The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Creation, estimation, and prediction of random weight neural networks (RWNN), Schmidt et al. (1992) <doi:10.1109/ICPR.1992.201708>, including popular variants like extreme learning machines, Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, sparse RWNN, Zhang et al. (2019) <doi:10.1016/j.neunet.2019.01.007>, and deep RWNN, Henríquez et al. (2018) <doi:10.1109/IJCNN.2018.8489703>. It further allows for the creation of ensemble RWNNs like bagging RWNN, Sui et al. (2021) <doi:10.1109/ECCE47101.2021.9595113>, boosting RWNN, stacking RWNN, and ensemble deep RWNN, Shi et al. (2021) <doi:10.1016/j.patcog.2021.107978>.
Version: | 0.4 |
Depends: | R (≥ 4.1.0) |
Imports: | methods, quadprog, randtoolbox, Rcpp (≥ 1.0.4.6), stats, utils |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | tinytest |
Published: | 2024-09-03 |
DOI: | 10.32614/CRAN.package.RWNN |
Author: | Søren B. Vilsen [aut, cre] |
Maintainer: | Søren B. Vilsen <svilsen at math.aau.dk> |
License: | MIT + file LICENSE |
NeedsCompilation: | yes |
CRAN checks: | RWNN results |
Reference manual: | RWNN.pdf |
Package source: | RWNN_0.4.tar.gz |
Windows binaries: | r-devel: RWNN_0.4.zip, r-release: RWNN_0.4.zip, r-oldrel: RWNN_0.4.zip |
macOS binaries: | r-release (arm64): RWNN_0.4.tgz, r-oldrel (arm64): RWNN_0.4.tgz, r-release (x86_64): RWNN_0.4.tgz, r-oldrel (x86_64): RWNN_0.4.tgz |
Please use the canonical form https://CRAN.R-project.org/package=RWNN to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.