The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
ex3 <- read.sym.table(file = 'tsym1.csv', header=TRUE, sep=';',dec='.', row.names=1)
ex3
#> # A tibble: 7 Ă— 7
#> F1 F2 F3 F4 F5 F6 F7
#> <dbl> <symblc_n> <symbl> <dbl> <symblc_> <symblc_n> <symblc_n>
#> 1 2.8 [1.00 : 2.00] <hist> 6 {a,d} [0.00 : 90.00] [9.00 : 24.00]
#> 2 1.4 [3.00 : 9.00] <hist> 8 {b,c,d} [-90.00 : 98.00] [-9.00 : 9.00]
#> 3 3.2 [-1.00 : 4.00] <hist> -7 {a,b} [65.00 : 90.00] [65.00 : 70.00]
#> 4 -2.1 [0.00 : 2.00] <hist> 0 {a,b,c,d} [45.00 : 89.00] [25.00 : 67.00]
#> 5 -3 [-4.00 : -2.00] <hist> -9.5 {b} [20.00 : 40.00] [9.00 : 40.00]
#> 6 0.1 [10.00 : 21.00] <hist> -1 {a,d} [5.00 : 8.00] [5.00 : 8.00]
#> 7 9 [4.00 : 21.00] <hist> 0.5 {a} [3.14 : 6.76] [4.00 : 6.00]
##How to save a Symbolic Table in a CSV file with RSDA?
data(example3)
example3
#> # A tibble: 7 Ă— 7
#> F1 F2 F3 F4 F5 F6
#> <dbl> <symblc_n> <symblc_m> <dbl> <symblc_> <symblc_n>
#> 1 2.8 [1.00 : 2.00] M1:0.10 M2:0.70 M3:0.20 6 {e,g,i,k} [0.00 : 90.00]
#> 2 1.4 [3.00 : 9.00] M1:0.60 M2:0.30 M3:0.10 8 {a,b,c,d} [-90.00 : 98.00]
#> 3 3.2 [-1.00 : 4.00] M1:0.20 M2:0.20 M3:0.60 -7 {2,b,1,c} [65.00 : 90.00]
#> 4 -2.1 [0.00 : 2.00] M1:0.90 M2:0.00 M3:0.10 0 {a,3,4,c} [45.00 : 89.00]
#> 5 -3 [-4.00 : -2.00] M1:0.60 M2:0.00 M3:0.40 -9.5 {e,g,i,k} [20.00 : 40.00]
#> 6 0.1 [10.00 : 21.00] M1:0.00 M2:0.70 M3:0.30 -1 {e,1,i} [5.00 : 8.00]
#> 7 9 [4.00 : 21.00] M1:0.20 M2:0.20 M3:0.60 0.5 {e,a,2} [3.14 : 6.76]
#> # â„ą 1 more variable: F7 <symblc_n>
example3[2,]
#> # A tibble: 1 Ă— 7
#> F1 F2 F3 F4 F5 F6
#> <dbl> <symblc_n> <symblc_m> <dbl> <symblc_s> <symblc_n>
#> 1 1.4 [3.00 : 9.00] M1:0.60 M2:0.30 M3:0.10 8 {a,b,c,d} [-90.00 : 98.00]
#> # â„ą 1 more variable: F7 <symblc_n>
example3[,3]
#> # A tibble: 7 Ă— 1
#> F3
#> <symblc_m>
#> 1 M1:0.10 M2:0.70 M3:0.20
#> 2 M1:0.60 M2:0.30 M3:0.10
#> 3 M1:0.20 M2:0.20 M3:0.60
#> 4 M1:0.90 M2:0.00 M3:0.10
#> 5 M1:0.60 M2:0.00 M3:0.40
#> 6 M1:0.00 M2:0.70 M3:0.30
#> 7 M1:0.20 M2:0.20 M3:0.60
example3[2:3,5]
#> # A tibble: 2 Ă— 1
#> F5
#> <symblc_s>
#> 1 {a,b,c,d}
#> 2 {2,b,1,c}
example3$F1
#> [1] 2.8 1.4 3.2 -2.1 -3.0 0.1 9.0
data(ex1_db2so)
ex1_db2so
#> state sex county group age
#> 1 Florida M 2 6 3
#> 2 California F 4 3 4
#> 3 Texas M 12 3 4
#> 4 Florida F 2 3 4
#> 5 Texas M 4 6 4
#> 6 Texas F 2 3 3
#> 7 Florida M 6 3 4
#> 8 Florida F 2 6 4
#> 9 California M 2 3 6
#> 10 California F 21 3 4
#> 11 California M 2 3 4
#> 12 California M 2 6 7
#> 13 Texas F 23 3 4
#> 14 Florida M 2 3 4
#> 15 Florida F 12 7 4
#> 16 Texas M 2 3 8
#> 17 California F 3 7 9
#> 18 California M 2 3 11
#> 19 California M 1 3 11
The classic.to.sym
function allows to convert a
traditional table into a symbolic one, to this we must indicate the
following parameters.
x
= a data.frameconcept
= variables to be used as a conceptvariables
= variables to be used, conceptible with
tidyselect optionsdefault.numeric
= function that will be used by default
for numerical values (sym.interval)default.categorical
= functions to be used by default
for categorical values (sym.model)result <- classic.to.sym(x = ex1_db2so,
concept = c(state, sex),
variables = c(county, group, age))
result
#> # A tibble: 6 Ă— 3
#> county group age
#> <symblc_n> <symblc_n> <symblc_n>
#> 1 [3.00 : 21.00] [3.00 : 7.00] [4.00 : 9.00]
#> 2 [1.00 : 2.00] [3.00 : 6.00] [4.00 : 11.00]
#> 3 [2.00 : 12.00] [3.00 : 7.00] [4.00 : 4.00]
#> 4 [2.00 : 6.00] [3.00 : 6.00] [3.00 : 4.00]
#> 5 [2.00 : 23.00] [3.00 : 3.00] [3.00 : 4.00]
#> 6 [2.00 : 12.00] [3.00 : 6.00] [4.00 : 8.00]
We can add new variables indicating the type we want them to be.
