The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(Ryacas)
Ryacas
makes the yacas
computer algebra
system available from within R
. The name yacas
is short for “Yet Another Computer Algebra System”. The
yacas
program is developed by Ayal Pinkhuis and others, and
is available at http://www.yacas.org/ for various platforms. There is a
comprehensive documentation (300+ pages) of yacas
available
at https://yacas.readthedocs.io and the documentation
contains many examples.
This version of Ryacas
is somewhat different to previous
versions of Ryacas
because we have tried to make the
interface a lot simpler.
The old version of Ryacas
is available as a legacy
version called Ryacas0
at https://github.com/r-cas/ryacas0/ with documentation
directly available at https://r-cas.github.io/ryacas0/.
yacas
The naming principle governing Ryacas
functions is as
follows:
yac_*(x)
functions evaluate/run yacas
command x
; the result varies depending on which of the
functions used (see below)y_*(x)
various utility functions (not involving calls
to yacas
)There are two interfaces to yacas
: a low-level (see the
“The low-level interface” vignette) and a high-level (see the “The
high-level (symbol) interface” vignette). The low-level is highly
customisable, but also requires more work with text strings. The
high-level is easier dealing with vectors and matrices, but may also be
less computationally efficient and less flexible.
Below, we will demonstrate both interfaces and refer to the other vignettes for more information.
A short summary of often-used yacas
commands are found
at the end of this vignette. A short summary of often-used low-level
Ryacas
functions are found at the end of the “The low-level
interface” vignette, and a short summary of often-used high-level
Ryacas
functions are found at the end of the “The
high-level (symbol) interface” vignette.
The low-level interface consists of these two main functions:
yac_str(x)
: Evaluate yacas
command
x
(a string) and get result as
string/character.yac_expr(x)
: Evaluate yacas
command
x
(a string) and get result as an R
expression.Note, that the yacas
command x
is a string
and must often be built op using
paste()
/paste0()
. Examples of this will be
shown in multiple examples below.
<- "x^2 + 4 + 2*x + 2*x"
eq yac_str(eq) # No task was given to yacas, so we simply get the same returned
## [1] "x^2+2*x+2*x+4"
yac_str(paste0("Simplify(", eq, ")"))
## [1] "x^2+4*x+4"
yac_str(paste0("Factor(", eq, ")"))
## [1] "(x+2)^2"
yac_expr(paste0("Factor(", eq, ")"))
## expression((x + 2)^2)
yac_str(paste0("TeXForm(Factor(", eq, "))"))
## [1] "\\left( x + 2\\right) ^{2}"
Instead of the pattern paste0("Simplify(", eq, ")")
etc., there exists a helper function y_fn()
that does
this:
y_fn(eq, "Factor")
## [1] "Factor(x^2 + 4 + 2*x + 2*x)"
yac_str(y_fn(eq, "Factor"))
## [1] "(x+2)^2"
yac_str(y_fn(y_fn(eq, "Factor"), "TeXForm"))
## [1] "\\left( x + 2\\right) ^{2}"
As you see, there are a lot of nested function calls. That can be
avoided by using magrittr
’s pipe %>%
(automatically available with Ryacas
) together with the
helper function y_fn()
:
%>% y_fn("Factor") eq
## [1] "Factor(x^2 + 4 + 2*x + 2*x)"
%>% y_fn("Factor") %>% yac_str() eq
## [1] "(x+2)^2"
%>% y_fn("Factor") %>% y_fn("TeXForm") %>% yac_str() eq
## [1] "\\left( x + 2\\right) ^{2}"
The polynomial can be evaluated for a value of \(x\) by calling yac_expr()
instead of yac_str()
:
yac_str(paste0("Factor(", eq, ")"))
## [1] "(x+2)^2"
<- yac_expr(paste0("Factor(", eq, ")"))
expr expr
## expression((x + 2)^2)
eval(expr, list(x = 2))
## [1] 16
The high-level interface consists of the main function
ysym()
and often the helper function as_r()
will be used to get back an R
object (expression, matrix,
vector, …).
Before we had eq
as a text string. We now make a
ysym()
from that:
<- ysym(eq)
eqy eqy
## y: x^2+2*x+2*x+4
as_r(eqy)
## expression(x^2 + 2 * x + 2 * x + 4)
%>% y_fn("Factor") # Notice how we do not need to call yac_str()/yac_expr() eqy
## y: (x+2)^2
Notice how the printing is different from before.
We start with a small matrix example:
<- outer(0:3, 1:4, "-") + diag(2:5)
A <- 1:4
a <- ysym(A)
B B
## {{ 1, -2, -3, -4},
## { 0, 2, -2, -3},
## { 1, 0, 3, -2},
## { 2, 1, 0, 4}}
<- ysym(a)
b b
## {1, 2, 3, 4}
Notice how they are printed using yacas
’s syntax.
