The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The Radviz package implements the concept of dimensional anchors to visualize multivariate datasets in a 2D projection, as originally described in Hoffman et al 1999. Additional work for ordering of dimensional anchor is taken from Di Caro et al 2012.
So called big data has focused our attention on datasets that comprise a large number of items (or things). As a consequence the fact that we are measuring (or recording) more and more parameters (or stuff) is often overlooked, even though this large number of things is enabling us to explore the relationships between the different stuff with unprecedented efficacy.
Yet, this increase in the stuff we measure comes with a so-called Curse of Dimensionality: as our brains are unable to efficiently deal with more than 3 dimensions, we need new tools to visually explore larger (more than 3 dimensions) sets.
Several such tools exist that rely on projection into lower number of dimensions, such as PCA. Although those tools represent an efficient solution, they do not allow for direct interpretation of the position of the points in space.
Radviz provides an elegant solution to this problem, by projecting a N-dimensional data set into a simple 2D space where the influence of each dimension can be interpreted as a balance between the influence of all dimensions.
In Radviz, each dimension in the dataset is represented by a dimensional anchor, and each dimensional anchor is distributed evenly on a unit circle. Each line in the data set corresponds to a point in the projection, that is linked to every dimensional anchor by a spring. Each spring’s stiffness corresponds to the value for that particular thing in that particular dimension. The position of the point is defined as the point in the 2D space where the spring’s tension is minimum.
The package can be installed using the following command:
install.packages('Radviz')
Once installed the package can be loaded using the standard library
command.
library(Radviz)
Additional packages that are useful for Radviz are:
library(ggplot2)
library(dplyr)
library(tidyr)
bodenmiller
datasetWe will use data from the Bodenmiller et al 2012 publication. The bodenmiller package contains a subset of the data that can be used for testing purpose. The package can be installed by running the following command:
install.packages('bodenmiller')
Data has already been cleaned and transformed, and can be used as is.
library(bodenmiller)
data(refPhenoMat)
data(refFuncMat)
data(refAnnots)
<- data.frame(refAnnots,
ref.df
refPhenoMat, refFuncMat)
Radviz requires that all dimensions have the same range. The simplest way to achieve that is to normalize every numerical column to its range, so that all values fall in the [0,1]
interval. The do.L
function performs this operation for us:
<- function(coln) do.L(coln,fun=function(x) quantile(x,c(0.005,0.995))) trans
The function is wrapped so that it can be applied directly within the do.radviz
function. The extra argument fun
is used to remove the top and bottom of each distribution which correspond to outliers:
hist(ref.df$CD3)
abline(v=quantile(ref.df$CD3,c(0.005,0.995)),
col=2,lty=2)
Let’s define a Spring object that contains the position of each dimension on the unit circle. The dimensions will be matched by column name to the data, so it is important to make sure that column names are syntactically valid, using the make.names
function.
The make.S
function will take a vector of column names and return a matrix of [x,y]
positions. The order of the column names will dictate the position on the circle, starting at 12:00 and going clockwise. It is not required to use all available columns: it might be worth splitting the dimensions depending on what they represent (continuous versus categorical variables, phenotypic versus functional markers, etc.).
<- make.S(dimnames(refPhenoMat)[[2]]) ct.S
The position of dimensional anchors on the circle is critical: the best projection (as judged by the separation of points in the display) is achieved when dimensional anchors that correspond to highly correlated dimensions in the data are placed closer on the unit circle.
Optimization of the position of dimensional anchors is discussed in Di Caro et al 2012, where the authors suggest 2 metrics that can be used in an optimization process. Both methods start with a similarity matrix where every value represents the similarity between any 2 dimensions. The first method assumes that dimensional anchors corresponding to similar dimensions should be close on the circle (radviz-independent); the second method uses a projection of the similarity matrix in Radviz and computes the distance of the dimensional anchors to the projected dimensions they represent (radviz-dependent) Di Caro et al 2012.
The Radviz-dependent and independent methods have been implemented in the Radviz
package, as well as the recommended cosine similarity measure.
## compute the similarity matrix
<- cosine(as.matrix(ref.df[,row.names(ct.S)]))
ct.sim ## the current Radviz-independent measure of projection efficiency
in.da(ct.S,ct.sim)
## [1] -8.771893
## the current Radviz-independent measure of projection efficiency
rv.da(ct.S,ct.sim)
## [1] 6.104379
The Radviz-independent score should be maximal when the dimensional anchor positions are optimal. The Radviz-dependent score should be minimal when the dimensional anchor positions are optimal.
