The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Rnmr1D is the main module in the NMRProcFlow web application (http://nmrprocflow.org) concerning the NMR spectra processing.
Inside NMRProcFlow, Rnmr1D allows users to process their NMR spectra within a GUI application and thus the macro-command sequence coming from this process can be saved.
Outside NMRProcFlow Rnmr1D become an R package allowing users to replay the macro-command sequence generated within NMRProcFlow. Moreover, without using NMRProcFlow, this package can also be used to replace any ‘home-made script’ by a macro-command sequence.
See the Macro-command Reference Guide to have more details about macro-commands.
You may need to install a C++ compiler if not the case yet (see https://teuder.github.io/rcpp4everyone_en/020_install.html)
Some R packages:
<- c("impute", "MassSpecWavelet","pcaMethods")
packages if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
::install(setdiff(packages, rownames(installed.packages())));
BiocManager
}
<- c('doParallel', 'ptw', 'signal', 'speaq', 'base64enc', 'XML', 'igraph', 'ggplot2', 'plotly', 'plyr')
packages if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
install.packages(setdiff(packages, rownames(installed.packages())), repos='http://cran.rstudio.com')
}
require(devtools)
install_github("INRA/Rnmr1D", dependencies = TRUE)
library(Rnmr1D)
# Test with the provided example data
<- system.file("extra", package = "Rnmr1D")
data_dir <- file.path(data_dir, "CD_BBI_16P02")
RAWDIR <- file.path(data_dir, "NP_macro_cmd.txt")
CMDFILE <- file.path(data_dir, "Samples.txt")
SAMPLEFILE
# Detect the number of Cores
detectCores()
# Launch the pre-processing then the processing defined in the macro-command file
<- Rnmr1D::doProcessing(RAWDIR, cmdfile=CMDFILE, samplefile=SAMPLEFILE, ncpu=detectCores())
out
# Have a look on returned data structure
ls(out)
ls(out$specMat)
### Stacked Plot with a perspective effect
dev.new()
plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0.33)
### Overlaid Plot
dev.new()
plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0, pY=0.1)
# Get the data matrix
<- getBucketsDataset(out, norm_meth='CSN')
outMat
# Get the Signal/Noise Ratio (SNR) matrix
<- getSnrDataset(out, c(10.2,10.5), ratio=TRUE)
outSNR
# Get the bucket table
<- getBucketsTable(out)
outBucket
# Get the spectra data
<- getSpectraData(out) spectra
vignette("Rnmr1D")
You can access the vignette online : https://nmrprocflow.org/themes/html/Rnmr1D.html
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.