result <- classic.to.sym(x = ex1_db2so,
concept = c("state", "sex"),
variables = c(county, group, age),
age_hist = sym.histogram(age, breaks = pretty(ex1_db2so$age, 5)))
result
#> # A tibble: 6 Ă— 4
#> age_hist county group age
#> <symblc_h> <symblc_n> <symblc_n> <symblc_n>
#> 1 <hist> [3.00 : 21.00] [3.00 : 7.00] [4.00 : 9.00]
#> 2 <hist> [1.00 : 2.00] [3.00 : 6.00] [4.00 : 11.00]
#> 3 <hist> [2.00 : 12.00] [3.00 : 7.00] [4.00 : 4.00]
#> 4 <hist> [2.00 : 6.00] [3.00 : 6.00] [3.00 : 4.00]
#> 5 <hist> [2.00 : 23.00] [3.00 : 3.00] [3.00 : 4.00]
#> 6 <hist> [2.00 : 12.00] [3.00 : 6.00] [4.00 : 8.00]
data(USCrime)
head(USCrime)
#> state fold population householdsize racepctblack racePctWhite racePctAsian
#> 1 8 1 0.19 0.33 0.02 0.90 0.12
#> 2 53 1 0.00 0.16 0.12 0.74 0.45
#> 3 24 1 0.00 0.42 0.49 0.56 0.17
#> 4 34 1 0.04 0.77 1.00 0.08 0.12
#> 5 42 1 0.01 0.55 0.02 0.95 0.09
#> 6 6 1 0.02 0.28 0.06 0.54 1.00
#> racePctHisp agePct12t21 agePct12t29 agePct16t24 agePct65up numbUrban pctUrban
#> 1 0.17 0.34 0.47 0.29 0.32 0.20 1.0
#> 2 0.07 0.26 0.59 0.35 0.27 0.02 1.0
#> 3 0.04 0.39 0.47 0.28 0.32 0.00 0.0
#> 4 0.10 0.51 0.50 0.34 0.21 0.06 1.0
#> 5 0.05 0.38 0.38 0.23 0.36 0.02 0.9
#> 6 0.25 0.31 0.48 0.27 0.37 0.04 1.0
#> medIncome pctWWage pctWFarmSelf pctWInvInc pctWSocSec pctWPubAsst pctWRetire
#> 1 0.37 0.72 0.34 0.60 0.29 0.15 0.43
#> 2 0.31 0.72 0.11 0.45 0.25 0.29 0.39
#> 3 0.30 0.58 0.19 0.39 0.38 0.40 0.84
#> 4 0.58 0.89 0.21 0.43 0.36 0.20 0.82
#> 5 0.50 0.72 0.16 0.68 0.44 0.11 0.71
#> 6 0.52 0.68 0.20 0.61 0.28 0.15 0.25
#> medFamInc perCapInc whitePerCap blackPerCap indianPerCap AsianPerCap
#> 1 0.39 0.40 0.39 0.32 0.27 0.27
#> 2 0.29 0.37 0.38 0.33 0.16 0.30
#> 3 0.28 0.27 0.29 0.27 0.07 0.29
#> 4 0.51 0.36 0.40 0.39 0.16 0.25
#> 5 0.46 0.43 0.41 0.28 0.00 0.74
#> 6 0.62 0.72 0.76 0.77 0.28 0.52
#> OtherPerCap HispPerCap NumUnderPov PctPopUnderPov PctLess9thGrade
#> 1 0.36 0.41 0.08 0.19 0.10
#> 2 0.22 0.35 0.01 0.24 0.14
#> 3 0.28 0.39 0.01 0.27 0.27
#> 4 0.36 0.44 0.01 0.10 0.09
#> 5 0.51 0.48 0.00 0.06 0.25
#> 6 0.48 0.60 0.01 0.12 0.13
#> PctNotHSGrad PctBSorMore PctUnemployed PctEmploy PctEmplManu PctEmplProfServ
#> 1 0.18 0.48 0.27 0.68 0.23 0.41
#> 2 0.24 0.30 0.27 0.73 0.57 0.15
#> 3 0.43 0.19 0.36 0.58 0.32 0.29
#> 4 0.25 0.31 0.33 0.71 0.36 0.45
#> 5 0.30 0.33 0.12 0.65 0.67 0.38
#> 6 0.12 0.80 0.10 0.65 0.19 0.77
#> PctOccupManu PctOccupMgmtProf MalePctDivorce MalePctNevMarr FemalePctDiv
#> 1 0.25 0.52 0.68 0.40 0.75
#> 2 0.42 0.36 1.00 0.63 0.91
#> 3 0.49 0.32 0.63 0.41 0.71
#> 4 0.37 0.39 0.34 0.45 0.49
#> 5 0.42 0.46 0.22 0.27 0.20
#> 6 0.06 0.91 0.49 0.57 0.61
#> TotalPctDiv PersPerFam PctFam2Par PctKids2Par PctYoungKids2Par PctTeen2Par
#> 1 0.75 0.35 0.55 0.59 0.61 0.56
#> 2 1.00 0.29 0.43 0.47 0.60 0.39
#> 3 0.70 0.45 0.42 0.44 0.43 0.43
#> 4 0.44 0.75 0.65 0.54 0.83 0.65
#> 5 0.21 0.51 0.91 0.91 0.89 0.85
#> 6 0.58 0.44 0.62 0.69 0.87 0.53
#> PctWorkMomYoungKids PctWorkMom NumIlleg PctIlleg NumImmig PctImmigRecent
#> 1 0.74 0.76 0.04 0.14 0.03 0.24
#> 2 0.46 0.53 0.00 0.24 0.01 0.52
#> 3 0.71 0.67 0.01 0.46 0.00 0.07
#> 4 0.85 0.86 0.03 0.33 0.02 0.11
#> 5 0.40 0.60 0.00 0.06 0.00 0.03
#> 6 0.30 0.43 0.00 0.11 0.04 0.30
#> PctImmigRec5 PctImmigRec8 PctImmigRec10 PctRecentImmig PctRecImmig5
#> 1 0.27 0.37 0.39 0.07 0.07
#> 2 0.62 0.64 0.63 0.25 0.27
#> 3 0.06 0.15 0.19 0.02 0.02
#> 4 0.20 0.30 0.31 0.05 0.08
#> 5 0.07 0.20 0.27 0.01 0.02
#> 6 0.35 0.43 0.47 0.50 0.50
#> PctRecImmig8 PctRecImmig10 PctSpeakEnglOnly PctNotSpeakEnglWell
#> 1 0.08 0.08 0.89 0.06
#> 2 0.25 0.23 0.84 0.10
#> 3 0.04 0.05 0.88 0.04
#> 4 0.11 0.11 0.81 0.08
#> 5 0.04 0.05 0.88 0.05
#> 6 0.56 0.57 0.45 0.28
#> PctLargHouseFam PctLargHouseOccup PersPerOccupHous PersPerOwnOccHous
#> 1 0.14 0.13 0.33 0.39
#> 2 0.16 0.10 0.17 0.29
#> 3 0.20 0.20 0.46 0.52
#> 4 0.56 0.62 0.85 0.77
#> 5 0.16 0.19 0.59 0.60
#> 6 0.25 0.19 0.29 0.53
#> PersPerRentOccHous PctPersOwnOccup PctPersDenseHous PctHousLess3BR MedNumBR
#> 1 0.28 0.55 0.09 0.51 0.5
#> 2 0.17 0.26 0.20 0.82 0.0
#> 3 0.43 0.42 0.15 0.51 0.5
#> 4 1.00 0.94 0.12 0.01 0.5
#> 5 0.37 0.89 0.02 0.19 0.5
#> 6 0.18 0.39 0.26 0.73 0.0
#> HousVacant PctHousOccup PctHousOwnOcc PctVacantBoarded PctVacMore6Mos
#> 1 0.21 0.71 0.52 0.05 0.26
#> 2 0.02 0.79 0.24 0.02 0.25
#> 3 0.01 0.86 0.41 0.29 0.30
#> 4 0.01 0.97 0.96 0.60 0.47
#> 5 0.01 0.89 0.87 0.04 0.55
#> 6 0.02 0.84 0.30 0.16 0.28
#> MedYrHousBuilt PctHousNoPhone PctWOFullPlumb OwnOccLowQuart OwnOccMedVal
#> 1 0.65 0.14 0.06 0.22 0.19
#> 2 0.65 0.16 0.00 0.21 0.20
#> 3 0.52 0.47 0.45 0.18 0.17
#> 4 0.52 0.11 0.11 0.24 0.21
#> 5 0.73 0.05 0.14 0.31 0.31
#> 6 0.25 0.02 0.05 0.94 1.00
#> OwnOccHiQuart RentLowQ RentMedian RentHighQ MedRent MedRentPctHousInc
#> 1 0.18 0.36 0.35 0.38 0.34 0.38
#> 2 0.21 0.42 0.38 0.40 0.37 0.29
#> 3 0.16 0.27 0.29 0.27 0.31 0.48
#> 4 0.19 0.75 0.70 0.77 0.89 0.63
#> 5 0.30 0.40 0.36 0.38 0.38 0.22
#> 6 1.00 0.67 0.63 0.68 0.62 0.47
#> MedOwnCostPctInc MedOwnCostPctIncNoMtg NumInShelters NumStreet PctForeignBorn
#> 1 0.46 0.25 0.04 0 0.12
#> 2 0.32 0.18 0.00 0 0.21
#> 3 0.39 0.28 0.00 0 0.14
#> 4 0.51 0.47 0.00 0 0.19
#> 5 0.51 0.21 0.00 0 0.11