The optimization procedure works as follows:
<- do.optimRadviz(ct.S,ct.sim,iter=100,n=1000) optim.ct
## Selected optimization function: in.da
## Starting performance: -8.771893
## 0 Current performance: -10.77812
## 1 Current performance: -10.77812
## 2 Current performance: -10.81566
## 3 Current performance: -10.8564
## 4 Current performance: -10.94059
## 5 Current performance: -10.94059
## 6 Current performance: -10.94059
## 7 Current performance: -10.94059
## 8 Current performance: -10.94059
## 9 Current performance: -10.94059
## Execution stopped after 9 iterations: no better solution found in the last 5 iterations
<- make.S(get.optim(optim.ct)) ct.S
The original anchor position corresponds to the order of the columns in the matrix:
The optimized anchors are:
It is possible to rotate the anchors so that a particular dimension is at the top of the circle, using the function recenter
:
<- recenter(ct.S,'CD3') ct.S
Leading to :
The do.radviz
function will then project values in the context of the Springs:
<- do.radviz(ref.df,ct.S,trans=trans) ct.rv
do.radviz
will scale all values to [0,1] using do.L
by default.
Internally the Radviz projection is a ggplot
object. Details about the data and corresponding projection are available through Radviz-specific versions of S3
generic functions:
summary(ct.rv)
