S3VS User Guide

Nilotpal Sanyal

January 09, 2026

Contents
1 Introduction and overview 1
1.1 What problem does S3VS solve? . . . . . . . . . .. 1
1.2 Model families supported . . . . . . . .. 2
1.3 S3VSinone picture . . . . . . . e 2
2 Use of package functions with examples 2
2.1 Imstallation . . . . . . . . e e e 2
2.2 The main function S3VS() . . . . . . . . . e 2
2.2.1 Example 1: Linear model . . . . . . . . . ... ... ... .. 4
2.2.2  Example 2: Binary classification model . . . . . ... ... oL oo 5
2.2.3 Example 3: Survival model . . . . . . ... ... 6
2.3 Advanced usage: building blocks and customization . . . . . . . . ... ... L. 7
2.3.1 Choosing leading variables: get_leadvars*() . . . . ... ... ... .. .. ..... 7
2.3.2 Constructing leading sets: get_leadsets() . . . . . . ... ... ... ... .... 8
2.3.3 Selection within a set: VS_method*() . . . . . . .. .. ... ... .. ... ... . 8
2.3.4 Aggregating selections: select_vars() . . . . . ... ... Lo 8
2.3.5 Removing variables: remove_vars() . . . . . . . . ... oo 8
2.3.6 Response updating: update_y*() . . . . . .. L 9
2.3.7 Stopping rule: looprun() . . . . . . . . L 9
3 Practical guidance and troubleshooting 9
3.1 Choosing method_sel and method_rem. . . . . . . . . . . . . . . .. 9
3.2 Highly correlated predictors: . . . . . . . . ... L 9
3.3 Computational tips for AFT: . . . . . . . . . e 10
3.4 Reproducibility . . . . . . .. 10

1 Introduction and overview

1.1 What problem does S3VS solve?

High-dimensional predictors with complex correlation structure are ubiquitous in modern applications (e.g.,
genomics, metabolomics, imaging, EHR features, text embeddings). In such settings, variable selection is
challenging because:

o signals are sparse (few true effects among many candidates),

« predictors exhibit strong correlation structure (e.g., LD blocks, grouped features, multi-collinearity),
o model fitting can be computationally expensive (especially for survival models),

« different selection engines can yield unstable results if screening is naive.

The Structured Screen-and-Select Variable Selection (S3VS) algorithm implemented in in the S3VS1
package addresses these issues by combining:



1. a structured screening step that proposes a small set of “leading” candidates, and

2. a within-set selection step (LASSO / SCAD / MCP / Bayesian nonlocal priors / survival-specific
methods),

3. repeated in an iterative loop with principled aggregation rules.

This vignette introduces the main workflow, explains the key tuning knobs, and provides reproducible
examples for each model family.

1.2 Model families supported

S3VS provides a unified workflow for:

o Linear models (family = "normal")
o Binary generalized linear models (family = "binomial")
o Survival models (family = "survival") with:

— Cox PH: surv_model = "COX"
— AFT: surv_model = "AFT"

1.3 S3VS in one picture
At iteration t, let V, denote the set of predictors not yet removed.

1. Choose leading variables: Compute a marginal association score s; for each X; € V; and using that
score in a rule such as top-k or fixed thresholding, or percentage thresholding, keep a small set £; C V.

2. Build leading sets: For each ¢ € L;, build a set Sy of predictors highly correlated with X, using a
rule such as top-k or fixed thresholding, or percentage thresholding.

3. Select within each leading set: Apply a variable selection engine to Sy, producing selected /not-
selected variables.

4. Aggregate: Aggregate selected and not-selected variables across leading sets using a conservative or
liberal policy.

5. Update & prune: Optionally update the working response and remove non-selected variables.

6. Stop: terminate after m iterations or after nskip iterations with no selection.

2 Use of package functions with examples

2.1 Installation

If S3VS is available on CRAN, you can install it in the usual way:
install.packages("S3VS")

If you have a source tarball (e.g., S3VS_1.0.tar.gz), install from source:

install.packages("S3VS_1.0.tar.gz", repos = NULL, type = "source"

Then load the package:
library(S3VS)

2.2 The main function S3VS()

S3VS () is the main and the top-level function of this package. Depending on the family, S3VS() dispatches to
S3VS_LM(), S3VS_GLM(), or S3VS_SURV (), each of which calls the following functions to perform the whole
analysis:



e get_leadvars*() for choosing leading variables,

e get_leadsets() for construting leading sets,

e VS_methodx*() for within-set variable selection,

e select_vars() for aggregating selected variables across sets,

o remove_vars() for aggregating not-selected variables across sets,
e update_y*() for updating the working response, and

e looprun() to check when the algorithm should be terminated.

