The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Raquifer

Raquifer

Raquifer estimates the cumulative water influx into hydrocarbon reservoirs using un-steady and pseudo-steady state modeling approaches. It generates a data frame of cumulative water influx over time for edge-drive and bottom-drive aquifers. Van Everdingen and Hurst un-steady state model for the constant terminal pressure solution predicts the cumulative influx for edge-water drive aquifers with radial flow (Van Everdingen & Hurst, 1949). For the bottom-water drive aquifers with linear/radial flow, the Yildiz-Khosravi un-steady state model for the constant terminal pressure solution is used (Yildiz & Khosravi, 2007). Nabor and Barham linear flow model for the constant terminal pressure solution is used for the edge-water and bottom-water drive aquifers modeling(Nabor & Barham, 1964). For the linear and radial pseudo-steady state flow modeling in aquifers, the Fetkovich method is used (Fetkovich, 1971).

Cumulative water influx predictions are generated by three different functions: aquifer_param(), aquifer_time(), and aquifer_predict().

aquifer_param() arguments

aquifer_time() arguments

aquifer_predict() arguments

Installation

The Raquifer can be installed from CRAN with:

install.packages("Raquifer")

Examples

Example 1: Un-steady state radial flow, edge-water drive

library(Raquifer)
library(ggplot2)
library(magrittr)

aqu_time <- aquifer_time(x = c(0,0.368,2.439,4.957,7.732,11.926,18.126,30.044) * 365, unit = "day")

parameters <- aquifer_param(input_unit = "Field", output_unit = "Field", model = "uss", 
                            flow_type = "radial", water_drive = "edge", phi = 0.27, perm_h = 64.2, 
                            h_a = 20, r_a = 5 * 14892, r_R = 14892, tetha = 180,
                            mu_water = 0.485, c_water = 3.88e-6, c_rock = 2e-6, 
                            pressure = c(1640,1600,1400,1200,1000,800,600,400))

aqu_time
#> $t
#> [1]     0.000   134.320   890.235  1809.305  2822.180  4352.990  6615.990
#> [8] 10966.060
#> 
#> $unit
#> [1] "day"
#> 
#> $reference_date
#> [1] "2020-05-12"
#> 
#> attr(,"class")
#> [1] "day"  "time"

parameters
#> $input_unit
#> [1] "Field"
#> 
#> $output_unit
#> [1] "Field"
#> 
#> $model
#> [1] "veh_rad_edge"
#> 
#> $phi
#> [1] 0.27
#> 
#> $perm_h
#> [1] 64.2
#> 
#> $h_a
#> [1] 20
#> 
#> $r_a
#> [1] 74460
#> 
#> $r_R
#> [1] 14892
#> 
#> $tetha
#> [1] 180
#> 
#> $mu_water
#> [1] 0.485
#> 
#> $c_water
#> [1] 3.88e-06
#> 
#> $c_rock
#> [1] 2e-06
#> 
#> $pressure
#> [1] 1640 1600 1400 1200 1000  800  600  400
#> 
#> attr(,"class")
#> [1] "veh_rad_edge" "aquifer"

pred_veh <- aquifer_predict(aquifer_lst = parameters, time_lst = aqu_time)

head(pred_veh)
#>         Date Time (days)  We (MMbbl)
#> 1 2020-05-12       0.000  0.00000000
#> 2 2020-09-23     134.320  0.06185335
#> 3 2022-10-19     890.235  1.27831951
#> 4 2025-04-25    1809.305  4.19222802
#> 5 2028-02-02    2822.180  8.46586625
#> 6 2032-04-11    4352.990 15.65627937

pred_veh %>% ggplot(aes(x = `Time (days)`, y = `We (MMbbl)`)) +
  geom_point(size = 3, color = "blue") +
  theme_bw()

Example 2: Un-steady state radial flow, bottom-water drive

Example 3: Pseudo-steady state radial flow, edge-water drive

Example 4: Un-steady state linear flow, edge-water drive

Example 5: Un-steady state linear flow, bottom-water drive

Example 6: Pseudo-steady state linear flow, edge-water drive

Example 7: Pseudo-steady state linear flow, bottom-water drive

Example 8: Un-steady state radial flow, edge-water drive

Example 8: Un-steady state radial flow, edge-water drive

References

Fetkovich, M. J. (1971). A Simplified Approach to Water Influx Calculations-Finite Aquifer Systems. Journal of Petroleum Technology, 23(07), 814–828. https://doi.org/10.2118/2603-PA

Nabor, G. W., & Barham, R. H. (1964). Linear Aquifer Behavior. Journal of Petroleum Technology, 16(05), 561–563. https://doi.org/10.2118/791-PA

Van Everdingen, A. F., & Hurst, W. (1949). The Application of the Laplace Transformation to Flow Problems in Reservoirs. Journal of Petroleum Technology, 1(12), 305–324. https://doi.org/10.2118/949305-G

Yildiz, T., & Khosravi, A. (2007). An Analytical Bottomwaterdrive Aquifer Model for Material-Balance Analysis. SPE Reservoir Evaluation & Engineering, 10(06), 618–628. https://doi.org/10.2118/103283-PA

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.