The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

RandomWalker

CRAN_Status_Badge Lifecycle: experimental PRs Welcome

The goal of RandomWalker is to allow users to easily create Random Walks of different types that are compatible with the tidyverse suite of packages. The package is currently in the experimental stage of development.

Installation

You can install the released version of {TidyDensity} from CRAN with:

install.packages("RandomWalker")

You can install the development version of RandomWalker from GitHub with:

# install.packages("devtools")
devtools::install_github("spsanderson/RandomWalker")

Example

This is a basic example which shows you how to solve a common problem:

library(RandomWalker)
## basic example code
rw30() |>
  head(10)
#> # A tibble: 10 × 3
#>    walk_number     x      y
#>    <fct>       <int>  <dbl>
#>  1 1               1  0    
#>  2 1               2  1.52 
#>  3 1               3  2.02 
#>  4 1               4  1.82 
#>  5 1               5 -0.120
#>  6 1               6  0.588
#>  7 1               7  0.412
#>  8 1               8  0.998
#>  9 1               9  1.37 
#> 10 1              10  0.826

Here is a basic visualization of a Random Walk:

rw30() |>
  visualize_walks()

Visualize a Random Walk of 30 simulations

Here is a basic summary of the random walks:

rw30() |>
  summarize_walks(.value = y)
#> # A tibble: 1 × 16
#>   fns   fns_name dimensions mean_val median range quantile_lo quantile_hi
#>   <chr> <chr>         <dbl>    <dbl>  <dbl> <dbl>       <dbl>       <dbl>
#> 1 rw30  Rw30              1   -0.670 -0.132  47.4       -18.3        14.2
#> # ℹ 8 more variables: variance <dbl>, sd <dbl>, min_val <dbl>, max_val <dbl>,
#> #   harmonic_mean <dbl>, geometric_mean <dbl>, skewness <dbl>, kurtosis <dbl>

rw30() |>
  summarize_walks(.value = y, .group_var = walk_number)
#> # A tibble: 30 × 17
#>    walk_number fns   fns_name dimensions mean_val  median range quantile_lo
#>    <fct>       <chr> <chr>         <dbl>    <dbl>   <dbl> <dbl>       <dbl>
#>  1 1           rw30  Rw30              1  -0.951   0.0447 15.6       -10.5 
#>  2 2           rw30  Rw30              1  -0.947  -2.02   13.5        -5.69
#>  3 3           rw30  Rw30              1  -2.91   -3.42   12.9        -8.84
#>  4 4           rw30  Rw30              1  -0.0432  0.299  11.1        -4.63
#>  5 5           rw30  Rw30              1  -4.28   -4.52   12.8        -9.94
#>  6 6           rw30  Rw30              1  -1.77   -1.71   14.6        -9.60
#>  7 7           rw30  Rw30              1  -3.51   -3.43   13.6        -9.47
#>  8 8           rw30  Rw30              1  -4.25   -3.94   20.1       -14.8 
#>  9 9           rw30  Rw30              1   1.93    2.16    7.11       -1.46
#> 10 10          rw30  Rw30              1   0.621   1.20   13.7        -5.59
#> # ℹ 20 more rows
#> # ℹ 9 more variables: quantile_hi <dbl>, variance <dbl>, sd <dbl>,
#> #   min_val <dbl>, max_val <dbl>, harmonic_mean <dbl>, geometric_mean <dbl>,
#> #   skewness <dbl>, kurtosis <dbl>

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.