#> 6 0.59 0.11 0.00 0 0.70
#> PctBornSameState PctSameHouse85 PctSameCity85 PctSameState85 LandArea PopDens
#> 1 0.42 0.50 0.51 0.64 0.12 0.26
#> 2 0.50 0.34 0.60 0.52 0.02 0.12
#> 3 0.49 0.54 0.67 0.56 0.01 0.21
#> 4 0.30 0.73 0.64 0.65 0.02 0.39
#> 5 0.72 0.64 0.61 0.53 0.04 0.09
#> 6 0.42 0.49 0.73 0.64 0.01 0.58
#> PctUsePubTrans LemasPctOfficDrugUn ViolentCrimesPerPop
#> 1 0.20 0.32 0.20
#> 2 0.45 0.00 0.67
#> 3 0.02 0.00 0.43
#> 4 0.28 0.00 0.12
#> 5 0.02 0.00 0.03
#> 6 0.10 0.00 0.14
result <- classic.to.sym(x = USCrime,
concept = state,
variables= c(NumInShelters,
NumImmig,
ViolentCrimesPerPop),
ViolentCrimesPerPop_hist = sym.histogram(ViolentCrimesPerPop,
breaks = pretty(USCrime$ViolentCrimesPerPop,5)))
result
#> # A tibble: 46 Ă— 4
#> ViolentCrimesPerPop_hist NumInShelters NumImmig ViolentCrimesPerPop
#> <symblc_h> <symblc_n> <symblc_n> <symblc_n>
#> 1 <hist> [0.00 : 0.32] [0.00 : 0.04] [0.01 : 1.00]
#> 2 <hist> [0.01 : 0.18] [0.01 : 0.09] [0.05 : 0.36]
#> 3 <hist> [0.00 : 1.00] [0.00 : 0.57] [0.05 : 0.57]
#> 4 <hist> [0.00 : 0.08] [0.00 : 0.02] [0.02 : 1.00]
#> 5 <hist> [0.00 : 1.00] [0.00 : 1.00] [0.01 : 1.00]
#> 6 <hist> [0.00 : 0.68] [0.00 : 0.23] [0.07 : 0.75]
#> 7 <hist> [0.00 : 0.79] [0.00 : 0.14] [0.00 : 0.94]
#> 8 <hist> [0.01 : 0.01] [0.01 : 0.01] [0.37 : 0.37]
#> 9 <hist> [1.00 : 1.00] [0.39 : 0.39] [1.00 : 1.00]
#> 10 <hist> [0.00 : 0.52] [0.00 : 1.00] [0.06 : 1.00]
#> # â„ą 36 more rows
data("ex_mcfa1")
head(ex_mcfa1)
#> suspect age hair eyes region
#> 1 1 42 h_red e_brown Bronx
#> 2 2 20 h_black e_green Bronx
#> 3 3 64 h_brown e_brown Brooklyn
#> 4 4 55 h_blonde e_brown Bronx
#> 5 5 4 h_brown e_green Manhattan
#> 6 6 61 h_blonde e_green Bronx
sym.table <- classic.to.sym(x = ex_mcfa1,
concept = suspect,
variables=c(hair,
eyes,
region),
default.categorical = sym.set)
sym.table
#> # A tibble: 100 Ă— 3
#> hair eyes region
#> <symblc_s> <symblc_s> <symblc_s>
#> 1 {h_red} {e_brown,e_black} {Bronx}
#> 2 {h_black,h_blonde} {e_green,e_black} {Bronx,Manhattan}
#> 3 {h_brown,h_white} {e_brown,e_green} {Brooklyn,Queens}
#> 4 {h_blonde} {e_brown,e_black} {Bronx,Manhattan}
#> 5 {h_brown,h_red} {e_green} {Manhattan,Bronx}
#> 6 {h_blonde,h_white} {e_green,e_blue} {Bronx,Queens}
#> 7 {h_white,h_red} {e_black,e_blue} {Queens,Bronx}
#> 8 {h_blonde,h_white} {e_brown,e_black} {Manhattan,Brooklyn}
#> 9 {h_blonde,h_white} {e_black,e_brown} {Brooklyn,Bronx}
#> 10 {h_brown,h_black} {e_brown,e_green} {Manhattan,Bronx}
#> # â„ą 90 more rows
We can modify the function that will be applied by default to the categorical variables
sym.table <- classic.to.sym(x = ex_mcfa1,
concept = suspect,
default.categorical = sym.set)
sym.table
#> # A tibble: 100 Ă— 4
#> age hair eyes region
#> <symblc_n> <symblc_s> <symblc_s> <symblc_s>
#> 1 [22.00 : 42.00] {h_red} {e_brown,e_black} {Bronx}
#> 2 [20.00 : 57.00] {h_black,h_blonde} {e_green,e_black} {Bronx,Manhattan}
#> 3 [29.00 : 64.00] {h_brown,h_white} {e_brown,e_green} {Brooklyn,Queens}
#> 4 [14.00 : 55.00] {h_blonde} {e_brown,e_black} {Bronx,Manhattan}
#> 5 [4.00 : 47.00] {h_brown,h_red} {e_green} {Manhattan,Bronx}
#> 6 [32.00 : 61.00] {h_blonde,h_white} {e_green,e_blue} {Bronx,Queens}
#> 7 [49.00 : 61.00] {h_white,h_red} {e_black,e_blue} {Queens,Bronx}
#> 8 [8.00 : 32.00] {h_blonde,h_white} {e_brown,e_black} {Manhattan,Brooklyn}
#> 9 [39.00 : 67.00] {h_blonde,h_white} {e_black,e_brown} {Brooklyn,Bronx}
#> 10 [50.00 : 68.00] {h_brown,h_black} {e_brown,e_green} {Manhattan,Bronx}
#> # â„ą 90 more rows
hani3101 <- SDS.to.RSDA(file.path = "hani3101.sds")
#> Preprocessing file
#> Converting data to JSON format
#> Processing variable 1: R3101
#> Processing variable 2: RNINO12
#> Processing variable 3: RNINO3
#> Processing variable 4: RNINO4
#> Processing variable 5: RNINO34
#> Processing variable 6: RSOI
hani3101
#> # A tibble: 32 Ă— 6
#> R3101 RNINO12
#> <symblc_m> <symblc_m>
#> 1 X2:0.21 X4:0.18 X3:0.15 X5:... X1:0.17 X2:0.83 X3:0.00
#> 2 X2:0.30 X4:0.14 X3:0.19 X5:... X1:0.00 X2:0.25 X3:0.75
#> 3 X2:0.16 X4:0.12 X3:0.20 X5:... X1:0.67 X2:0.33 X3:0.00
#> 4 X2:0.13 X4:0.15 X3:0.22 X5:... X1:0.17 X2:0.83 X3:0.00
#> 5 X2:0.14 X4:0.14 X3:0.18 X5:... X1:0.42 X2:0.58 X3:0.00
#> 6 X2:0.26 X4:0.06 X3:0.23 X5:... X1:0.00 X2:0.67 X3:0.33
#> 7 X2:0.28 X4:0.14 X3:0.10 X5:... X1:0.00 X2:1.00 X3:0.00
#> 8 X2:0.25 X4:0.15 X3:0.19 X5:... X1:0.00 X2:1.00 X3:0.00
#> 9 X2:0.20 X4:0.15 X3:0.19 X5:... X1:0.00 X2:1.00 X3:0.00
#> 10 X2:0.21 X4:0.16 X3:0.31 X5:... X1:0.08 X2:0.92 X3:0.00
#> # â„ą 22 more rows
#> # â„ą 4 more variables: RNINO3 <symblc_m>, RNINO4 <symblc_m>, RNINO34 <symblc_m>,
#> # RSOI <symblc_m>
abalone <- SODAS.to.RSDA("abalone.xml")
#> Processing variable 1: LENGTH
#> Processing variable 2: DIAMETER
#> Processing variable 3: HEIGHT
#> Processing variable 4: WHOLE_WEIGHT
#> Processing variable 5: SHUCKED_WEIGHT
#> Processing variable 6: VISCERA_WEIGHT
#> Processing variable 7: SHELL_WEIGHT
abalone
#> # A tibble: 24 Ă— 7
#> LENGTH DIAMETER HEIGHT WHOLE_WEIGHT SHUCKED_WEIGHT
#> <symblc_n> <symblc_n> <symblc_n> <symblc_n> <symblc_n>
#> 1 [0.28 : 0.66] [0.20 : 0.48] [0.07 : 0.18] [0.08 : 1.37] [0.03 : 0.64]
