The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

RegAssure

R-CMD-check

The RegAssure package is designed to simplify and enhance the process of validating regression model assumptions in R. It provides a comprehensive set of tools for evaluating key assumptions such as linearity, homoscedasticity, independence, normality, and collinearity, contributing to the reliability of analytical results.

Installation

You can easily install RegAssure from GitHub using the devtools package:

# install.packages("devtools")
devtools::install_github("nrubiog/RegAssure")

Example: Linear Regression

Here’s a basic example showcasing how RegAssure can be used to enhance linear regression analysis:

# Install the package
# devtools::install_github("nrubiog/RegAssure")

# Load the package
library(RegAssure)

# Create a regression model
lm_model <- lm(mpg ~ wt + hp, data = mtcars)

# Check assumptions
check_lm_assumptions(lm_model)
#> 
#> The assumption tests have been completed and the results are available in a list. Enjoy it :)
#> Las pruebas de supuestos han sido completadas y los resultados están disponibles en una lista. Disfrútalo :)
#> $Linearity
#> [1] 1.075529e-16
#> 
#> $Homoscedasticity
#> 
#>  studentized Breusch-Pagan test
#> 
#> data:  model
#> BP = 0.88072, df = 2, p-value = 0.6438
#> 
#> 
#> $Independence
#> 
#>  Durbin-Watson test
#> 
#> data:  model
#> DW = 1.3624, p-value = 0.04123
#> alternative hypothesis: true autocorrelation is not 0
#> 
#> 
#> $Normality
#> 
#>  Shapiro-Wilk normality test
#> 
#> data:  model$residuals
#> W = 0.92792, p-value = 0.03427
#> 
#> 
#> $Multicollinearity
#>       wt       hp 
#> 1.766625 1.766625

Example: Logistic Regression

Here’s an additional example demonstrating the use of RegAssure with logistic regression:

# Load the package

library(RegAssure)
library(titanic)

# Load the dataframe
titanic <- titanic_train

# Create a binary logistic regression model
logit_model <- glm(Survived ~ Pclass + Sex, data = titanic, family = "binomial")

# Check assumptions for binary logistic regression
check_logit(logit_model, data = titanic, tipo_modelo = "binario", vars_numericas = "Pclass", y = "Survived")
#> logit_model has no missing values.
#> 
#> Tests performed for binary/binomial model.
#> Warning in check_logit(logit_model, data = titanic, tipo_modelo = "binario", : Box-Tidwell Test cannot be done.
#> Warning in check_logit(logit_model, data = titanic, tipo_modelo = "binario", : Variance Inflation Factor Test cannot be done.
#> 
#> The assumption tests have been completed and the results are available in a list. Enjoy it :)
#> Las pruebas de supuestos han sido completadas y los resultados están disponibles en una lista. Disfrútalo :)
#> $model_type
#> [1] "binary/binomial"
#> 
#> $Confusion
#>         Predicciones
#> Variable   0   1
#>        0 468  81
#>        1 109 233
#> 
#> $ROC
#> 
#> Call:
#> roc.default(response = new_data[[y]], predictor = pred_logit,     smooth = TRUE, auc = TRUE, ci = TRUE, ret = TRUE)
#> 
#> Data: pred_logit in 549 controls (new_data[[y]] 0) < 342 cases (new_data[[y]] 1).
#> Smoothing: binormal 
#> Area under the curve: 0.8453
#> 95% CI: 0.8115-0.8729 (2000 stratified bootstrap replicates)

Example: storing data

Here’s an example of how to use the get_predict() function to compare real and predicted values from a model:

# Load the package
library(RegAssure)

# Create a regression model
lm_model <- lm(mpg ~ wt + hp, data = mtcars)

# Get predictions and compare with real values
predictions <- get_predict(lm_model, mtcars, mtcars$mpg, n = 3)

# Print the results
print(predictions[1:7,])
#>                   reales predichos  Error
#> Mazda RX4           21.0    23.572 -2.572
#> Mazda RX4 Wag       21.0    22.583 -1.583
#> Datsun 710          22.8    25.276 -2.476
#> Hornet 4 Drive      21.4    21.265  0.135
#> Hornet Sportabout   18.7    18.327  0.373
#> Valiant             18.1    20.474 -2.374
#> Duster 360          14.3    15.599 -1.299

By incorporating RegAssure into your workflow, you can streamline the process of assessing and addressing regression model assumptions, leading to more informed decision-making.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.