The S3VS() function signature below shows the available options for each argument and default options.

S3Vs(
¥y, X,
family = c("normal", "binomial", "survival"),
cor_xy = NULL,
surv_model = c("COX", "AFT"),
method_xy = c("topk", "fixedthresh", "percthresh"),
param_xy,
method_xx = c("topk", "fixedthresh", "percthresh"),
param_xx,
vsel_method = NULL,
method_sel = c("conservative", "liberal"),
method_rem = c("conservative_begin", "conservative_end", "liberal"),
sel_regout = FALSE,
rem_regout = FALSE,
update_y_thresh = 0.5,
m = 100,
nskip = 3,
verbose = FALSE,
seed = NULL,
parallel = FALSE

e The rule for choosing the leading variables is specified by the arguments method_xy and param_xy,
whereas the rule for determining the leading sets is specified by method_xx and param_xx. The marginal
association measure for choosing the leading variables depends on family (correlation for “normal”,
eta-squared for “binomial”, and marginal utility for “survival”), whereas Pearson correlation is used for
determining the leading sets. The option “topk” keeps the predictors with the largest k association
values, “fixedthresh” keeps predictors whose association is greater than or equal to a specified threshold,
and “percthresh” keeps predictors whose association is within a given percentage of the best.

e The vsel_method argument specifies the within-set variable selection engine. The choices include
“NLP”, “ENET”, “LASSO”, “SCAD”, and “MCP” for linear and generalized linear models; “LASSO”
and “ENET?” for survival “COX” models; and “AFTGEE”, “BRIDGE”, “PVAFT” for survival “AFT”
models.

e The method_sel argument specifies the policy for aggregating predictors selected across leading sets in
an iteration. The option “conservative” selects the smallest admissible set of predictors by intersecting
the selected sets of predictors across leading sets, beginning with all and gradually reducing from the
end until a non-empty intersection is found; this ensures only predictors consistently selected across
leading sets are retained. The option “liberal” selects the largest admissible set of predictors by taking
the union of all selected sets of predictors, so any predictor chosen in at least one leading set is included.
If no predictor is selected from the first leading set, the iteration does not contribute to final selection
and exclusion rules (method_rem) are applied instead.

e The method_rem argument specifies the policy for excluding predictors when no selections are made in
an iteration. The “conservative_begin” option excludes the smallest admissible set of predictors by
intersecting the non-selected sets of predictors starting from the first leading set; “conservative__end”



does the same but begins from the last leading set and moves backward; “liberal” excludes the largest
admissible set of predictors by taking the union of all non-selected sets of predictor. Predictors excluded
under this rule are removed from subsequent iterations.

e sel_regout and rem_regout control whether the working response is updated during the S3VS

iterations to help uncover weaker signals after accounting for stronger effects. When sel_regout =
TRUE (GLM only), the response is updated using the predictors selected in the current iteration via
update_y_GLM(), effectively conditioning on newly selected variables before the next screening step.
When rem_regout = TRUE (LM and GLM), and an iteration results in no new selections but some
predictors are removed, the response is updated using the removed predictors through update_y_LM()
or update_y_GLM(Q), allowing the algorithm to adjust for their influence before continuing. Both options
are ignored for model families where they do not apply.

Below, we provide examples of the usage of S3VS() for linear, generalized linear, and survival models.

2.2,

We

set

1 Example 1: Linear model

simulate a correlated design and a sparse linear signal.