## A Radviz object with 15792 objects and 18 dimensions
## Source Cells CD20 IgM
## 1 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- 1.58376166 -0.25130462
## 2 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- 0.45068533 0.27181595
## 3 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- -0.06686758 0.52450153
## 4 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- -0.11011971 -0.01056651
## 5 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- 0.05818707 0.19587490
## 6 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- 0.01712105 -0.29324607
## CD4 CD33 HLA.DR CD14 CD7 CD3 CD123
## 1 0.24538905 1.845812 0.28467544 0.7867635 0.05080669 0.8882771 -0.1736830
## 2 0.18752959 2.276282 0.43561827 1.0316463 -0.54740331 0.8721281 0.4542218
## 3 -0.02593398 2.119974 0.75633795 -0.1576259 2.72629430 1.7181924 -0.0667001
## 4 -0.05774378 1.750508 0.73147988 0.1632028 2.78216921 0.2802657 0.3633580
## 5 -0.13402830 1.511281 0.69828572 0.2260039 3.38965411 0.2092649 0.6444306
## 6 2.34379280 1.819468 0.06367918 -0.3567477 2.09006275 1.5602333 -0.2513046
## pStat1 pSlp76 pBtk pPlcg2 pErk pLat pS6
## 1 1.5543929594 0.39820594 2.1455563 0.4076647 2.127705 0.7863917 0.45575696
## 2 2.2617867890 2.24430221 1.6472855 2.6780887 2.314259 1.7699250 0.90970326
## 3 0.9087872965 1.51443383 1.2106579 1.0207694 0.840385 1.8158869 -0.11516882
## 4 -0.0009201049 0.52799515 1.9187885 3.1896712 3.167694 0.5876629 1.22837250
## 5 0.8515650817 -0.00958695 0.9095552 0.6047778 2.036200 0.1807284 -0.09090411
## 6 1.7630741701 6.42808067 3.4870008 7.8620725 3.326642 2.9241200 0.47933446
## pNFkB pp38 pStat5 pAkt pSHP2 pZap70
## 1 2.2061063 -0.192718118 1.3481375 1.591763 0.61411340 1.705732795
## 2 1.1788794 1.018837991 2.0934835 1.407424 0.21597453 1.403636251
## 3 1.4109075 -0.003533928 -0.1503696 2.771222 -0.07459359 -0.006048547
## 4 0.8870827 0.203404086 2.3198857 2.197841 -0.04034245 1.473085758
## 5 0.6636323 1.424795962 0.1999124 2.320152 0.66673986 1.418054027
## 6 1.8517821 3.045412563 3.5175258 2.638554 3.61195736 2.378537517
## pStat3 rx ry rvalid
## 1 0.3523257 -0.093928941 -0.114732650 FALSE
## 2 -0.1021022 -0.234579217 -0.170415001 FALSE
## 3 0.5538451 0.057077028 0.066544234 FALSE
## 4 -0.1495533 -0.025033351 -0.019598471 FALSE
## 5 0.7728979 0.006234689 0.006631637 FALSE
## 6 3.1662909 -0.104975983 0.219860655 FALSE
## Dimensional Anchors are CD3 CD7 IgM CD20 HLA.DR CD33 ...
head(ct.rv)
## Source Cells CD20 IgM
## 1 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- 1.58376166 -0.25130462
## 2 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- 0.45068533 0.27181595
## 3 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- -0.06686758 0.52450153
## 4 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- -0.11011971 -0.01056651
## 5 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- 0.05818707 0.19587490
## 6 Staurosporine_cd14-hladr-_H05.fcs cd14-hladr- 0.01712105 -0.29324607
## CD4 CD33 HLA.DR CD14 CD7 CD3 CD123
## 1 0.24538905 1.845812 0.28467544 0.7867635 0.05080669 0.8882771 -0.1736830
## 2 0.18752959 2.276282 0.43561827 1.0316463 -0.54740331 0.8721281 0.4542218
## 3 -0.02593398 2.119974 0.75633795 -0.1576259 2.72629430 1.7181924 -0.0667001
## 4 -0.05774378 1.750508 0.73147988 0.1632028 2.78216921 0.2802657 0.3633580
## 5 -0.13402830 1.511281 0.69828572 0.2260039 3.38965411 0.2092649 0.6444306
## 6 2.34379280 1.819468 0.06367918 -0.3567477 2.09006275 1.5602333 -0.2513046
## pStat1 pSlp76 pBtk pPlcg2 pErk pLat pS6
## 1 1.5543929594 0.39820594 2.1455563 0.4076647 2.127705 0.7863917 0.45575696
## 2 2.2617867890 2.24430221 1.6472855 2.6780887 2.314259 1.7699250 0.90970326
## 3 0.9087872965 1.51443383 1.2106579 1.0207694 0.840385 1.8158869 -0.11516882
## 4 -0.0009201049 0.52799515 1.9187885 3.1896712 3.167694 0.5876629 1.22837250
## 5 0.8515650817 -0.00958695 0.9095552 0.6047778 2.036200 0.1807284 -0.09090411
## 6 1.7630741701 6.42808067 3.4870008 7.8620725 3.326642 2.9241200 0.47933446
## pNFkB pp38 pStat5 pAkt pSHP2 pZap70
## 1 2.2061063 -0.192718118 1.3481375 1.591763 0.61411340 1.705732795
## 2 1.1788794 1.018837991 2.0934835 1.407424 0.21597453 1.403636251
## 3 1.4109075 -0.003533928 -0.1503696 2.771222 -0.07459359 -0.006048547
## 4 0.8870827 0.203404086 2.3198857 2.197841 -0.04034245 1.473085758
## 5 0.6636323 1.424795962 0.1999124 2.320152 0.66673986 1.418054027
## 6 1.8517821 3.045412563 3.5175258 2.638554 3.61195736 2.378537517
## pStat3 rx ry rvalid
## 1 0.3523257 -0.093928941 -0.114732650 FALSE
## 2 -0.1021022 -0.234579217 -0.170415001 FALSE
## 3 0.5538451 0.057077028 0.066544234 FALSE
## 4 -0.1495533 -0.025033351 -0.019598471 FALSE
## 5 0.7728979 0.006234689 0.006631637 FALSE
## 6 3.1662909 -0.104975983 0.219860655 FALSE
dim(ct.rv)
## [1] 15792 18
The print.radviz
S3
method shows the dimensional anchors:
ct.rv
To visualize the projected points one should use the plot.radviz
method:
plot(ct.rv,anchors.only=FALSE)
By default the plot.radviz
function will only show the anchors and return the ggplot
object so that other layers can be added:
plot(ct.rv)+
geom_point()
From there on all ggplot2
geoms and options are available:
plot(ct.rv)+
geom_point(data=. %>%
arrange(CD4),
aes(color=CD4))+
scale_color_gradient(low='grey80',high="dodgerblue4")
This simple plot is already enough to show some of the underlying structure of the dataset.
Using standard visualizations developed for FACS data analysis, one can further explore the data. The first alternative uses smoothed densities returned by a kernel density estimate to generate a 2D density plot:
smoothRadviz(ct.rv)
smoothRadviz
is actually a wrapper around stat_density2d
, and returns the underlying ggplot
object so that extra methods can be used:
smoothRadviz(ct.rv)+
geom_point(shape='.',alpha=1/5)
Another alternative is contour plot, provided through the contour.radviz
function:
contour(ct.rv)
This method can be used to highlight specific cell populations, in combination with subset.radviz
:
<- 'igm+'
cur.pop <- subset(ct.rv,refAnnots$Cells==cur.pop)
sub.rv smoothRadviz(ct.rv)+
geom_density2d(data=sub.rv$proj$data,
aes(x=rx,y=ry),
color='black')
The contour corresponds to igm+ cells, in the context of the full sample visualized as a smooth scatter.
