The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Rstg: STG : Feature Selection using STochastic Gates

'STG' is a method for feature selection in neural network. The procedure is based on probabilistic relaxation of the l0 norm of features, or the count of the number of selected features. The framework simultaneously learns either a nonlinear regression or classification function while selecting a small subset of features. Read more: Yamada et al. (2020) <https://proceedings.mlr.press/v119/yamada20a.html>.

Version: 0.0.1
Imports: reticulate (≥ 1.4)
Published: 2021-12-13
DOI: 10.32614/CRAN.package.Rstg
Author: Yutaro Yamada [aut, cre]
Maintainer: Yutaro Yamada <yutaro.yamada at yale.edu>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: NEWS
CRAN checks: Rstg results

Documentation:

Reference manual: Rstg.pdf

Downloads:

Package source: Rstg_0.0.1.tar.gz
Windows binaries: r-devel: Rstg_0.0.1.zip, r-release: Rstg_0.0.1.zip, r-oldrel: Rstg_0.0.1.zip
macOS binaries: r-release (arm64): Rstg_0.0.1.tgz, r-oldrel (arm64): Rstg_0.0.1.tgz, r-release (x86_64): Rstg_0.0.1.tgz, r-oldrel (x86_64): Rstg_0.0.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=Rstg to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.