#> 2 [0.30 : 0.74] [0.22 : 0.58] [0.02 : 1.13] [0.15 : 2.25] [0.06 : 1.16]
#> 3 [0.34 : 0.78] [0.26 : 0.63] [0.06 : 0.23] [0.20 : 2.66] [0.07 : 1.49]
#> 4 [0.39 : 0.82] [0.30 : 0.65] [0.10 : 0.25] [0.26 : 2.51] [0.11 : 1.23]
#> 5 [0.40 : 0.74] [0.32 : 0.60] [0.10 : 0.24] [0.35 : 2.20] [0.12 : 0.84]
#> 6 [0.45 : 0.80] [0.38 : 0.63] [0.14 : 0.22] [0.64 : 2.53] [0.16 : 0.93]
#> 7 [0.49 : 0.72] [0.36 : 0.58] [0.12 : 0.21] [0.68 : 2.12] [0.16 : 0.82]
#> 8 [0.55 : 0.70] [0.46 : 0.58] [0.18 : 0.22] [1.21 : 1.81] [0.32 : 0.71]
#> 9 [0.08 : 0.24] [0.06 : 0.18] [0.01 : 0.06] [0.00 : 0.07] [0.00 : 0.03]
#> 10 [0.13 : 0.58] [0.10 : 0.45] [0.00 : 0.15] [0.01 : 0.89] [0.00 : 0.50]
#> # â„ą 14 more rows
#> # â„ą 2 more variables: VISCERA_WEIGHT <symblc_n>, SHELL_WEIGHT <symblc_n>
var(example3[,1])
#> [1] 15.98238
var(example3[,2])
#> [1] 90.66667
var(example3$F6)
#> [1] 1872.358
var(example3$F6, method = 'interval')
#> <symbolic_interval[1]>
#> [1] [2,408.97 : 1,670.51]
var(example3$F6, method = 'billard')
#> [1] 1355.143
sd(example3$F1)
#> [1] 3.997797
sd(example3$F2)
#> [1] 6.733003
sd(example3$F6)
#> [1] 30.59704
sd(example3$F6, method = 'interval')
#> <symbolic_interval[1]>
#> [1] [49.08 : 40.87]
sd(example3$F6, method = 'billard')
#> [1] 36.81226
library(ggpolypath)
#> Loading required package: ggplot2
data(oils)
oils <- RSDA:::to.v3(RSDA:::to.v2(oils))
sym.radar.plot(oils[2:3,])
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
#> font family not found in Windows font database
sym.radar.plot(oils[2:5,])
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by
#> the caller; using TRUE
#> Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
#> font family not found in Windows font database
data(int_prost_train)
data(int_prost_test)
res.cm <- sym.lm(formula = lpsa~., sym.data = int_prost_train, method = 'cm')
res.cm
#>
#> Call:
#> stats::lm(formula = formula, data = centers)
#>
#> Coefficients:
#> (Intercept) lcavol lweight age lbph svi
#> 0.411537 0.579327 0.614128 -0.018659 0.143918 0.730937
#> lcp gleason pgg45
#> -0.205536 -0.030924 0.009507
RMSE.L(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.7229999
RMSE.U(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.7192467
R2.L(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.501419
R2.U(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.5058389
deter.coefficient(int_prost_test$lpsa, pred.cm$Fitted)
#> [1] 0.4962964
RMSE.L(int_prost_test$lpsa,pred.cm.lasso)
#> [1] 0.720172
RMSE.U(int_prost_test$lpsa,pred.cm.lasso)
#> [1] 0.7164858
R2.L(int_prost_test$lpsa,pred.cm.lasso)
#> [1] 0.5051789
R2.U(int_prost_test$lpsa,pred.cm.lasso)
#> [1] 0.509534
deter.coefficient(int_prost_test$lpsa, pred.cm.lasso)
#> [1] 0.4965907
RMSE.L(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.703543
RMSE.U(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.7004145
R2.L(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.5286114
R2.U(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.5322683
deter.coefficient(int_prost_test$lpsa, pred.cm.ridge)
#> [1] 0.4808652
data("ex_mcfa1")
ex_mcfa1
#> suspect age hair eyes region
#> 1 1 42 h_red e_brown Bronx
#> 2 2 20 h_black e_green Bronx
#> 3 3 64 h_brown e_brown Brooklyn
#> 4 4 55 h_blonde e_brown Bronx
#> 5 5 4 h_brown e_green Manhattan
#> 6 6 61 h_blonde e_green Bronx
#> 7 7 61 h_white e_black Queens
#> 8 8 32 h_blonde e_brown Manhattan
#> 9 9 39 h_blonde e_black Brooklyn
#> 10 10 50 h_brown e_brown Manhattan
#> 11 11 41 h_red e_blue Manhattan
#> 12 12 35 h_blonde e_green Brooklyn
#> 13 13 56 h_blonde e_brown Bronx
#> 14 14 52 h_red e_brown Queens
#> 15 15 55 h_red e_green Brooklyn
#> 16 16 25 h_brown e_brown Queens
#> 17 17 52 h_blonde e_brown Brooklyn
#> 18 18 28 h_red e_brown Manhattan
#> 19 19 21 h_white e_blue Manhattan
#> 20 20 66 h_black e_black Brooklyn
#> 21 21 67 h_blonde e_brown Queens
#> 22 22 13 h_white e_blue Brooklyn
#> 23 23 39 h_brown e_green Manhattan
#> 24 24 47 h_black e_green Brooklyn
#> 25 25 54 h_blonde e_brown Bronx
#> 26 26 75 h_brown e_blue Brooklyn
#> 27 27 3 h_white e_green Manhattan
#> 28 28 40 h_white e_green Manhattan
#> 29 29 58 h_red e_blue Queens
#> 30 30 41 h_brown e_green Bronx
#> 31 31 25 h_white e_black Brooklyn
#> 32 32 75 h_blonde e_blue Manhattan
#> 33 33 58 h_white e_brown Bronx
#> 34 34 61 h_white e_brown Manhattan
#> 35 35 52 h_white e_blue Bronx
#> 36 36 19 h_red e_black Queens
#> 37 37 58 h_red e_black Bronx
#> 38 38 46 h_black e_green Manhattan
#> 39 39 74 h_brown e_black Manhattan
#> 40 40 26 h_blonde e_brown Brooklyn
#> 41 41 63 h_blonde e_blue Queens
#> 42 42 40 h_brown e_black Queens
#> 43 43 65 h_black e_brown Brooklyn
#> 44 44 51 h_blonde e_brown Brooklyn
#> 45 45 15 h_white e_black Brooklyn
#> 46 46 32 h_blonde e_brown Bronx
#> 47 47 68 h_white e_black Manhattan
#> 48 48 51 h_white e_black Queens
#> 49 49 14 h_red e_green Queens
#> 50 50 72 h_white e_brown Brooklyn
#> 51 51 7 h_red e_blue Brooklyn
#> 52 52 22 h_red e_brown Bronx
#> 53 53 52 h_red e_brown Brooklyn
#> 54 54 62 h_brown e_green Bronx
#> 55 55 41 h_black e_brown Queens
#> 56 56 32 h_black e_black Manhattan
#> 57 57 58 h_brown e_brown Queens
#> 58 58 25 h_black e_brown Queens