.seed (1)

n <- 200
p <- 300

rho

<- 0.6

Sigma <- rho ~ abs(outer(il:p, 1l:p, "-"))
X_1m <- matrix(rnorm(n * p), n, p) %*% chol(Sigma)
colnames(X_1m) <- pasteO0("X", seq_len(p))

beta <- rep(0, p)
active <- c(5, 17, 50, 120, 201)
betalactive] <- c(2.0, -1.5, 1.2, 1.8, -2.2)

y_1lm <- as.numeric(X_lm 7*} beta + rnorm(n, sd = 2))

Next, we run un S3VS with LASSO within leading sets

fit
y
X

_1m <- S3VS(

= y_1m,
= X_1m,

family = "normal",

method_xy = "percthresh",
param_xy = list(thresh = 95),
method_xx = "topk",

param_xx = list(k = 10),
vsel_method = "LASSO",

method_sel = "conservative",
method_rem = "conservative_begin",
verbose = FALSE,
seed = 1

)

#> s========= ====

#> Number of selected wvariables: 6

#>
#>

Time taken: 0.3 sec

The selected variables are



fit_1m$selected
#> [1] IIX5 n IIX201 n IIX1 7” IIX120 n HX50 n IIX270 n

Iteration-wise selected variables are

str(fit_Ilm$selected_iterwise)

#> List of 9

#> $ : chr "X5"
#> $ : chr "X201"
#> $ : chr "X17"
#> $ : chr "X120"
#> $ : chr "X50"
#> $ : chr "X270"
#> $ : chr "

#> & : chr "

#> $ : chr "

pred_S3VS() refits a model on the selected variables using the method appropriate for the family.

Xsel <- X_1m[, fit_lm$selected, drop = FALSE]
pred_1lm <- pred_S3VS(y = y_lm, X = Xsel, family = "normal", method = "LASSO")

head(pred_lm$y.pred)
#> [1] 2.4719666 -3.5834730 -3.9231277 2.7764653 -7.4049709 0.8373651

2.2.2 Example 2: Binary classification model

We simulate a correlated design and a sparse binary signal.

set.seed(2)

n <- 250
p <- 400

rho <- 0.4

Sigma <- rho ~ abs(outer(l:p, 1l:p, "-"))

X_glm <- matrix(rnorm(n * p), n, p) %*% chol(Sigma)
colnames(X_glm) <- paste0("X", seq_len(p))

beta <- rep(0, p)
active <- c(10, 25, 90, 200)
betalactive] <- c(1.2, -1.0, 0.9, -1.4)

eta <- as.numeric(X_glm %*J, beta)
pr <- 1/ (1 + exp(-eta))
y_glm  <- rbinom(n, 1, pr)

We run un S3VS with SCAD within leading sets
fit_glm <- S3VS(

y = y_glm,

X = X_glm,

family = "binomial",
method_xy = "_survtopk",
param_xy = list(k = 2),
method_xx = "percthresh",



param_xx = list(thresh = 90),
vsel_method = "SCAD",
sel_regout = TRUE,
rem_regout = TRUE,
update_y_thresh = 0.5,
verbose = FALSE,
seed = 1
)
#>
#> Number of selected wvartables: 9
#> Time taken: 0.05 sec
#>

fit_glm$selected
#> [1] IIX200 n IIX25 n "Xl 0 n IIX27’7H HX1 01 n IIX1 95 n HX90 n HX340 n Ile 1 6‘ n

2.2.3 Example 3: Survival model
For survival models, y must be a list with components:

e time: observed times
o status: event indicator (1 = event, 0 = censored)

We generate a survival data as follows.

set.seed(3)

n <- 300

p <- 200

X_surv <- matrix(rnorm(n*p), n, p)

colnames (X_surv) <- paste0("X", seq_len(p))

beta <- rep(0, p)
active <- c(3, 30, 77, 150)
betalactive] <- ¢(0.6, -0.5, 0.7, -0.8)

linpred <- as.numeric(X_surv %*J beta)
base_rate <- 0.05

time <- rexp(n, rate = base_rate * exp(linpred))
cens <- rexp(n, rate = 0.02)

status <- as.integer(time <= cens)

time <- pmin(time, cens)

y_surv <- list(time = time, status = status)

First, we run S3VS assuming a Cox model.

fit_cox <- S3VS(
y = y_surv,
X = X_surv,
family = "survival",
surv_model = "COX",
method_xy = "topk",
param_xy = list(k = 2),
method_xx = "percthresh",



param_xx = list(thresh = 90),
vsel_method = "LASSOQ",
verbose = FALSE,
seed = 1
)
#>
#> Number of selected wvariables: 4
#> Time taken: 0.38 sec
#>

fit_cox$selected
#> [1] nxi150" "X77" nyan nx30"