We can apply yacas
functions using
y_fn()
:
y_fn(B, "Transpose")
## {{ 1, 0, 1, 2},
## {-2, 2, 0, 1},
## {-3, -2, 3, 0},
## {-4, -3, -2, 4}}
y_fn(B, "Inverse")
## {{ 37/202, 3/101, 41/202, 31/101},
## {(-17)/101, 30/101, 3/101, 7/101},
## {(-19)/202, (-7)/101, 39/202, (-5)/101},
## { (-5)/101, (-9)/101, (-11)/101, 8/101}}
y_fn(B, "Trace")
## y: 10
Some standard R
commands are available (see the section
“Ryacas
high-level reference” at the end of the “The
high-level (symbol) interface” vignette):
%*% a A
## [,1]
## [1,] -28
## [2,] -14
## [3,] 2
## [4,] 20
%*% b B
## {-28, -14, 2, 20}
t(A)
## [,1] [,2] [,3] [,4]
## [1,] 1 0 1 2
## [2,] -2 2 0 1
## [3,] -3 -2 3 0
## [4,] -4 -3 -2 4
t(B)
## {{ 1, 0, 1, 2},
## {-2, 2, 0, 1},
## {-3, -2, 3, 0},
## {-4, -3, -2, 4}}
2:3] A[,
## [,1] [,2]
## [1,] -2 -3
## [2,] 2 -2
## [3,] 0 3
## [4,] 1 0
2:3] B[,
## {{-2, -3},
## { 2, -2},
## { 0, 3},
## { 1, 0}}
%*% solve(A) A
## [,1] [,2] [,3] [,4]
## [1,] 1.000000e+00 0.000000e+00 -5.551115e-17 -5.551115e-17
## [2,] 2.775558e-17 1.000000e+00 -5.551115e-17 1.110223e-16
## [3,] 2.775558e-17 5.551115e-17 1.000000e+00 -1.110223e-16
## [4,] 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
%*% solve(B) B
## {{1, 0, 0, 0},
## {0, 1, 0, 0},
## {0, 0, 1, 0},
## {0, 0, 0, 1}}
Next we will demonstrate matrix functionality using the Hilbert matrix
\[
H_{{ij}}={\frac{1}{i+j-1}}
\] In R
’s solve()
help file there is
code for generating it:
<- function(n) {
hilbert <- 1:n
i <- 1 / outer(i - 1, i, "+")
H return(H)
}
To avoid floating-point issues (see the “Arbitrary-precision
arithmetic” vignette), we instead generate just the denominators as a
stanard R
matrix:
<- function(n) {
hilbert_den <- 1:n
i <- outer(i - 1, i, "+")
H return(H)
}<- hilbert_den(4)
Hden Hden
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 2 3 4 5
## [3,] 3 4 5 6
## [4,] 4 5 6 7
<- 1/Hden
H H
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.5000000 0.3333333 0.2500000
## [2,] 0.5000000 0.3333333 0.2500000 0.2000000
## [3,] 0.3333333 0.2500000 0.2000000 0.1666667
## [4,] 0.2500000 0.2000000 0.1666667 0.1428571
To use Ryacas
’s high-level interface, we use the
function ysym()
that converts the matrix to
yacas
representation and automatically calls
yac_str()
when needed. Furthermore, it enables standard
R
functions such as subsetting with [
,
diag()
, dim()
and others.
<- ysym(Hden)
Hyden Hyden
## {{1, 2, 3, 4},
## {2, 3, 4, 5},
## {3, 4, 5, 6},
## {4, 5, 6, 7}}
<- 1/Hyden
Hy Hy
## {{ 1, 1/2, 1/3, 1/4},
## {1/2, 1/3, 1/4, 1/5},
## {1/3, 1/4, 1/5, 1/6},
## {1/4, 1/5, 1/6, 1/7}}
Notice how the printing is different from R
’s
printing.
We can then to a number of things with the ysym()
.