#> 59 59 70 h_blonde e_green Brooklyn
#> 60 60 64 h_brown e_blue Queens
#> 61 61 25 h_white e_blue Bronx
#> 62 62 42 h_black e_black Brooklyn
#> 63 63 56 h_red e_black Brooklyn
#> 64 64 41 h_blonde e_black Brooklyn
#> 65 65 8 h_white e_black Manhattan
#> 66 66 7 h_black e_green Brooklyn
#> 67 67 42 h_white e_brown Queens
#> 68 68 10 h_white e_blue Manhattan
#> 69 69 60 h_brown e_black Bronx
#> 70 70 52 h_blonde e_brown Brooklyn
#> 71 71 39 h_brown e_blue Manhattan
#> 72 72 69 h_brown e_green Queens
#> 73 73 67 h_blonde e_green Manhattan
#> 74 74 46 h_red e_black Brooklyn
#> 75 75 72 h_black e_black Queens
#> 76 76 66 h_red e_blue Queens
#> 77 77 4 h_black e_blue Manhattan
#> 78 78 62 h_black e_green Brooklyn
#> 79 79 10 h_blonde e_blue Bronx
#> 80 80 16 h_blonde e_black Manhattan
#> 81 81 59 h_blonde e_brown Bronx
#> 82 82 63 h_blonde e_blue Manhattan
#> 83 83 54 h_red e_blue Queens
#> 84 84 14 h_brown e_blue Brooklyn
#> 85 85 48 h_black e_green Manhattan
#> 86 86 59 h_blonde e_black Bronx
#> 87 87 73 h_blonde e_black Bronx
#> 88 88 51 h_brown e_brown Bronx
#> 89 89 14 h_white e_black Bronx
#> 90 90 58 h_blonde e_black Queens
#> 91 91 56 h_red e_green Manhattan
#> 92 92 26 h_red e_blue Brooklyn
#> 93 93 59 h_brown e_black Manhattan
#> 94 94 27 h_white e_green Manhattan
#> 95 95 38 h_black e_green Manhattan
#> 96 96 5 h_blonde e_green Bronx
#> 97 97 14 h_black e_blue Queens
#> 98 98 13 h_black e_brown Manhattan
#> 99 99 54 h_white e_blue Brooklyn
#> 100 100 66 h_white e_green Manhattan
#> 101 1 22 h_red e_black Bronx
#> 102 2 57 h_blonde e_black Manhattan
#> 103 3 29 h_white e_green Queens
#> 104 4 14 h_blonde e_black Manhattan
#> 105 5 47 h_red e_green Bronx
#> 106 6 32 h_white e_blue Queens
#> 107 7 49 h_red e_blue Bronx
#> 108 8 8 h_white e_black Brooklyn
#> 109 9 67 h_white e_brown Bronx
#> 110 10 68 h_black e_green Bronx
#> 111 11 15 h_black e_brown Manhattan
#> 112 12 46 h_white e_brown Bronx
#> 113 13 68 h_white e_black Manhattan
#> 114 14 55 h_blonde e_blue Manhattan
#> 115 15 7 h_white e_green Bronx
#> 116 16 10 h_black e_brown Brooklyn
#> 117 17 49 h_red e_blue Manhattan
#> 118 18 12 h_brown e_blue Brooklyn
#> 119 19 41 h_white e_blue Bronx
#> 120 20 10 h_brown e_blue Bronx
#> 121 21 12 h_white e_green Manhattan
#> 122 22 53 h_white e_blue Manhattan
#> 123 23 5 h_black e_black Manhattan
#> 124 24 46 h_brown e_black Queens
#> 125 25 14 h_brown e_black Queens
#> 126 26 55 h_white e_green Brooklyn
#> 127 27 53 h_red e_brown Manhattan
#> 128 28 31 h_black e_brown Manhattan
#> 129 29 31 h_blonde e_brown Queens
#> 130 30 55 h_brown e_black Brooklyn
sym.table <- classic.to.sym(x = ex_mcfa1,
concept = suspect,
default.categorical = sym.set)
sym.table
#> # A tibble: 100 Ă— 4
#> age hair eyes region
#> <symblc_n> <symblc_s> <symblc_s> <symblc_s>
#> 1 [22.00 : 42.00] {h_red} {e_brown,e_black} {Bronx}
#> 2 [20.00 : 57.00] {h_black,h_blonde} {e_green,e_black} {Bronx,Manhattan}
#> 3 [29.00 : 64.00] {h_brown,h_white} {e_brown,e_green} {Brooklyn,Queens}
#> 4 [14.00 : 55.00] {h_blonde} {e_brown,e_black} {Bronx,Manhattan}
#> 5 [4.00 : 47.00] {h_brown,h_red} {e_green} {Manhattan,Bronx}
#> 6 [32.00 : 61.00] {h_blonde,h_white} {e_green,e_blue} {Bronx,Queens}
#> 7 [49.00 : 61.00] {h_white,h_red} {e_black,e_blue} {Queens,Bronx}
#> 8 [8.00 : 32.00] {h_blonde,h_white} {e_brown,e_black} {Manhattan,Brooklyn}
#> 9 [39.00 : 67.00] {h_blonde,h_white} {e_black,e_brown} {Brooklyn,Bronx}
#> 10 [50.00 : 68.00] {h_brown,h_black} {e_brown,e_green} {Manhattan,Bronx}
#> # â„ą 90 more rows
datos <- oils
datos
#> # A tibble: 8 Ă— 4
#> GRA FRE IOD SAP
#> * <symblc_n> <symblc_n> <symblc_n> <symblc_n>
#> 1 [0.93 : 0.94] [-27.00 : -18.00] [170.00 : 204.00] [118.00 : 196.00]
#> 2 [0.93 : 0.94] [-5.00 : -4.00] [192.00 : 208.00] [188.00 : 197.00]
#> 3 [0.92 : 0.92] [-6.00 : -1.00] [99.00 : 113.00] [189.00 : 198.00]
#> 4 [0.92 : 0.93] [-6.00 : -4.00] [104.00 : 116.00] [187.00 : 193.00]
#> 5 [0.92 : 0.92] [-25.00 : -15.00] [80.00 : 82.00] [189.00 : 193.00]
#> 6 [0.91 : 0.92] [0.00 : 6.00] [79.00 : 90.00] [187.00 : 196.00]
#> 7 [0.86 : 0.87] [30.00 : 38.00] [40.00 : 48.00] [190.00 : 199.00]
#> 8 [0.86 : 0.86] [22.00 : 32.00] [53.00 : 77.00] [190.00 : 202.00]
x <- sym.umap(datos)
x
#> V1 V2 V3 V4
#> 1 -7.967483 0.4510986 5.94668122 -4.8137597
#> 2 -8.028035 0.3904655 6.00733569 -4.8746364
#> 3 -8.237274 0.1813035 6.21652904 -5.0836479
#> 4 -8.172762 0.2459126 6.15202580 -5.0191184
#> 5 -7.913355 0.5054541 5.89253275 -4.7594613
#> 6 -8.125431 0.2933379 6.10470700 -4.9717851
#> 7 -8.011277 0.4074293 5.99049405 -4.8575418
#> 8 -8.103881 0.3149676 6.08314584 -4.9501697
#> 9 -1.805195 -1.8917917 1.31913788 -8.0010935
#> 10 -1.678942 -1.9483986 1.36385683 -8.0910259
#> 11 -1.587655 -2.1032726 1.35326901 -8.1469993
#> 12 -1.566832 -2.1323193 1.39175011 -8.2456135
#> 13 -1.646638 -1.8494120 1.26858705 -8.0767032
#> 14 -1.712329 -2.0211617 1.28860207 -8.1174816
#> 15 -1.780926 -2.2911358 1.15199899 -8.2169150
#> 16 -1.911850 -2.3592962 1.20451952 -8.1283393
#> 17 -1.466492 -2.5146612 1.34473811 -8.8731962
#> 18 -1.218782 -2.5996568 1.26371169 -9.0497921
#> 19 -1.388145 -2.6863355 1.21569349 -8.8192836
