The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

RobustLinearReg: Robust Linear Regressions

Provides an easy way to compute the Theil Sehn Regression method and also the Siegel Regression Method which are both robust methods base on the median of slopes between all pairs of data. In contrast with the least squared linear regression, these methods are not sensitive to outliers. Theil, H. (1992) <doi:10.1007/978-94-011-2546-8_20>, Sen, P. K. (1968) <doi:10.1080/01621459.1968.10480934>.

Version: 1.2.0
Depends: R (≥ 3.1.0)
Published: 2020-06-12
DOI: 10.32614/CRAN.package.RobustLinearReg
Author: Santiago I. Hurtado
Maintainer: Santiago I. Hurtado <santih at carina.fcaglp.unlp.edu.ar>
License: GPL-3
NeedsCompilation: no
CRAN checks: RobustLinearReg results

Documentation:

Reference manual: RobustLinearReg.pdf

Downloads:

Package source: RobustLinearReg_1.2.0.tar.gz
Windows binaries: r-devel: RobustLinearReg_1.2.0.zip, r-release: RobustLinearReg_1.2.0.zip, r-oldrel: RobustLinearReg_1.2.0.zip
macOS binaries: r-release (arm64): RobustLinearReg_1.2.0.tgz, r-oldrel (arm64): RobustLinearReg_1.2.0.tgz, r-release (x86_64): RobustLinearReg_1.2.0.tgz, r-oldrel (x86_64): RobustLinearReg_1.2.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RobustLinearReg to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.