as_r(Hy) # now floating-point and the related problems
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.5000000 0.3333333 0.2500000
## [2,] 0.5000000 0.3333333 0.2500000 0.2000000
## [3,] 0.3333333 0.2500000 0.2000000 0.1666667
## [4,] 0.2500000 0.2000000 0.1666667 0.1428571
diag(Hy)
## {1, 1/3, 1/5, 1/7}
upper.tri(Hy)] Hy[
## {1/2, 1/3, 1/4, 1/4, 1/5, 1/6}
1:2, ] Hy[
## {{ 1, 1/2, 1/3, 1/4},
## {1/2, 1/3, 1/4, 1/5}}
dim(Hy)
## [1] 4 4
<- Hy
A lower.tri(A)] <- "x"
A[ A
## {{ 1, 1/2, 1/3, 1/4},
## { x, 1/3, 1/4, 1/5},
## { x, x, 1/5, 1/6},
## { x, x, x, 1/7}}
as_r(A)
## expression(rbind(c(1, 1/2, 1/3, 1/4), c(x, 1/3, 1/4, 1/5), c(x,
## x, 1/5, 1/6), c(x, x, x, 1/7)))
eval(as_r(A), list(x = 999))
## [,1] [,2] [,3] [,4]
## [1,] 1 0.5000000 0.3333333 0.2500000
## [2,] 999 0.3333333 0.2500000 0.2000000
## [3,] 999 999.0000000 0.2000000 0.1666667
## [4,] 999 999.0000000 999.0000000 0.1428571
We consider the Rosenbrock function:
<- ysym("x")
x <- ysym("y")
y <- (1 - x)^2 + 100*(y - x^2)^2
f f
## y: (1-x)^2+100*(y-x^2)^2
tex(f)
## [1] "\\left( 1 - x\\right) ^{2} + 100 \\left( y - x ^{2}\\right) ^{2}"
\[\begin{align}f(x, y) = \left( 1 - x\right) ^{2} + 100 \left( y - x ^{2}\right) ^{2}\end{align}\]
We can visualise this, too.
<- 30
N <- seq(-1, 2, length=N)
x <- seq(-1, 2, length=N)
y <- as_r(f)
f_r f_r
## expression((1 - x)^2 + 100 * (y - x^2)^2)
<- outer(x, y, function(x, y) eval(f_r, list(x = x, y = y)))
z <- c(0.001, .1, .3, 1:5, 10, 20, 30, 40, 50, 60, 80, 100, 500, 1000)
levels <- rainbow(length(levels))
cols contour(x, y, z, levels = levels, col = cols)
Say we want to find the minimum. We do that by finding the roots of the gradient:
<- deriv(f, c("x", "y"))
g g
## {(-2)*(1-x)-400*x*(y-x^2), 200*(y-x^2)}
\[\begin{align}g(x, y) = \left( -2 \left( 1 - x\right) - 400 x \left( y - x ^{2}\right) , 200 \left( y - x ^{2}\right) \right)\end{align}\]
<- solve(g, c("x", "y"))
crit_sol_all crit_sol_all
## {{x==1, y==1}}
<- crit_sol_all[1, ] %>% y_rmvars()
crit_sol crit_sol
## {1, 1}
<- crit_sol %>% as_r()
crit crit
## [1] 1 1
We now verify what type of critical point we have by inspecting the Hessian at that critical point:
<- Hessian(f, c("x", "y"))
H H
## {{2-400*(y-x^2-2*x^2), (-400)*x},
## { -400*x, 200}}
tex(H)
## [1] "\\left( \\begin{array}{cc} 2 - 400 \\left( y - x ^{2} - 2 x ^{2}\\right) & -400 x \\\\ - 400 x & 200 \\end{array} \\right)"
\[\begin{align} H = \left( \begin{array}{cc} 2 - 400 \left( y - x ^{2} - 2 x ^{2}\right) & -400 x \\ - 400 x & 200 \end{array} \right) \end{align}\]
<- eval(as_r(H), list(x = crit[1], y = crit[2]))
H_crit H_crit
## [,1] [,2]
## [1,] 802 -400
## [2,] -400 200
eigen(H_crit, only.values = TRUE)$values
## [1] 1001.6006392 0.3993608
Because the Hessian is positive definite, the critical point \((1, 1)\) is indeed a minimum (actually, the global minimum).
yacas
referenceBelow are some yacas
functions. A more elaborate
reference is available at https://yacas.readthedocs.io/:
Expand(x)
: Expand an expressionFactor(x)
: Factorise an expressionSimplify(x)
: Simplify an expressionSolve(expr, var)
solve an equation (refer to the
Ryacas
function y_rmvars()
)Variables()
: List yacas
variablesD(x) expr
: Take the derivative of expr
with respect to x
HessianMatrix(function, var)
: Create the Hessian
matrixJacobianMatrix(function, var)
: Create the Jacobian
matrixLimit(n, a) f(n)
: Limit of f(n)
for
n
going towards a
(e.g. Infinity
or 0
)Sum(k, a, b, f(k))
: Sum of f(k)
for
k
from a
to b
.TeXForm(x)
: Get a \(\LaTeX\) representation of an
expressionPrettyForm(x)
: Print a prettier ASCII representation of
an expressionInverse(A)
: Inverse of a matrixTranspose(A)
: Transpose of a matrixA * B
: Matrix multiplication (and not as
R
’s %*%
)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.