#> 20 -1.194093 -2.6799165 1.14941644 -8.9914660
#> 21 -1.217809 -2.8500319 1.24522329 -9.0658717
#> 22 -1.322182 -2.9361514 1.17439871 -9.1063324
#> 23 -1.314561 -2.8742064 1.35066733 -9.1991264
#> 24 -1.370686 -2.9527136 1.13553613 -9.0961782
#> 25 -1.582569 -2.7971805 1.25115006 -8.4561667
#> 26 -1.694805 -2.7117160 1.25928454 -8.6334470
#> 27 -1.535053 -2.8332277 1.38565740 -8.2969746
#> 28 -1.773890 -2.7311835 1.41110061 -8.5616000
#> 29 -1.682314 -2.9922006 1.35281765 -8.5219439
#> 30 -1.786032 -2.9632380 1.04810617 -8.6423287
#> 31 -1.653315 -3.1710643 1.01511103 -8.5201075
#> 32 -1.612150 -2.9748343 1.31073481 -8.7222735
#> 33 -6.717803 -2.9083146 -0.21212948 5.1692778
#> 34 -6.756492 -2.9158534 -0.28674773 5.1721903
#> 35 -6.806103 -2.9531229 0.08156531 5.4739054
#> 36 -6.704555 -2.8408251 -0.01234968 5.6146460
#> 37 -6.653133 -2.7967996 -0.52833368 4.8636963
#> 38 -6.714500 -2.7885832 -0.57722654 4.8934553
#> 39 -6.734808 -2.6457226 -0.19899971 5.0504433
#> 40 -6.931631 -2.5039883 -0.27591572 4.9234009
#> 41 -5.144370 -2.4886873 0.07064419 5.7367324
#> 42 -5.320797 -2.2422474 -0.13426838 5.6892966
#> 43 -5.112933 -2.2371063 0.24889856 5.9970936
#> 44 -5.098570 -2.2096698 0.22287124 6.0020515
#> 45 -5.416797 -2.3027763 -0.18619438 5.5008398
#> 46 -5.373669 -2.4299355 -0.17229175 5.3948271
#> 47 -5.222543 -2.3691927 0.01246330 5.6358689
#> 48 -5.026899 -2.2060927 0.08595103 5.4178271
#> 49 -6.925198 -2.9517097 -0.60206158 4.9303977
#> 50 -6.906343 -2.4612395 -0.94784822 4.9804011
#> 51 -7.031558 -2.7116618 -0.52829189 4.9639686
#> 52 -6.946520 -2.5199867 -0.86317333 5.0601156
#> 53 -7.079767 -2.5895081 -0.74320224 4.7829232
#> 54 -6.800828 -2.4166985 -0.92733948 4.7953117
#> 55 -7.011016 -2.5436094 -0.56578779 4.6297227
#> 56 -6.893563 -2.2995455 -1.05802216 4.8893674
#> 57 -5.957951 -2.5846576 -0.51510049 5.2386803
#> 58 -6.096998 -2.5070002 -0.82114773 5.2885015
#> 59 -6.100991 -2.5674012 -0.42007977 5.3608859
#> 60 -6.210843 -2.4102332 -0.81366384 5.2597813
#> 61 -6.024734 -2.6725835 -0.59578402 4.9202001
#> 62 -6.122398 -2.4055254 -0.87660051 5.0822469
#> 63 -5.952639 -2.5630013 -0.40070591 5.0218016
#> 64 -6.133337 -2.3392720 -0.85875791 4.9993444
#> 65 -3.297226 19.1888553 -1.16485752 2.1423338
#> 66 -3.091160 18.9442883 -1.18559457 2.3806752
#> 67 -4.866365 20.6643823 -1.58203812 0.4823961
#> 68 -4.729097 20.7691997 -1.45118854 0.5193830
#> 69 -3.064767 18.9804673 -1.25913439 2.3577967
#> 70 -3.042283 18.9046427 -1.31368324 2.4267730
#> 71 -4.769598 20.7641817 -1.48674888 0.5609698
#> 72 -4.878169 21.0140586 -1.49903710 0.8302592
#> 73 -3.248225 19.0967313 -1.37872430 2.2221877
#> 74 -3.183215 18.9191099 -1.13831296 2.3913904
#> 75 -4.649426 20.8531489 -1.37626228 0.6229531
#> 76 -4.600770 20.9266413 -1.30891790 0.6965887
#> 77 -3.226362 19.0575997 -1.34630438 2.2595550
#> 78 -3.263013 19.1141760 -1.27937963 2.2152385
#> 79 -4.662032 20.8948288 -1.34356259 0.6672912
#> 80 -4.658907 20.8492121 -1.37850998 0.6196017
#> 81 -6.805215 -3.3415949 0.73557319 6.0968042
#> 82 -6.861550 -3.2913726 0.71095162 6.0334052
#> 83 -6.778697 -3.3756748 0.81347387 6.2084207
#> 84 -6.866593 -3.4359282 0.88802644 6.3148630
#> 85 -6.859183 -3.3654194 0.62003949 6.0204200
#> 86 -6.951438 -3.2475168 0.59304978 5.9018256
#> 87 -6.809558 -3.5135659 0.94896395 6.3543862
#> 88 -7.082623 -3.6737970 0.88617186 6.4309226
#> 89 -5.076653 -2.1600460 0.52594625 6.5429598
#> 90 -5.179215 -2.0702494 0.42115322 6.4078223
#> 91 -5.272714 -2.2078012 0.81665428 6.8871971
#> 92 -5.266539 -2.2150885 0.71569806 6.7923125
#> 93 -5.119892 -2.1145228 0.35345321 6.3127337
#> 94 -5.056540 -2.0456551 0.30181378 6.2803490
#> 95 -5.322986 -2.2414322 0.80136192 6.8720252
#> 96 -5.342114 -2.2687408 0.78318144 6.8562090
#> 97 13.984547 -4.1174269 -1.95995903 -1.2431888
#> 98 14.103892 -3.9960753 -1.72394195 -1.1881971
#> 99 14.067595 -4.3038747 -1.69220780 -1.1149053
#> 100 13.775635 -4.5639327 -1.77031873 -1.1904808
#> 101 14.013491 -4.0416453 -2.04664030 -1.2331637
#> 102 14.132585 -3.7986168 -1.74380286 -1.0714359
#> 103 13.861897 -4.3021779 -2.01055328 -1.0942512
#> 104 13.937210 -4.2777470 -1.78084684 -1.0270041
#> 105 14.668567 -4.2739441 -1.43985905 -1.5502609
#> 106 14.504905 -4.2917462 -1.28585515 -1.3831390
#> 107 14.554062 -4.5310433 -1.32483045 -1.2867892
#> 108 14.463000 -4.5575050 -1.29467396 -1.2286007
#> 109 14.980934 -4.3615601 -1.50374969 -1.4740216
#> 110 14.688093 -4.1514170 -1.08841205 -1.5919015
#> 111 14.761586 -4.5622738 -1.15331216 -1.3659777
#> 112 14.405745 -4.5341110 -1.30891287 -1.1897839
#> 113 14.450789 -3.6976678 -1.93201450 -1.7234921
#> 114 14.325061 -3.8061266 -2.01130137 -1.6282745
#> 115 13.990112 -3.9139617 -1.97402199 -1.3388218
#> 116 13.760885 -3.9367767 -1.86950528 -0.9743938
#> 117 14.273340 -3.8832354 -2.22620235 -1.7191440
#> 118 14.487924 -3.8548411 -2.24266134 -1.9169256
#> 119 14.347125 -3.9963191 -2.30746762 -1.7599444
#> 120 14.161896 -4.1320569 -2.37366837 -1.5711289
#> 121 14.764561 -4.0932978 -1.69663372 -1.7878142
#> 122 14.801267 -4.1092262 -1.60356119 -1.7511039
#> 123 15.032943 -4.4401596 -1.33081988 -1.6225212
#> 124 14.915130 -4.4001213 -1.20336834 -1.4672480