Next, we run S3VS assuming an AFT model. AFT screening is often more expensive because adding a
candidate can require repeated model fitting. Start with smaller k values.

fit_aft <- S3VS(
y = y_surv,
X = X_surv,
family = "survival",
surv_model = "AFT",
method_xy = "topk",
param_xy = list(k = 2),
method_xx = "topk",
param_xx = list(k = 2),
vsel_method = "AFTGEE",
verbose = FALSE,
seed = 1,
parallel = FALSE
)
#>
#> Number of selected wvariables: 8
#> Time taken: 7.01 sec
#>

fit_aft$selected
#> [1] IIX1 50 n IIX77II IIX3 n IIX30 n IIX148 n IIX’74 n IIX6‘2 n IIX1 1 6 n

2.3 Advanced usage: building blocks and customization

This section individually discusses the helper functions that the top-level S3VS*() functions call.

2.3.1 Choosing leading variables: get_leadvars*()

The generic get_leadvars() dispatches to family-specific implementations get_leadvars_LM(),
get_leadvars_GLM() and get_leadvars_SURV().

Typical usages are given below:

# For the earlier linear model exzample

leadvars <- get_leadvars(y = y_1lm, X = X_1m, family = "normal", varsleft = colnames (X),
method = "topk", param = list(k = 20))

leadvars

#> [1] IIX5 n IIX201 n IIX120 n IIX4 n IIX202 n IIX1 7” IIX200 n IIX50 n IIX121 n IIX49/I

#> [1 1] IIXl 19 n IIX51 n IIX6 n IIX203 n IIX36 n IIX122 n IIXl 8 n IIX'3 n IIXI 02 n IIX204 n



# For the earlier generalized linear model exzample

leadvars <- get_leadvars_GLM(y = y_glm, X = X_glm, method = "percetasqthresh",
param = list(thresh = 80))

leadvars

#> [1] "X200" "X25"

# For the earlier survival Coxz model

leadvars <- get_leadvars_SURV(y = y_surv, X = X_surv, method = "topk",
param = list(k = 5))

leadvars

#> [1] IIX1 50 n IIX77II IIX30 n IIX3 n Ile 20 n

For linear models, if you need to reuse association scores across multiple runs (e.g., repeated stability selection),
compute cor_xy once and pass it to S3VS():

cor_xy <- abs(cor(y, X))
fit <- 83VS(y = y, X = X, family = "normal", cor_xy = cor_xy, ...)

2.3.2 Constructing leading sets: get_leadsets()

Once leading variables are chosen, get_leadsets() builds correlation neighborhoods.

leadsets <- get_leadsets(X = X, leadvars = leadvars,
method_xx = "topk", param_xx = list(k = 40))

2.3.3 Selection within a set: VS_method*()

The generic VS_method () dispatches to family-specific implementations VS_method_LM(), VS_method_GLM()
and VS_method_SURV(). Typical examples follow.

sel <- VS_method_LM(y = y, X = X[, leadsets[[1]], drop = FALSE],
vsel_method = "SCAD")
sel$selected

sel <- VS_method_GLM(y = y, X = X[, leadsets[[1]], drop = FALSE],
vsel_method = "MCP")
sel$selected

sel <- VS_method_SURV(y = y, X = X[, leadsets[[1]], drop = FALSE], surv_model = "AFT",
vsel_method = "AFTGEE")
sel$selected

2.3.4 Aggregating selections: select_vars()

When different leading sets yield different selections, select_vars() reconciles them. Typical examples
follow.

agg <- select_vars(sel_list, method_sel = "conservative")
agg
Whereas method_sel = "conservative" emphasizes stability /consistency,method_sel = "liberal": em-

phasizes sensitivity (union-like behavior)

2.3.5 Removing variables: remove_vars()

If no variables are selected at an iteration, removal rules can be applied to shrink the search space.



rem <- remove_vars(varsleft, varsselected, method_rem = "conservative_begin")
rem

2.3.6 Response updating: update_y*()

To help detect weaker signals after strong effects are accounted for, S3VS can update the working response.
Specifically, update_y_LM() provides regression residualization for LM and update_y_GLM() uses probability
updates with a threshold (controlled by update_y_thresh)for GLM.

y_new <- update_y_LM(y = y, X = X[, varsselected, drop = FALSE])

y_new <- update_y_GLM(y = y, X = X[, varsselected, drop = FALSE], update_y_thresh = 0.4)

2.3.7 Stopping rule: looprun()

The function looprun() implements the stopping rule based on maximum iterations m, maximum allowed
“no progress” iterations nskip unless varsleft is exhausted.

looprun(varsselected, varsleft, max_nocollect = 2, m = 100, nskip = 3)

3 Practical guidance and troubleshooting

Some practical guidelines for specific usages of the S3VS are given below.

