for each node
<- create_dataset(sample(300:400, 1))
node_1 <- create_dataset(sample(300:400, 1))
node_2 <- create_dataset(sample(300:400, 1))
node_3
# Train a linear model on a subset
<- glm(
glm.fit ~ x1 + x2 + x3,
y data = rbind(node_1, node_2),
family = binomial,
)
<- function(dataset){
get_roc <- predict(glm.fit,
glm.probs newdata = dataset,
type = "response")
<- prediction(glm.probs, c(dataset$y))
pred <- performance(pred, "tpr", "fpr")
perf <- performance(pred, "prec", "rec")
perf_p_r list(
"fpr" = perf@x.values[[1]],
"tpr" = perf@y.values[[1]],
"prec" = perf_p_r@y.values[[1]],
"thresholds" = perf@alpha.values[[1]],
"negative_count"= sum(dataset$y == 0),
"total_count" = nrow(dataset),
"auc" = performance(pred, measure = "auc")
)
}
# Predict and compute the ROC for each node
<- get_roc(node_1)
roc_node_1 <- get_roc(node_2)
roc_node_2 <- get_roc(node_3) roc_node_3
Obtaining the required inputs from each node will allow us to compute the aggregated ROC and the corresponding AUC.
# Preparing the input
<- list(roc_node_1$fpr, roc_node_2$fpr, roc_node_3$fpr)
fpr <- list(roc_node_1$tpr, roc_node_2$tpr, roc_node_3$tpr)
tpr <- list(
thresholds $thresholds, roc_node_2$thresholds, roc_node_3$thresholds)
roc_node_1<- c(
negative_count $negative_count, roc_node_2$negative_count, roc_node_3$negative_count)
roc_node_1<- c(
total_count $total_count, roc_node_2$total_count, roc_node_3$total_count)
roc_node_1
# Compute the global ROC curve for the model
<- roc_curve(fpr, tpr, thresholds, negative_count, total_count)
roc_aggregated
# Calculate the AUC
<- trapz(roc_aggregated$fpr, roc_aggregated$tpr)
roc_auc
sprintf("ROC AUC aggregated from each node's results: %f", roc_auc)
#> [1] "ROC AUC aggregated from each node's results: 0.778901"
# Calculate the precision-recall
<- precision_recall_curve(
precision_recall_aggregated
fpr, tpr, thresholds, negative_count, total_count)
# Calculate the precision-recall AUC
<- -trapz(
precision_recall_auc $recall, precision_recall_aggregated$pre)
precision_recall_aggregated
sprintf(
"Precision-Recall AUC aggregated from each node's results: %f",
precision_recall_auc
)#> [1] "Precision-Recall AUC aggregated from each node's results: 0.773897"
Using ROCR
we can calculate the ROC and its AUC for the case of having all the data centrally available. The values between this and the aggregated ROC should match.
<- get_roc(rbind(node_1, node_2, node_3))
roc_central_case
# Validate the ROC AUC
sprintf(
"ROC AUC using ROCR with all the data centrally available: %f",
$auc@y.values[[1]]
roc_central_case
)#> [1] "ROC AUC using ROCR with all the data centrally available: 0.778901"
# Validate the precision-recall AUC
<- trapz(
precision_recall_auc $tpr,
roc_central_caseifelse(is.nan(roc_central_case$prec), 1, roc_central_case$prec)
)sprintf(
"Precision-Recall AUC using ROCR with all the data centrally available: %f",
precision_recall_auc
)#> [1] "Precision-Recall AUC using ROCR with all the data centrally available: 0.773897"
The ROC curve obtained can be visualized in the following way:
plot(roc_aggregated$fpr,
$tpr,
roc_aggregatedmain="ROC curve",
xlab = "False Positive Rate",
ylab = "True Positive Rate",
cex=0.3,
col="blue",
)
Another popular package to compute ROC curves is the pROC
. Similarly to the example with the ROCR
package, it’s also possible to aggregate the results from ROC curves computed with the pROC package
.
library(pROC, warn.conflicts = FALSE)
#> Type 'citation("pROC")' for a citation.
<- function(dataset){
get_proc <- predict(glm.fit,
glm.probs newdata = dataset,
type = "response")
<- roc(c(dataset$y), c(glm.probs))
roc_obj list(
"fpr" = 1 - roc_obj$specificities,
"tpr" = roc_obj$sensitivities,
"thresholds" = roc_obj$thresholds,
"negative_count"= sum(dataset$y == 0),
"total_count" = nrow(dataset),
"auc" = roc_obj$auc
)
}
<- get_proc(node_1)
roc_obj_node_1 #> Setting levels: control = 0, case = 1
#> Setting direction: controls < cases
<- get_proc(node_2)
roc_obj_node_2 #> Setting levels: control = 0, case = 1
#> Setting direction: controls < cases
<- get_proc(node_3)
roc_obj_node_3 #> Setting levels: control = 0, case = 1
#> Setting direction: controls < cases
# Preparing the input
<- list(roc_obj_node_1$fpr, roc_obj_node_2$fpr, roc_obj_node_3$fpr)
fpr <- list(roc_obj_node_1$tpr, roc_obj_node_2$tpr, roc_obj_node_3$tpr)
tpr <- list(
thresholds $thresholds, roc_obj_node_2$thresholds, roc_obj_node_3$thresholds)
roc_obj_node_1<- c(
negative_count $negative_count, roc_obj_node_2$negative_count, roc_obj_node_3$negative_count)
roc_obj_node_1<- c(
total_count $total_count, roc_obj_node_2$total_count, roc_obj_node_3$total_count)
roc_obj_node_1
# Compute the global ROC curve for the model
<- roc_curve(fpr, tpr, thresholds, negative_count, total_count)
roc_aggregated
# Calculate the AUC
<- trapz(roc_aggregated$fpr, roc_aggregated$tpr)
roc_auc
sprintf("ROC AUC aggregated from each node's results: %f", roc_auc)
#> [1] "ROC AUC aggregated from each node's results: 0.778901"
# Validate the ROC AUC
<- get_proc(rbind(node_1, node_2, node_3))
roc_central_case #> Setting levels: control = 0, case = 1
#> Setting direction: controls < cases
sprintf(
"ROC AUC using pROC with all the data centrally available: %f",
$auc
roc_central_case
)#> [1] "ROC AUC using pROC with all the data centrally available: 0.778901"
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.