#> 125 14.846425 -4.0717084 -1.91051117 -2.1462473
#> 126 14.959242 -4.1801255 -1.75871422 -2.0107801
#> 127 14.961765 -4.4036615 -1.59900088 -1.9305159
#> 128 14.892939 -4.3310476 -1.50481759 -1.9554142
datos <- Cardiological
datos
#> # A tibble: 11 Ă— 3
#> Pulse Syst Diast
#> <symblc_n> <symblc_n> <symblc_n>
#> 1 [44.00 : 68.00] [90.00 : 100.00] [50.00 : 70.00]
#> 2 [60.00 : 72.00] [90.00 : 130.00] [70.00 : 90.00]
#> 3 [56.00 : 90.00] [140.00 : 180.00] [90.00 : 100.00]
#> 4 [70.00 : 112.00] [110.00 : 142.00] [80.00 : 108.00]
#> 5 [54.00 : 72.00] [90.00 : 100.00] [50.00 : 70.00]
#> 6 [70.00 : 100.00] [130.00 : 160.00] [80.00 : 110.00]
#> 7 [63.00 : 75.00] [60.00 : 100.00] [140.00 : 150.00]
#> 8 [72.00 : 100.00] [130.00 : 160.00] [76.00 : 90.00]
#> 9 [76.00 : 98.00] [110.00 : 190.00] [70.00 : 110.00]
#> 10 [86.00 : 96.00] [138.00 : 180.00] [90.00 : 110.00]
#> 11 [86.00 : 100.00] [110.00 : 150.00] [78.00 : 100.00]
x <- sym.umap(datos)
x
#> V1 V2 V3
#> 1 0.21724105 2.94925284 3.22889866
#> 2 -0.44206773 3.16318990 2.64898920
#> 3 0.01860979 3.21833999 3.17634240
#> 4 -0.55380605 3.26853285 2.61337554
#> 5 0.42879816 2.97853692 2.91747681
#> 6 -0.47874492 2.67585861 2.36761706
#> 7 0.48801760 2.88955984 2.99255924
#> 8 -0.48413811 2.40285402 2.10152592
#> 9 0.15235772 2.61474548 2.57499535
#> 10 -0.64173681 2.78751806 2.10873583
#> 11 -0.94939335 0.96746913 1.38279218
#> 12 -1.08177797 1.00126710 1.53795445
#> 13 0.04232471 2.42842247 2.21436818
#> 14 -0.40535219 2.39060470 1.83594340
#> 15 -1.10458408 0.54097422 0.92936785
#> 16 -1.13497779 0.67484244 0.74367682
#> 17 -1.03246906 0.26372246 1.10392981
#> 18 0.83665884 -2.09459674 -1.66060236
#> 19 -1.00142706 -0.23902854 1.23349727
#> 20 1.89734245 -1.95284643 -0.66049961
#> 21 -1.05435659 0.08297394 0.68884618
#> 22 0.62174759 -1.63491789 -1.67799050
#> 23 -1.10101931 -0.37750040 1.28421325
#> 24 1.99331422 -1.67249120 -0.70789242
#> 25 -0.74780227 2.09935666 1.73150030
#> 26 1.09751755 -2.94064949 -2.50083487
#> 27 -1.31535273 0.47645612 1.34905988
#> 28 1.52563480 -2.80400477 -1.89773458
#> 29 -1.28539443 0.53265076 -0.41981659
#> 30 0.66217193 -1.77375000 -2.70263209
#> 31 -1.22434074 0.22800540 0.04644605
#> 32 1.09483671 -1.57080414 -2.32130156
#> 33 0.06646002 3.12058231 3.02344893
#> 34 -0.58639891 3.37939171 2.48122467
#> 35 -0.05863395 3.01601586 2.99078711
#> 36 -0.64081356 3.34874598 2.39370864
#> 37 0.30745139 2.71070207 2.82535553
#> 38 -0.73484785 2.89964618 2.00380494
#> 39 0.14796039 2.76489417 2.68943641
#> 40 -0.83471289 2.50653093 1.92800447
#> 41 -1.18121315 0.97901433 1.11417961
#> 42 1.30394670 -2.92744440 -2.35235274
#> 43 -1.22016618 0.10649402 1.57772929
#> 44 1.70553754 -2.57719682 -1.43320081
#> 45 -1.29755802 0.39764335 -0.10839710
#> 46 0.85730789 -1.57314255 -2.42414371
#> 47 -1.07405698 -0.22152759 0.41439507
#> 48 1.54474469 -1.40621523 -1.68861856
#> 49 -1.97410893 0.80254566 -1.37301581
#> 50 -1.88586834 0.69494952 -1.45970458
#> 51 -1.90682498 0.82195673 -1.19233125
#> 52 -1.70071378 0.92883118 -1.44106769
#> 53 -2.03800267 0.92568199 -1.56985473
#> 54 -1.99907085 0.93623893 -1.64832292
#> 55 -2.02354892 0.65344269 -1.30150639
#> 56 -1.84328280 0.60737990 -1.22373510
#> 57 -1.03532225 1.01257351 1.25168525
#> 58 1.34439195 -2.89219222 -2.26665523
#> 59 -1.17429813 0.00638271 1.81703329
#> 60 1.71395363 -2.68316456 -1.33164974
#> 61 -1.37857285 0.89785818 0.86328689
#> 62 1.24486900 -2.35105288 -2.28576911
#> 63 -1.45139330 -0.06808024 1.32516542
#> 64 1.63628282 -2.18658595 -1.60257347
#> 65 -0.99973541 2.30959780 1.83973877
#> 66 0.96323423 -2.90515880 -2.20572649
#> 67 -1.02455563 -0.34264523 1.80340248
#> 68 1.86612675 -2.33455079 -0.86848796
#> 69 -1.16246158 0.43550973 -0.60433653
#> 70 0.44038827 -1.61283895 -2.62762292
#> 71 1.84363743 -1.36253165 -0.52164018
#> 72 2.14167836 -1.45322379 -1.01570845
#> 73 0.38473072 -1.94256507 -1.69437173
#> 74 1.21740196 -2.21970184 -1.94798076
#> 75 1.74587710 -1.78380222 -0.40483663
#> 76 2.03298379 -2.11213229 -0.58094982
#> 77 0.45648481 -1.26850567 -1.74572034
#> 78 0.86611771 -1.42735572 -2.14620021
#> 79 1.99291141 -1.41991289 -0.64782032
#> 80 2.11194098 -1.34230453 -0.91685906
#> 81 0.47272121 -2.83978331 -2.20727315
#> 82 0.91211216 -3.05288155 -2.41333355
#> 83 0.68755330 -2.14425694 -1.34382383
#> 84 1.58824874 -2.80149580 -1.77247330
#> 85 -0.01600501 -1.35928889 -2.17923129
#> 86 0.57636661 -1.99319553 -2.70855951
#> 87 0.60955690 -1.56663410 -1.38172277
#> 88 1.42135649 -1.66578576 -1.96761607
data("hardwoodBrito")
Hardwood.histogram<-hardwoodBrito
Hardwood.cols<-colnames(Hardwood.histogram)
Hardwood.names<-row.names(Hardwood.histogram)
Hardwood.histogram
#> # A tibble: 5 Ă— 4
#> ANNT JULT ANNP MITM
#> * <symblc_h> <symblc_h> <symblc_h> <symblc_h>
#> 1 <hist> <hist> <hist> <hist>
#> 2 <hist> <hist> <hist> <hist>
#> 3 <hist> <hist> <hist> <hist>
#> 4 <hist> <hist> <hist> <hist>
#> 5 <hist> <hist> <hist> <hist>
Hardwood.histogram[[1]][[1]]
#> $breaks
#> [1] -3.9 4.2 10.3 20.6
#>
#> $props
#> [1] 0.5 0.4 0.1
pca.hist<-sym.histogram.pca(Hardwood.histogram,BIN.Matrix)
#> Warning: Setting row names on a tibble is deprecated.