Further insight can be gained from the use of hexagonal binning:
hexplot(ct.rv)
Each bin can then be colored according to other dimensions in the dataset, such as CD4 signal intensity:
hexplot(ct.rv,color='CD4')
But also S6 phosphorylation:
hexplot(ct.rv,color='pS6')
To be compared with phospho-Akt signal:
hexplot(ct.rv,color='pAkt')
And phospho-Erk signal:
hexplot(ct.rv,color='pErk')
Cells have been manually gated, leading to 14 sub-populations:
<- lapply(levels(refAnnots$Cells),function(x) cat(' *',x,'\n')) ksink
To visualize the different populations, we compute a a bubble chart: the bubble position corresponds to the median signal intensity of each channel for this specific population, and the bubble size is proportional to the number of cells in this population:
bubbleRadviz(ct.rv,group = 'Cells')
Alternatively, bubbles can be colored after signal intensity of a functional channel, such as S6:
bubbleRadviz(ct.rv,group = 'Cells',color='pS6')
Radviz can also be used to visualize changes in functional space. We start by adding data from the Bodenmiller package.
data(untreatedPhenoMat)
data(untreatedFuncMat)
data(untreatedAnnots)
<- bind_rows(ref.df %>%
untreated.df mutate(Treatment='unstimulated',
Source=as.character(Source),
Cells=as.character(Cells)),
data.frame(untreatedAnnots,
untreatedPhenoMat,%>%
untreatedFuncMat) mutate(Treatment=as.character(Treatment),
Source=as.character(Source),
Cells=as.character(Cells))) %>%
mutate(Treatment=factor(Treatment),
Treatment=relevel(Treatment,'unstimulated'),
Cells=factor(Cells))
For this analysis we will focus on CD4+ and CD8+ T cells:
<- untreated.df %>%
tcells.df filter(Cells %in% c('cd4+','cd8+'))
%>%
tcells.df count(Cells,Treatment)
## Cells Treatment n
## 1 cd4+ unstimulated 3989
## 2 cd4+ BCR/FcR-XL 4076
## 3 cd4+ PMA/Ionomycin 4546
## 4 cd4+ vanadate 503
## 5 cd8+ unstimulated 5068
## 6 cd8+ BCR/FcR-XL 5098
## 7 cd8+ PMA/Ionomycin 5122
## 8 cd8+ vanadate 1200
Next we optimize the channel order, and create the projection:
<- make.S(dimnames(refFuncMat)[[2]])
func.S <- cosine(as.matrix(tcells.df[,row.names(func.S)]))
func.sim <- do.optimRadviz(func.S,func.sim,iter=100,n=1000) optim.func
## Selected optimization function: in.da
## Starting performance: -55.9315
## 0 Current performance: -57.40112
## 1 Current performance: -57.73844
## 2 Current performance: -57.92259
## 3 Current performance: -58.21664
## 4 Current performance: -58.58116
## 5 Current performance: -58.69733
## 6 Current performance: -58.72655
## 7 Current performance: -58.75731
## 8 Current performance: -58.80389
## 9 Current performance: -58.80389
## 10 Current performance: -58.80389
## 11 Current performance: -58.80389
## 12 Current performance: -58.80389
## 13 Current performance: -58.80389
## Execution stopped after 13 iterations: no better solution found in the last 5 iterations
<- make.S(tail(optim.func$best,1)[[1]])
func.S <- do.radviz(tcells.df,func.S,trans=trans) func.rv
The overall T cell functional landscape is shown below:
smoothRadviz(subset(func.rv,tcells.df$Treatment=='unstimulated'))+
facet_grid(~Cells)
The effect of different stimulations can then be visualized using contour plots:
plot(func.rv)+
geom_density2d(aes(color=Treatment))+
facet_grid(~Cells)
Where one can see that BCR/FcR-XL has no effect and overlaps with unstimulated while PMA/Ionomycin increases pS6 and vanadate increases pSlp76:
%>%
tcells.df select(Cells, Treatment, pS6, pSlp76) %>%
gather('Channel','value',one_of('pS6','pSlp76')) %>%
ggplot(aes(x=Treatment,y=value))+
geom_boxplot(aes(fill=Treatment))+
facet_grid(Channel~Cells)+
theme_light()+
theme(axis.text.x=element_text(angle=45,hjust=1))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.