The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
R Interface to the Numerai Machine Learning Tournament API
This interface allows download of tournament data, submit predictions, get user information, stake NMR’s and much more. Using the functions from this package end user can write R code to automate the whole procedure related to numerai tournament.
If you encounter a problem or have suggestions, feel free to open an issue.
devtools::install_github("Omni-Analytics-Group/Rnumerai")
install.packages("Rnumerai")
library(Rnumerai)
Get your public key and api key by going to numer.ai and then going
to Custom API Keys
section under your Account
Tab. Select appropriate scopes to generate the key or select all scopes
to use the full functionality of this package.
set_public_id("public_id_here")
set_api_key("api_key_here")
get_account()
get_models(tournament=8)
get_models(tournament=11)
get_current_round()
get_competitions(tournament=8)
get_competitions(tournament=11)
set_bio(model_id = get_models()[["bayo"]], bio = "This Model Rocks")
set_link(model_id = get_models()[["bayo"]], link = "https://www.google.com",link_text = "Google")
wallet_transactions()
set_submission_webhook(model_id = get_models()[["bayo"]], webhook = "..")
round_model_performances(username = "bayo",tournament=8)
round_model_performances(username = "bayo",tournament=11)
daily_model_performances(username = "bayo",tournament=8)
daily_model_performances(username = "bayo",tournament=11)
daily_submission_performances(username = "bayo",tournament=8)
daily_submission_performances(username = "bayo",tournament=11)
get_leaderboard(tournament=8)
get_leaderboard(tournament=11)
model_id = get_models(tournament=8)[["bayo"]]
submission_status(model_id = model_id, tournament=8)
model_id = get_models(tournament=11)[["test5678"]]
submission_status(model_id = model_id, tournament=11)
run_query(query = 'query{account{username}}', auth=TRUE)
run_query(query = 'query{rounds{number,closeTime}}', auth=FALSE)
library(Rnumerai)
Get your public key and api key by going to numer.ai and then going
to Custom API Keys
section under your Account
Tab. Select appropriate scopes to generate the key or select all scopes
to use the full functionality of this package.
set_public_id("public_id_here")
set_api_key("api_key_here")
list_datasets()
download_dataset("v2/numerai_datasets.zip", "numerai_datasets.zip")
download_dataset("v2/numerai_live_data.parquet", "numerai_live_data.parquet")
unzip("numerai_datasets.zip",overwrite = TRUE, list = FALSE)
data_train <- read.csv("numerai_training_data.csv")
data_tournament <- read.csv("numerai_tournament_data.csv")
data_live <- data.table::setDT(arrow::read_parquet("numerai_live_data.parquet"))
predictions <- data.frame(id=data_live$id,prediction=sample(400:600,nrow(data_live),replace=TRUE)/1000)
upload_predictions(model_id = get_models()[["bayo"]],df=predictions)
download_dataset("v3/numerai_training_data.parquet", "numerai_training_data.parquet")
download_dataset("v3/numerai_validation_data.parquet", "numerai_validation_data.parquet")
download_dataset("v3/numerai_live_data.parquet", "numerai_live_data.parquet")
download_dataset("v3/numerai_datasets.zip", "numerai_datasets.zip")
data_train <- data.table::setDT(arrow::read_parquet("numerai_training_data.parquet"))
data_validation <- data.table::setDT(arrow::read_parquet("numerai_validation_data.parquet"))
data_live <- data.table::setDT(arrow::read_parquet("numerai_live_data.parquet"))
predictions <- data.frame(id=data_live$id,prediction=sample(400:600,nrow(data_live),replace=TRUE)/1000)
upload_predictions(model_id = get_models()[["bayo"]],df=predictions)
diagnostics <- data.frame(id=data_validation$id,prediction=sample(400:600,nrow(data_validation),replace=TRUE)/1000)
diagnostics_id <- upload_diagnostics(model_id = get_models()[["bayo"]],df=diagnostics)
diagnostics(model_id = get_models()[["bayo"]],diagnostics_id=diagnostics_id)
download_dataset("v4/train.parquet", "train.parquet")
download_dataset("v4/validation.parquet", "validation.parquet")
download_dataset("v4/live.parquet", "live.parquet")
download_dataset("v4/live_example_preds.parquet", "live_example_preds.parquet")
download_dataset("v4/validation_example_preds.parquet", "validation_example_preds.parquet")
download_dataset("v4/features.json", "features.json")
data_train <- data.table::setDT(arrow::read_parquet("train.parquet"))
data_validation <- data.table::setDT(arrow::read_parquet("validation.parquet"))
data_live <- data.table::setDT(arrow::read_parquet("live.parquet"))
predictions <- data.frame(id=data_live$id,prediction=sample(400:600,nrow(data_live),replace=TRUE)/1000)
upload_predictions(model_id = get_models()[["bayo"]],df=predictions)
diagnostic_preds <- data.frame(id=data_validation$id,prediction=sample(400:600,nrow(data_validation),replace=TRUE)/1000)
diagnostics_id <- upload_diagnostics(model_id = get_models()[["bayo"]],df=diagnostic_preds)
diagnostics(model_id = get_models()[["bayo"]],diagnostics_id=diagnostics_id)
stake_change(nmr=.01,action="increase",model_id = get_models()[["bayo"]])
stake_change(nmr=.01,action="decrease",model_id = get_models()[["bayo"]])
set_stake_type(model_id = get_models()[["bayo"]],corr_multiplier=1,tc_multiplier=2,tournament=8)
library(Rnumerai)
Get your public key and api key by going to numer.ai and then going
to Custom API Keys
section under your Account
Tab. Select appropriate scopes to generate the key or select all scopes
to use the full functionality of this package.
set_public_id("public_id_here")
set_api_key("api_key_here")
tickers <- ticker_universe()
predictions <- cbind(tickers,signal = sample(400:600,nrow(tickers),replace=TRUE)/1000)
upload_predictions(model_id = get_models(tournament=11)[["test5678"]],df=predictions,tournament=11)
download_validation_data(file_path = "signals_historical_targets.csv")
data_validation <- read.csv("signals_historical_targets.csv")
data_validation <- data_validation[sample(1:nrow(data_validation),1000),1:3]
data_validation$data_type <- "validation"
diagnostic_preds <- cbind(data_validation,signal = sample(400:600,nrow(data_validation),replace=TRUE)/1000)
diagnostics_id <- upload_diagnostics(model_id = get_models(tournament=11)[["test5678"]],df=diagnostic_preds,tournament=11)
diagnostics(model_id = get_models(tournament=11)[["test5678"]],tournament=11,diagnostics_id=diagnostics_id)
stake_change(nmr=.01,action="increase",tournament=11,model_id = get_models(tournament=11)[["test5678"]])
stake_change(nmr=.01,action="decrease",tournament=11,model_id = get_models(tournament=11)[["test5678"]])
set_stake_type(model_id = get_models(tournament=11)[["test5678"]],corr_multiplier=1,tc_multiplier=2,tournament=11)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.