#> Setting row names on a tibble is deprecated.
#> Setting row names on a tibble is deprecated.
#> Setting row names on a tibble is deprecated.
pca.hist$classic.PCA
#> **Results for the Principal Component Analysis (PCA)**
#> The analysis was performed on 85 individuals, described by 4 variables
#> *The results are available in the following objects:
#>
#> name description
#> 1 "$eig" "eigenvalues"
#> 2 "$var" "results for the variables"
#> 3 "$var$coord" "coord. for the variables"
#> 4 "$var$cor" "correlations variables - dimensions"
#> 5 "$var$cos2" "cos2 for the variables"
#> 6 "$var$contrib" "contributions of the variables"
#> 7 "$ind" "results for the individuals"
#> 8 "$ind$coord" "coord. for the individuals"
#> 9 "$ind$cos2" "cos2 for the individuals"
#> 10 "$ind$contrib" "contributions of the individuals"
#> 11 "$ind.sup" "results for the supplementary individuals"
#> 12 "$ind.sup$coord" "coord. for the supplementary individuals"
#> 13 "$ind.sup$cos2" "cos2 for the supplementary individuals"
#> 14 "$call" "summary statistics"
#> 15 "$call$centre" "mean of the variables"
#> 16 "$call$ecart.type" "standard error of the variables"
#> 17 "$call$row.w" "weights for the individuals"
#> 18 "$call$col.w" "weights for the variables"
pca.hist$sym.hist.matrix.PCA
#> # A tibble: 5 Ă— 4
#> PC.1 PC.2 PC.3 PC.4
#> * <symblc_h> <symblc_h> <symblc_h> <symblc_h>
#> 1 <hist> <hist> <hist> <hist>
#> 2 <hist> <hist> <hist> <hist>
#> 3 <hist> <hist> <hist> <hist>
#> 4 <hist> <hist> <hist> <hist>
#> 5 <hist> <hist> <hist> <hist>
ACER.p1<-Sym.PCA.Hist.PCA.k.plot(data.sym.df = pca.hist$Bins.df,
title.graph = " ",
concepts.name = c("ACER"),
title.x = "First Principal Component (84.83%)",
title.y = "Frequency",
pca.axes = 1)
ACER.p1
ALL.p1<-Sym.PCA.Hist.PCA.k.plot(data.sym.df = pca.hist$Bins.df,
title.graph = " ",
concepts.name = unique(pca.hist$Bins.df$Object.Name),
title.x = "First Principal Component (84.83%)",
title.y = "Frequency",
pca.axes = 1)
ALL.p1
#> Warning: ggrepel: 3 unlabeled data points (too many overlaps). Consider
#> increasing max.overlaps
Hardwood.quantiles.PCA<-quantiles.RSDA(pca.hist$sym.hist.matrix.PCA,3)
#> Warning in min(which(props.cum >= percentils.RSDA[i])): no non-missing
#> arguments to min; returning Inf
#> Warning: Setting row names on a tibble is deprecated.
label.name<-"Hard Wood"
Title<-"First Principal Plane"
axes.x.label<- "First Principal Component (84.83%)"
axes.y.label<- "Second Principal Component (9.70%)"
concept.names<-c("ACER")
var.names<-c("PC.1","PC.2")
quantile.ACER.plot<-Percentil.Arrow.plot(Hardwood.quantiles.PCA,
concept.names,
var.names,
Title,
axes.x.label,
axes.y.label,
label.name
)
quantile.ACER.plot
label.name<-"Hard Wood"
Title<-"First Principal Plane"
axes.x.label<- "First Principal Component (84.83%)"
axes.y.label<- "Second Principal Component (9.70%)"
concept.names<-row.names(Hardwood.quantiles.PCA)
var.names<-c("PC.1","PC.2")
quantile.plot<-Percentil.Arrow.plot(Hardwood.quantiles.PCA,
concept.names,
var.names,
Title,
axes.x.label,
axes.y.label,
label.name
)
quantile.plot
#> Warning: Removed 1 rows containing missing values (`geom_point()`).
#> Warning: Removed 1 rows containing missing values (`geom_segment()`).
label.name<-"Hard Wood"
Title<-"First Principal Plane"
axes.x.label<- "PC 1 (84.83%)"
axes.y.label<- "PC 2 (9.70%)"
concept.names<-c("ACER")
var.names<-c("PC.1","PC.2")
plot.3D.HW<-sym.quantiles.PCA.plot(Hardwood.quantiles.PCA,
concept.names,
var.names,
Title,
axes.x.label,
axes.y.label,
label.name)
plot.3D.HW
Hardwood.quantiles.PCA.2<-quantiles.RSDA.KS(pca.hist$sym.hist.matrix.PCA,100)
#> Warning: Setting row names on a tibble is deprecated.
h<-Hardwood.quantiles.PCA.2[[1]][[1]]
tmp<-HistRSDAToEcdf(h)
h2<-Hardwood.quantiles.PCA.2[[1]][[2]]
tmp2<-HistRSDAToEcdf(h2)
h3<-Hardwood.quantiles.PCA.2[[1]][[3]]
tmp3<-HistRSDAToEcdf(h3)
h4<-Hardwood.quantiles.PCA.2[[1]][[4]]
tmp4<-HistRSDAToEcdf(h4)
h5<-Hardwood.quantiles.PCA.2[[1]][[5]]
tmp5<-HistRSDAToEcdf(h5)
breaks.unique<-unique(c(h$breaks,h2$breaks,h3$breaks,h4$breaks,h5$breaks))
tmp.unique<-breaks.unique[order(breaks.unique)]
tmp<-tmp(v = tmp.unique)
tmp2<-tmp2(v = tmp.unique)
tmp3<-tmp3(v = tmp.unique)
tmp4<-tmp4(v = tmp.unique)
tmp5<-tmp5(v = tmp.unique)
abs_dif <- abs(tmp2 - tmp)
# La distancia Kolmogorov–Smirnov es el máximo de las distancias absolutas.
distancia_ks <- max(abs_dif)
distancia_ks
#> [1] 0.05857869
library(tidyr)
# Se unen los valores calculados en un dataframe.
df.HW <- data.frame(
PC.1 = tmp.unique,
ACER = tmp,
ALNUS = tmp2,
FRAXINUS = tmp3,
JUGLANS = tmp4,
QUERCUS = tmp5
) %>%
pivot_longer(
cols = c(ACER, ALNUS,FRAXINUS,JUGLANS,QUERCUS),
names_to = "HardWood",
values_to = "ecdf"
)
grafico_ecdf <- ggplot(data = df.HW,
aes(x = PC.1, y = ecdf, color = HardWood)) +
geom_line(size = 1) +
labs(
color = "Hardwood",
y = "Empirical Cumulative Distribution "
) +
theme_bw() +
theme(legend.position = "bottom",
plot.title = element_text(size = 12))+geom_line()
grafico_ecdf
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.