3.1 Choosing method_sel and method_rem

The choice of method_sel and method_rem governs how selections are aggregated across leading sets and
how aggressively variables are removed from the search space, and therefore reflects a fundamental trade-off
between stability and sensitivity. If the primary goal is to control false discoveries and obtain a parsimo-
nious, interpretable model, it is advisable to begin with method_sel = "conservative" and method_rem =
"conservative_begin", which emphasize consistency across leading sets and remove variables cautiously,
particularly in early iterations. This configuration tends to favor predictors that are repeatedly supported by
the data and yields more stable selections. In contrast, if the goal is to maximize sensitivity and identify a
broader pool of potentially relevant candidates—such as in exploratory analyses or hypothesis generation—one
may opt for method_sel = "liberal" and method_rem = "liberal". These choices relax aggregation and
removal criteria, allowing more variables to be retained and carried forward, at the cost of potentially increased
false positives.

3.2 Highly correlated predictors:

When predictors are extremely correlated, careful tuning of the leading-set construction and the choice of
selection engine becomes especially important. In such settings, it is often beneficial to increase param_xx,
which enlarges the leading sets and allows groups of highly correlated variables to be examined jointly rather
than in isolation. This can improve stability and reduce the risk of arbitrarily selecting one variable from
a strongly correlated cluster while excluding equally relevant alternatives. At the same time, the size of
leading sets should be chosen with computational feasibility in mind, since larger sets increase the cost of
within-set selection. For linear models, penalization methods such as "SCAD" or "MCP" are worth considering,
as they tend to exhibit different shrinkage and grouping behavior than "LASSO" and may yield more stable
selections in the presence of strong collinearity. If a Bayesian approach is preferred, the "NLP" option provides
a selection engine based on nonlocal priors, which enforce stronger sparsity and can be particularly effective
at distinguishing true signals from correlated noise.



3.3 Computational tips for AFT:

For AFT models, the screening and selection steps in S3VS can be computationally demanding because
evaluating candidate predictors often requires repeated model fitting and likelihood comparisons. To keep
computations tractable, it is advisable to start with small screening and leading-set sizes (e.g., modest k
values in both param_xy and param_xx) and increase them only if important signals appear to be missed.
Whenever possible, enable parallel computation (parallel = TRUE when you have future.apply configured)
to distribute candidate evaluations across multiple cores, particularly during the AFT screening step, which
is typically the dominant cost. Using simpler or faster AFT selection engines (such as AFTGEE) in early
exploratory runs can help identify promising regions of the predictor space before switching to more complex
methods. Careful monitoring of iteration-wise progress and early stopping when no new variables are being
selected can further reduce unnecessary computation, making the overall AFT workflow more efficient and
scalable.

library(future)
plan(multisession)
fit_aft <- S3VS(..., family="survival", surv_model="AFT", parallel=TRUE)

3.4 Reproducibility

For reproducibility, users should set the seed argument (for example, seed = 1) to ensure that results are
repeatable across runs. It is also recommended to save the full object returned by S3VS(), as it contains all
essential information needed for transparency and auditability, including the final set of selected variables
(selected), the iteration-wise selection history (selected_iterwise), and the total runtime (runtime).

10



	Introduction and overview
	What problem does S3VS solve?
	Model families supported
	S3VS in one picture

	Use of package functions with examples
	Installation
	The main function S3VS()
	Example 1: Linear model
	Example 2: Binary classification model
	Example 3: Survival model

	Advanced usage: building blocks and customization
	Choosing leading variables: get_leadvars*()
	Constructing leading sets: get_leadsets()
	Selection within a set: VS_method*()
	Aggregating selections: select_vars()
	Removing variables: remove_vars()
	Response updating: update_y*()
	Stopping rule: looprun()


	Practical guidance and troubleshooting
	Choosing method_sel and method_rem
	Highly correlated predictors:
	Computational tips for AFT:
	Reproducibility


