The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

geom_stepribbon

Triad sou.

2015-12-31

The geom_stepribbon is an extension of the geom_ribbon, and is optimized for Kaplan-Meier plots with pointwise confidence intervals or a confidence band.

Usage

geom_stepribbon(mapping = NULL, data = NULL, stat = "identity",
  position = "identity", na.rm = FALSE, show.legend = NA,
  inherit.aes = TRUE, kmplot = FALSE, ...)

The additional argument

Other arguments are the same as the geom_ribbon.

Example

require("ggplot2")
## Loading required package: ggplot2
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
h <- ggplot(huron, aes(year))
h + RcmdrPlugin.KMggplot2::geom_stepribbon(
      aes(ymin = level - 1, ymax = level + 1),
      fill = "grey70"
    ) +
    geom_step(aes(y = level))
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car

h + geom_ribbon(
      aes(ymin = level - 1, ymax = level + 1),
      fill = "grey70"
    ) +
    geom_line(aes(y = level))

data(dataKm, package = "RcmdrPlugin.KMggplot2")

.df <- na.omit(data.frame(x = dataKm$time, y = dataKm$event, z = dataKm$trt))
.df <- .df[do.call(order, .df[, c("z", "x"), drop = FALSE]), , drop = FALSE]
.fit <- survival::survfit(
  survival::Surv(time = x, event = y, type = "right") ~ z, .df)
.fit <- data.frame(x = .fit$time, y = .fit$surv, nrisk = .fit$n.risk, 
  nevent = .fit$n.event, ncensor= .fit$n.censor, upper = .fit$upper,
  lower = .fit$lower)
.df <- .df[!duplicated(.df[,c("x", "z")]), ]
.df <- .fit <- data.frame(.fit, .df[, c("z"), drop = FALSE])
.df <- .fit <- rbind(unique(data.frame(x = 0, y = 1, nrisk = NA, nevent = NA,
  ncensor = NA, upper = 1, lower = 1, .df[, c("z"), drop = FALSE])), .fit)
.cens <- subset(.fit, ncensor == 1)

ggplot(data = .fit, aes(x = x, y = y, colour = z)) + 
  RcmdrPlugin.KMggplot2::geom_stepribbon(data = .fit,
    aes(x = x, ymin = lower, ymax = upper, fill = z), alpha = 0.25,
    colour = "transparent", show.legend = FALSE, kmplot = TRUE) +
  geom_step(size = 1.5) +
  geom_linerange(data = .cens, aes(x = x, ymin = y, ymax = y + 0.02),
    size = 1.5) + 
  scale_x_continuous(breaks = seq(0, 21, by = 7), limits = c(0, 21)) + 
  scale_y_continuous(limits = c(0, 1), expand = c(0.01, 0)) + 
  scale_colour_brewer(palette = "Set1") +
  scale_fill_brewer(palette = "Set1") +
  xlab("Time from entry") +
  ylab("Proportion of survival") +
  labs(colour = "trt") +
  theme_bw(base_size = 14, base_family = "sans") + 
  theme(legend.position = "right")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.